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Abstract

The nonlinear stability of travelling Lax shocks in semidiscrete conservation laws involving general spatial

forward-backward discretization schemes is considered. It is shown that spectrally stable semidiscrete Lax

shocks are nonlinearly stable. In addition, it is proved that weak semidiscrete Lax profiles satisfy the spectral

stability hypotheses made here and are therefore nonlinearly stable. The nonlinear stability results are proved

by constructing the resolvent kernel using exponential dichotomies, which have recently been developed in

this setting, and then using the contour integral representation for the associated Green’s function to derive

pointwise bounds that are sufficient for proving nonlinear stability. Previous stability analyses for semidiscrete

shocks relied primarily on Evans functions, which exist only for one-sided upwind schemes.
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1 Introduction

Our starting point is semidiscrete systems of conservation laws, where semidiscreteness refers to the property that
the equations are discrete in space and continuous in time. Thus, the underlying equations can be thought of as
lattice dynamical systems that are posed on a spatial lattice Z of equidistant grid points with a time evolution in
the continuous time variable t ∈ R. Such equations arise naturally as spatial finite-difference approximations of
systems of conservation laws, and it is therefore of interest to investigate the similarities and differences between
the original continuous conservation law and its semidiscrete analogue.

Lax shocks are an important feature of both continuous and semidiscrete systems of conservation laws, and the
issue addressed in this paper is the nonlinear stability of semidiscrete Lax shocks. More specifically, we consider
semidiscrete Lax shocks that travel with nonzero speed through the lattice. Indeed, since the underlying lattice
breaks translation symmetry, standing and travelling waves will have very different properties: standing shocks
admit discrete profiles that satisfy difference equations; the profiles of travelling shocks, on the other hand,
depend on a continuous spatial variable, and they satisfy a functional differential equation (FDE) of mixed type
that contains both advanced and retarded terms if the finite-difference scheme uses both downwind and upwind
terms. The presence of these terms complicates the analysis of the travelling-wave FDE dramatically as the
associated initial-value problem is ill-posed; this is in sharp contrast to the continuous case where shocks of any
speed satisfy an ordinary differential equation, which is well-posed. Nevertheless, the existence of weak Lax
shocks for FDEs of mixed type was established in [3] using a center-manifold reduction.

Our goal is to prove that spectrally stable semidiscrete Lax shocks are nonlinearly stable. For upwind schemes,
this result was proved in [4] for shocks of arbitrary strength. The approach taken there is to derive pointwise
bounds for the resolvent kernel, which then generate, via the inverse Laplace transform, pointwise bounds for
the Green’s function. The latter can then be used to establish nonlinear stability by setting up an appropriate
iteration argument via Duhamel’s formula. We note that this approach is similar to the stability analysis of
viscous conservation laws, and indeed one of the crucial assumptions in [4] is that the semidiscrete system
exhibits appropriate dissipation. To obtain the pointwise bounds on the resolvent kernel, it is necessary to
extend this operator meromorphically across the essential spectrum (as in the continuous case, the essential
spectrum contains the origin due to transport along characteristics). The key difficulty that restricts the analysis
presented in [4] to upwind schemes arises during the meromorphic extension: since the derivative of the Lax
shock creates an eigenvalue at the origin that is embedded in the essential spectrum, the meromorphic extension
of the resolvent kernel will have a pole at the origin. This pole is typically captured by an Evans function,
which is essentially a Wronskian determinant of appropriate solutions of the linearization of the semidiscrete
system about the shock. For semidiscrete shocks that travel with nonzero speed, the relevant linearization in
the comoving frame is again a functional differential equation of mixed type for which Evans functions are not
available as the initial-value problem is ill-posed.

In the context of time-periodic Lax shocks of continuous viscous conservation laws, similar difficulties were
recently resolved in [1] by a combination of Lyapunov–Schmidt reduction and exponential dichotomies instead of
Evans functions. Exponential dichotomies encode the property that the underlying phase space can be written
as the direct sum of two subspaces such that the ill-posed equation can be solved in forward time1 for initial
data in the first subspace and in backward time on the second subspace. For functional differential equations of
mixed type, the existence of exponential dichotomies was established in [9, 19], see also [6, 26], and our goal in
this paper is to show that these results in conjunction with the techniques developed in [1, 4] provide the means
to prove that semidiscrete Lax shocks are nonlinearly stable whenever they are spectrally stable.

When implementing the strategy outlined above, several nontrivial issues need to be addressed. First, we need
to prove regularity of the Green’s function in the spatial variables, which requires a careful examination of the

1“Time” refers to the evolution variable which, in the present context, is the spatial variable x.
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existence proofs for exponential dichotomies given in [9, 19]. A second obstacle is the adjoint of the linearization
about the shock, which is needed in the meromorphic extension of the resolvent kernel: the issue is that the
FDE of mixed type that represents the linearization about the shock and the associated adjoint system are
related via an inner product (commonly referred to as the Hale inner product) that is much weaker than the
L2-scalar product. Thus, the exponential dichotomies of the linearization and its adjoint, which are typically
related by taking L2 adjoints and solving backwards, are no longer related in a transparent fashion, and care
is needed when using the adjoint system. Finally, a certain nondegeneracy condition on the coefficients of the
travelling-wave FDE that implies a number of useful properties is not satisfied by the two-sided schemes most
commonly employed for conservation laws. Not having these properties prevents us, for instance, from using
variation-of-constants formulae, which further complicates the analysis.

We now give a more detailed technical account of our setting and the results we shall prove in this paper. We
consider the lattice dynamical system

dvj
dt

+
1
h

[f(vj−p+1, . . . , vj+q)− f(vj−p, . . . , vj+q−1)] = 0, j ∈ Z, (1.1)

where vj(t) ∈ RN for all j. Throughout this paper, we assume that the discrete flux f : RN(p+q) → RN is C2.
The relation of (1.1) to spatial discretizations of conservation laws becomes clear once we define

f̄(v) := f(v, . . . , v)

for v ∈ RN and introduce the system
vt + f̄(v)x = 0, x ∈ R (1.2)

of conservation laws. Indeed, applying a finite-difference scheme with spatial step size h to the flux in (1.2) gives
an equation of the form (1.1), where the integers p, q ≥ 0 correspond to the end points of the spatial discretization
stencil, and vj(t) is meant to approximate a solution v(x, t) of (1.2) evaluated at the grid points x = jh. We
reiterate that we regard the step size h > 0 as fixed and investigate the dynamics of the semidiscrete system
(1.1) in its own right.

Travelling waves of the semidiscrete system (1.1) are solutions of the form

vj(t) = u∗

(
j − σ

h
t
)
,

where u∗ : R→ RN characterizes the profile of the wave, and σ denotes its wave speed. Substituting this ansatz
into (1.1), we find that the profile u∗(x) needs to satisfy the equation

σu′∗(x) = f (u∗(x− p+ 1), . . . , u∗(x+ q))− f (u∗(x− p), . . . , u∗(x+ q − 1)) . (1.3)

When p, q > 0 are both strictly positive, we see that (1.3) is a functional differential equation of mixed type as
it contains both advanced and retarded terms. As mentioned above, such systems are difficult to analyse as the
right-hand side depends on the future and the history of u(x). We shall assume that u∗(x) is a solution of (1.3)
for some σ > 0 and that there are constants u± ∈ RN so that

u∗(x)→ u± as x→ ±∞. (1.4)

Furthermore, we assume that u∗ is a Lax k-shock in the following sense:

Hypothesis (H1) The ordered eigenvalues a±1 < . . . < a±N of f̄u(u±) are real and distinct, and there is a
number k ∈ {1, . . . , N} such that a−k−1 < σ < a−k and a+

k < σ < a+
k+1.

We denote by l±n and r±n the left and right eigenvectors of f̄u(u±) associated with the eigenvalues a±n for n =
1, . . . , N . The eigenvalues a±n are often referred to as characteristics, and the associated eigenvectors correspond
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to directions along which movement, measured relative to the shock speed σ, is directed in towards the shock or
out away from the shock. Thus, we will often refer to them as incoming and outgoing characteristics and denote
them by

a−1 < . . . < a−k−1︸ ︷︷ ︸
=:a−n,out

< σ < a−k < . . . < a−N︸ ︷︷ ︸
=:a−n,in

, a+
1 < . . . < a+

k︸ ︷︷ ︸
=:a+

n,in

< σ < a+
k+1 < . . . < a+

N︸ ︷︷ ︸
=:a+

n,out

. (1.5)

The following lemma, which will be proved in §4.2, states that a Lax k-shock converges exponentially towards
its end states and that its speed is given by the Rankine–Hugoniot condition.

Lemma 1.1 If u∗(x) is a Lax k-shock whose end states u± and speed σ satisfy (H1) and the condition (S4)
stated below in Definition 1.2, then σ(u+ − u−) = f̄(u+) − f̄(u−), and there are positive constants κ and K so
that |u′∗(x)| ≤ Ke−κ|x| for x ∈ R.

Throughout this paper, we need the following technical assumption on the semidiscrete scheme that guarantees
uniqueness of an appropriate initial-value problem associated with (1.3).

Hypothesis (H2) The derivative u′∗(x) does not vanish identically on any interval of length at least p+ q.

If (H2) is not met, then the profile u∗ is constant on an interval of the form [y − p, y + q], [y,∞), or (−∞, y]
for some y. In the first case, the profile can be broadened by extending the interval on which u∗ is constant
to any larger interval, and the scheme does not generate a locally unique Lax k-shock profile. We believe that
our analysis can be extended to cover the remaining two cases, where u∗ vanishes along one or both of its tails,
though we will not discuss this further. We remark that a sufficient condition for (H2) that has many other
useful implications is that the determinants of the coefficient matrices A−p(x) and Aq(x) that we introduce in
(1.7) below do not vanish on any open interval: this condition, however, is typically violated for the two-sided
schemes used in practice; see [3] for examples.

To describe our spectral stability assumptions on the Lax k-shock u∗, we use the notation

∂jf(v−p+1, . . . , vq) :=
∂f

∂vj
(v−p+1, . . . , vq), j ∈ {−p+ 1, . . . , q}

to denote the derivative of f with respect to vj and shall always set ∂−pf = ∂q+1f = 0. We can now introduce
the operator

L : L2(R,CN ) −→ L2(R,CN ), u 7−→ σu′(x)−
q∑

j=−p
Aj(x)u(x+ j), (1.6)

with domain H1(R,CN ), where

Aj(x) = ∂jf (u∗(x− p+ 1), . . . , u∗(x+ q))− ∂j+1f (u∗(x− p), . . . , u∗(x+ q − 1)) . (1.7)

Since L(e2πixu) = e2πix(2πiσ + L)u, the spectrum of L is invariant under shifts by 2πiσ, which reflects the fact
that the original lattice equation (1.1) does not feel oscillations that occur on a scale smaller than the distance
between consecutive elements in Z. To avoid the resulting ambiguity, we consider only those elements in the
spectrum of L that have imaginary parts of modulus smaller or equal to πσ. Lastly, we define the viscosity
matrices

B± =
1
2

q∑
j=−p

(1− 2j)∂jf(u±, . . . , u±), (1.8)

which, as we shall see below, encode whether diffusion is present in the semidiscrete system (1.1). The following
definition encapsulates spectral stability of Lax k-shocks.

Definition 1.2 A Lax k-shock u∗ is said to be spectrally stable if
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(S1) The operator L, as given in (1.6) with domain H1(R,CN ), has no spectrum in {Reλ ≥ 0} \ 2πiσZ.

(S2) The only nontrivial solutions u ∈ H1(R,CN ) of Lu = 0 are u = u′∗ and scalar multiples thereof.

(S3) The outgoing characteristics and the jump [u∗] := u+ − u− across the shock u∗ are linearly independent:

det[r−1 , . . . , r
−
k−1, [u∗], r

+
k+1, . . . , r

+
N ] 6= 0.

(S4) The nonresonance condition

det

σν − q∑
j=−p

(∂j − ∂j+1)f(u±, . . . , u±)eνj

 6= 0

holds for all ν ∈ iR \ {0}.

(S5) The viscosity matrices B± are dissipative along characteristics: 〈l±n , B±r±n 〉 > 0 for n = 1, . . . , N .

Before we state our results and comment on situations where our hypotheses are met, we briefly discuss our
definition of spectral stability. First, (S2) assumes that the translation eigenvalue λ = 0 of L has minimal
geometric multiplicity. Upon recalling that the spectrum of L is invariant under translations by 2πiσ, we see
that (S1) requires that L has no unstable or marginally stable elements in the spectrum besides those enforced
by translation symmetry. Condition (S3) is the same as for Lax shocks of (1.2), where it is known as the Liu–
Majda condition: in our context, it guarantees that the translation eigenvalue λ = 0 has, in an appropriate
sense, algebraic multiplicity one. Finally, (S4) reflects the assumption that the essential spectrum of L at λ = 0
is generated solely by the characteristics, while (S5) implies that the essential spectrum near λ = 0 consists of
nondegenerate parabolas that open into the left half-plane and whose time evolution is given by Gaussians that
propagate along characteristics.

Our main result, which is analogous to the theory in the setting of viscous shocks [1, 20, 28] and of semidiscrete
shocks with either advanced or retarded terms [4], asserts that spectral stability implies nonlinear stability and
gives detailed pointwise estimates for how perturbations decay as t→∞ in the spaces

Lα(Z) :=

v : Z→ RN : |v|Lα(Z) :=
[∑
j∈Z
|vj |α

]1/α
<∞

 ,

where α ≥ 1 and |v|L∞(Z) := supj∈Z |vj |.

Theorem 1 Assume that there are constants u±, a speed σ, and a profile u∗(x) that satisfy (1.3), (1.4), and
Hypotheses (H1)-(H2) and (S1)-(S5), then there are constants ε > 0 and K > 0 such that the following is true.
For each initial condition {vj(0)}j∈Z with |{vj(0)− u∗(j)}j∈Z|L1(Z) ≤ ε, there is a function ρ : R+ → R with

sup
t≥0

(
|ρ(t)|+ (1 + |t|) 1

2 |ρ̇(t)|
)
≤ Kε

such that the solution {vj(t)}j∈Z of (1.1) with initial condition {vj(0)}j∈Z satisfies

|{vj(t)− u∗(j + ρ(t)− σt/h)}j∈Z|Lα(Z) ≤
Kε

(1 + |t|) 1
2 (1− 1

α )
, t ≥ 0

for each α ≥ 1. In other words, spectrally stable Lax k-shock solutions u∗(j − σt/h) of (1.1) are nonlinearly
stable.

If the initial perturbation is sufficiently localized, the shock position ρ(t) in the above theorem converges, and
we obtain nonlinear stability with asymptotic phase:
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Remark 1.3 If the initial condition satisfies |vj(0)− u∗(j)| ≤ ε(1 + jh)−3/2 for j ∈ Z, then it follows as in [10]
that there exists a ρ∞ with |ρ∞| ≤ Kε for which

|ρ(t)− ρ∞| (1 + |t|)1/2 + |ρ̇(t)| (1 + |t|) ≤ Kε,

along with detailed pointwise bounds on the solution. Note that the pointwise bounds that we shall establish in
Theorem 8 are all that were used in [10] to prove the refined result in the continuous case.

For upwind schemes, Theorem 1 was proved in [4]. Certain aspects of the analysis in [4] apply also to equations
with both advanced and retarded terms, and we shall exploit this in our proof. What is new in our paper is
the meromorphic extension of the resolvent kernel and the resulting pointwise bounds for arbitrary schemes.
Nonlinear stability of travelling waves in general lattice differential equations was proved earlier in [5] under the
assumption that the spectrum is contained strictly in the left half-plane except for a simple translation eigenvalue
at the origin; as we shall see below, this hypothesis is necessarily violated for semidiscrete conservation laws.

Finally, we comment on existence and spectral stability results of semidiscrete Lax shocks. All results we are
aware of in the semidiscrete context concern weak shocks for which |u+ − u−| � 1. As in the continuous case,
weak shocks exist and are spectrally stable.

Theorem 2 ([2–4]) Assume that u0 ∈ RN satisfies the following conditions: The eigenvalues a0
n of f̄u(u0)

are real and distinct with left and right eigenvectors l0n and r0
n, respectively, and we have a0

k(u0) 6= 0 and
(∂ua0

k)(u0)r0
k 6= 0 for some k. Furthermore, we assume that (S4)-(S5), with all terms evaluated at u0 instead

of u±, are met, and that ∂nf(u, . . . , u) and f̄u(u) commute for n = 1, . . . , N and all u in a neighborhood of
u0. Under these hypotheses, there is a neighborhood U of u0 in RN so that any Lax k-shock (u+, u−, σ) of (1.2)
with σ = a0

k and u± ∈ U admits a semidiscrete Lax k-shock profile u∗(x) of (1.3)-(1.4) that satisfies (H1)-
(H2). Furthermore, each of these weak semidiscrete Lax k-shocks satisfies Hypotheses (S1)-(S5) and is therefore
nonlinearly stable in the sense of Theorem 1.

Proof. Under the assumptions of the theorem, the existence of weak Lax shocks that satisfy (H1) was shown in
[2] for upwind schemes and in [3] for arbitrary schemes. In particular, the shock profile u∗ was constructed inside
a smooth N + 1-dimensional center manifold of (1.3), and (H2) follows from uniqueness of solutions of ordinary
differential equations. It remains to address (S1)-(S5). Condition (S1) was proved in [4, Theorem 3.9] via
energy estimates. Hypothesis (S2) follows from [4, Proof of Proposition 2.4], where it was shown that the shock
profile decays exponentially: it is therefore constructed as the intersection of one-dimensional stable and unstable
manifolds of the two equilibria u± that lie in an N -dimensional surface of equilibria within the N+1-dimensional
center manifold of (1.3), which implies that the geometric multiplicity of the eigenvalue λ = 0 of L is one. Next,
we verify (S3). Let ε denote the diameter of U in RN , then the hypothesis that (u+, u−, σ = a0

k) is a Lax k-shock
of (1.2) in U gives a0

k(u+−u−) = f(u+)− f(u−), and it follows easily that r0
k = (u+−u−)/|u+−u−|+ O(ε) and

r±n = r0
n + O(ε) for each n, which gives (S3). Condition (S5) holds by continuity of f . It remains to establish

(S4) which follows essentially from continuity in u0: we will prove this in more detail below in Remark 4.2.

The rest of the paper is organized as follows. In §2, we discuss the relationship between the resolvent kernel
of L and the Green’s function of the linearization of the semidiscrete system (1.1) about the shock. In §3, we
provide the necessary results on exponential dichotomies for abstract FDEs of mixed type and their adjoints.
In §4, these results are then used to construct the resolvent kernel of L, to extend it meromorphically across
the imaginary axis, and to derive the necessary pointwise bounds. Section 5 contains a brief summary of the
resulting pointwise bounds for the Green’s function, via its representation as a contour integral of the resolvent
kernel, and the proof of nonlinear stability. In §6, we discuss open problems and future challenges.
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2 The Green’s function via the resolvent kernel

Recall equation (1.1),

dvj
dt

+
1
h

[f(vj−p+1, . . . , vj+q)− f(vj−p, . . . , vj+q−1)] = 0, j ∈ Z,

which we rewrite more conveniently and concisely as

v̇j = F (v)j , j ∈ Z, (2.1)

where v = (vj)j∈Z. The profile u∗ corresponds to the Lax k-shock solution v∗ with

v∗j (t) = u∗

(
j − σ

h
t
)

of (2.1). Note that

v∗j

(
h

σ

)
= v∗j−1(0), ∀j ∈ Z,

so that v∗ is a relative periodic orbit with respect to the symmetry action generated by the shift on the underlying
lattice Z. The linearization of (2.1) about v∗ is given by

v̇ = Fv(v∗(t))v. (2.2)

The Green’s function G(j, i, t, s) associated with (2.2) is given as the solution vj(t) of the initial-value problem

v̇j = (Fv(v∗(t))v)j , vj |t=s = δij , j ∈ Z

which then generates the general solution of

v̇ = Fv(v∗(t))v + h(t)

via

vj(t) =
∑
i∈Z
G(j, i, t, 0)vi(0) +

∫ t

0

∑
i∈Z
G(j, i, t, s)hi(s) ds.

On the other hand, we can consider the linearization

Lu = σux(x)−
q∑

j=−p
Aj(x)u(x+ j)

of the travelling-wave FDE about the profile u∗, where the coefficient matrices Aj(x) are given in (1.7). We
define the resolvent kernel G(x, y, λ) associated with the operator L as the solution of the system

(L − λ)u = δ(· − y).

The following theorem, quoted from [4], relates the Green’s function G and the resolvent kernel G.

Theorem 3 ([4, Theorem 4.2]) For each fixed γ with Re γ � 1 sufficiently large, we have

G(j, i, t, s) = G
(
j − σt

h
, i− σs

h
, t− s

)
with G(x, y, τ) =

−1
2πiσ

∫ γ+iπσ

γ−iπσ

eλτG(x, y, λ) dλ. (2.3)

Proof. The proof in [4] carries over to the situation considered here because it does not rely on the joint
reduction hypothesis (H3) stated at the beginning of that paper.
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Note that, due to the relative periodicity of the shock on the lattice, the integration in (2.3) takes place only on
a bounded contour rather than on an unbounded one. This is similar to the case of time-periodic viscous shocks
that was studied recently in [1].

Our strategy is now to extend the resolvent kernel G(x, y, λ) meromorphically across Reλ = 0 and to use
appropriate pointwise bounds for the meromorphic extension to expand G(j, i, t, s) using the inverse Laplace
transform formulation (2.3) of G in terms of G. Contour integral representations similar to (2.3) have been used
successfully in a variety of contexts to prove both the linear and nonlinear stability of shocks under appropriate
spectral stability assumptions on the linearized operator: we refer to [10, 20–22, 28] for early work on viscous
shocks and to [4] for results on semidiscrete shocks for upwind schemes. In both those cases, the resolvent kernel
was constructed using an Evans function, which is not available for operators with both advanced and retarded
terms. To extend these ideas to arbitrary schemes, we will construct the resolvent kernel using exponential
dichotomies, which were developed for forward-backward schemes in [9, 19].

3 Exponential dichotomies for functional differential equations

In this section, we prepare the ground for the meromorphic extension of the resolvent kernel associated with
the operator L by proving several technical results. Specifically, we extend the exponential-dichotomy results
in [9], which were proved only for the case p = q, to arbitrary values of p, q and discuss the regularity of these
dichotomies. We also clarify the relation between exponential dichotomies of L and those of its L2-adjoint; we
remark that this is an intricate issue even for equations that contain only retarded terms.

3.1 Asymptotic hyperbolicity and exponential dichotomies

Since the results in this section do not depend on the discrete conservation-law structure of (1.1), we consider a
general linear functional differential equation

ux(x) =
q∑

j=−p
Aj(x)u(x+ j) (3.1)

of mixed type. We say that a function u(x) is an H1-solution of (3.1) on the interval [x0, x1] if u ∈ L2([x0 −
p, x1 + q]) ∩ H1([x0, x1]) and u satisfies (3.1), viewed in L2

loc, for x ∈ [x0, x1]. We then define the bounded
operator

L : H1(R,CN ) −→ L2(R,CN ), u 7−→ ux −
q∑

j=−p
Aj(·)u(·+ j)

and its L2 adjoint

L∗ : H1(R,CN ) −→ L2(R,CN ), û 7−→ −ûx −
q∑

j=−p
Aj(· − j)∗û(· − j).

We make the following assumptions on the coefficient matrices Aj(x) and the operators L and L∗:

Hypothesis (H3) We have Aj(x) ∈ C1(R,CN×N ), and the following conditions are met:

(i) There are matrices A±j such that Aj(x)→ A±j as x→ ±∞ for j = −p, . . . , q.

(ii) The operator L is asymptotically hyperbolic, that is, the characteristic equations

det ∆±(ν) := det

ν − q∑
j=−p

A±j eνj

 = 0

do not have any purely imaginary roots ν ∈ iR.
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(iii) Elements in the null spaces N(L) and N(L∗) of L and L∗ cannot vanish on any interval of length p + q

unless they vanish everywhere.

The following result is elementary but will be used frequently.

Lemma 3.1 Let A0
j ∈ CN×N . The function det

[
ν −

∑q
j=−pA

0
je
νj
]

has only finitely many roots ν in each fixed

vertical strip {ν : |Re ν| ≤ κ} with κ ≥ 0, and these roots depend continuously on the coefficient matrices A0
j .

Proof. Finiteness of roots follows since the sum is bounded on each vertical strip, while continuity of roots
follows from analyticity in ν.

Applying the preceding lemma to the functions det ∆±(ν), we can find a number κ > 0 so that the functions
det ∆±(ν) have no roots in {ν : |Re ν| ≤ 2κ}.

We now record various implications of Hypothesis (H3). First, it was proved in [18, Theorem A] that Hypoth-
esis (H3)(i)-(ii) implies that L is a Fredholm operator2. We remark that if Hypothesis (H3)(i) holds and L
is Fredholm, then Hypothesis (H3)(ii) holds, too: this follows, for instance, from [18, Theorem C] upon using
exponential weights, and we refer to Lemma 4.7 below for related arguments. If L has a bounded inverse, we
define its resolvent kernel G(x, y) as the solution, in the sense of distributions, of

LG(·, y) = δ(· − y).

To obtain pointwise information on the resolvent kernel, it is convenient to work with a dynamical-systems
formulation. Thus, we consider the equation

Ux(x) = A(x)U(x) (3.2)

posed on the space Y = L2([−p, q],CN )× CN , where the operator A(x) is defined on Y by

A(x)

(
φ

α

)
=

(
φz

A0(x)α+
∑q
j=−p, j 6=0Aj(x)φ(j)

)
with dense domain given by

Y 1 =
{

(φ, α) ∈ H1([−p, q],CN )× CN : φ(0) = α
}
.

We say that a function U(x) is an H1-solution of (3.2) on some open interval I if U ∈ L2(I, Y 1)∩H1(I, Y ) and
(3.2) is satisfied for x ∈ I with values in L2(I, Y ). It is known3 that the initial-value problem associated with
(3.2) is not well-posed in the sense that a solution in forward or backward time x may not exist for given initial
data. Exponential dichotomies clarify for which initial data (3.2) can be solved and in which direction of the
evolution variable x.

Definition 3.2 Let I = R+, R−, or R. We say that (3.2) has an exponential dichotomy on I if there exist
constants K > 0 and κs < κu and two strongly continuous families of bounded operators Φs(x, y) and Φu(x, y),
defined on Y respectively for x ≥ y and x ≤ y, such that the following is true: We have

sup
x≥y, x,y∈I

e−κ
s(x−y)‖Φs(x, y)‖L(Y ) + sup

x≤y, x,y∈I
eκ

u(y−x)‖Φu(x, y)‖L(Y ) ≤ K,

and the operators P s(x) := Φs(x, x) and P u(x) := Φu(x, x) are complementary projections for all x ∈ I. Fur-
thermore, the functions Φs(x, y)U0 with x > y in I and Φu(x, y)U0 with x < y in I are mild solutions of (3.2)
for each fixed U0 ∈ Y .

2The operator L is Fredholm if it has finite-dimensional null space N(L) and its range Rg(L) is closed and has finite codimension.

Its Fredholm index is then given by dim N(L)− codim Rg(L).
3See, for instance, [9, (1.3)].
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Often, we will have κs < 0 < κu, but this is not required in the definition. Our first result, stated below and
proved later in §3.3, shows that mild solutions of the dynamical system (3.2) that are defined via exponential
dichotomies yield H1-solutions of the functional differential equation (3.1).

Theorem 4 Assume that Hypothesis (H3) is met and let κ > 0 be as indicated after Lemma 3.1, then (3.2)
has exponential dichotomies Φs,u

± (x, y) on R± with rates κs = −κ and κu = κ. Writing Φs,u
+ (x, y)U0 =

(φs,u
+ , αs,u

+ )(x, y) ∈ Y for each U0 ∈ Y , the following is true:

(i) For z ∈ [−p, 0), define αs
+(y + z, y) := φs

+(y, y)(z), then αs
+(·, y) is an H1-solution of (3.1) on (y,∞). An

analogous statement holds for αu
+(·, y) on the interval (0, y).

(ii) If U0 = (0, α0), then αs
+(·, y) ∈ H2((y,∞)\{y+ 1, . . . , y+ q}) and αu

+(·, y) ∈ H2((0, y)\{y−p, . . . , y−1}).

(iii) If U0 ∈ Y , then Φj+(x, y)U0 ∈ Y 1 are H1-solutions of (3.2) for x > y+ p when j = s and for 0 ≤ x < y− q
when j = u.

Properties analogous to (i)-(iii) hold for the dichotomy on R−.

To relate solutions of (3.1) and (3.2), we introduce the embedding and projection operators

ι2 : CN −→ Y, α 7−→ (0, α), π2 : Y −→ CN , (φ, α) 7−→ α. (3.3)

The next result, which we will prove in §3.4, relates exponential dichotomies of (3.2) on R to the resolvent kernel
of L. Throughout, we use the notation J = {−p, . . . , q}.

Theorem 5 Assume that L satisfies Hypothesis (H3) and is invertible. Let κ > 0 be as indicated after
Lemma 3.1, then there is a constant K such that the following is true: Equation (3.2) has an exponential
dichotomy Φs,u(x, y) on R with rates κs,u = ∓κ, and the resolvent kernel G(x, y) of L is given by

G(x, y) =

{
π2Φs(x, y)ι2 for x > y,

−π2Φu(x, y)ι2 for x < y.
(3.4)

Furthermore, G(·, y) ∈ H1(R \ {y}) ∩H2(R \ ({y}+ J)) and Gy(·, y) ∈ H1(R \ ({y}+ J)) pointwise in y with

|G(x, y)|+ |∂yG(x, y)| ≤ Ke−κ|x−y|. (3.5)

If L−λ is invertible for all λ in an open subset Λ of C, then the Green’s function G(x, y, λ) associated with L−λ
is analytic in λ ∈ Λ, and its derivative with respect to λ satisfies the bound (3.5).

Our next result, which we will also prove in §3.4, asserts that the exponential dichotomies constructed above can
be differentiated with respect to the initial time y and depend analytically on an eigenvalue parameter λ.

Theorem 6 Assume that L satisfies Hypothesis (H3) and is onto. Let κ > 0 be as before, then there is a
constant K such that the following is true:

(i) Equation (3.2) has exponential dichotomies Φs,u
± (x, y) on R±, and these dichotomies satisfy Rg(P u

+(0)) ⊂
Rg(P u

−(0)) and Rg(P s
−(0)) ⊂ Rg(P s

+(0)).

(ii) If u(x) is a bounded H1-solution of (3.1) on [y,∞) for some y ≥ 0, then (u(x+ ·), u(x)) ∈ Rg(P s
+(x)) for

all x ≥ y; an analogous statement holds for Rg(P u
−(x)) on R−.
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(iii) The dichotomies Φs
+(x, y)U0 and Φu

+(x, y)U0 are differentiable in y with values in Y for x > y + p and
0 < x < y − q, respectively, for each fixed U0 ∈ Y , and we have

‖Φj+(x, y)‖L(Y ) + ‖∂yΦj+(x, y)‖L(Y ) ≤ Ke−κ|x−y| (3.6)

valid for x > y + p when j = s and for 0 ≤ x < y − q when j = u. Furthermore, ∂yπ2Φs
+(·, y)ι2 ∈

H1((y,∞) \ ({y}+ J)) and ∂yπ2Φu
+(·, y)ι2 ∈ H1((0, y) \ ({y}+ J)) exist pointwise in y with the pointwise

bounds
|∂yπ2Φj+(x, y)ι2| ≤ Ke−κ|x−y|

valid for x > y ≥ 0 when j = s and for y > x ≥ 0 when j = u. The same properties hold for the dichotomy
on R−.

(iv) The conclusions of (ii)-(iii) above apply to L − λ in place of L for all λ sufficiently close to zero: the
resulting dichotomies Φs,u

± (x, y, λ) on R± belonging to L − λ can be chosen to be analytic in λ near zero,
and their derivatives with respect to λ satisfy (3.6), possibly for a different constant K.

Note that [18, Theorem A] implies that N(L∗) = {0} if L is onto, and (H3)(iii) needs to be checked only for
N(L). We remark that assertion (ii) in the preceding theorem holds without the assumption that L is onto.

The results we discussed so far pertain to exponential dichotomies for which κs < 0 < κu so that solutions in
the stable (unstable) subspaces decay for increasing (decreasing) values of x. We now briefly discuss exponential
weights and how they can be used to define exponential dichotomies that are associated with other gaps in the
spectra of A±. For each η ∈ R, define the bounded operator

Lη := e−ηxLeηx : H1(R,CN ) −→ L2(R,CN ), v 7−→ vx + ηv −
q∑

j=−p
eηjAj(·)v(·+ j). (3.7)

and the associated dynamical system
Vx = Aη(x)V. (3.8)

Given an L2
loc-function h, we see that v is an H1-solution of

vx(x) = −ηv(x) +
q∑

j=−p
eηjAj(x)v(x+ j) + e−ηxh(x) (3.9)

if, and only if, u(x) = eηxv(x) is an H1-solution of

ux(x) =
q∑

j=−p
Aj(x)u(x+ j) + h(x). (3.10)

Similarly, (3.8) has an exponential dichotomy Φ̃s,u
± (x, y) with rates κ̃s < 0 < κ̃u on R± if, and only if, (3.2)

has an exponential dichotomy Φs,u
± (x, y) with rates κs = κ̃s + η and κu = κ̃u + η on R±, and these dichotomies

are related via Φs,u
± (x, y) = eη(x−y)Φ̃s,u

± (x, y). Such dichotomies exist for Lη provided it satisfies (H3)(iii) and
its characteristic function det ∆η

±(ν) does not vanish for ν ∈ iR. Inspecting the coefficients of Lη, we see that
det ∆η

±(ν) = det ∆±(ν + η), and Lη therefore satisfies (H3)(ii) if, and only if, det ∆±(ν) does not have any roots
ν with Re ν = η.

3.2 The adjoint operator and its associated dynamical system

Recall the L2 adjoint operator

L∗ : H1(R,CN ) −→ L2(R,CN ), û 7−→ −ûx −
q∑

j=−p
Aj(· − j)∗û(· − j),
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which corresponds to the adjoint functional differential equation

ûx(x) = −
q∑

j=−p
Aj(x− j)∗û(x− j) =:

p∑
j=−q

Âj(x)û(x+ j), (3.11)

where we set Âj(x) := −A−j(x + j)∗ with A∗ := A
T

for a matrix A. This system is of the same form as (3.1)
except that the set J = {−p, . . . , q} that gives the relative location of advanced and retarded grid points now
becomes Ĵ = {−q, . . . , p}. The dynamical system

Ûx(x) = Â(x)Û(x) (3.12)

associated with L∗ is defined through the operator

Â(x)

(
ψ

β

)
=

(
ψz

−A0(x)∗β −
∑q
j=−p, j 6=0Aj(x− j)∗ψ(−j)

)
,

which is posed on Ŷ with domain Ŷ 1 given by

Ŷ = L2([−q, p],CN )× CN , Ŷ 1 =
{

(ψ, β) ∈ H1([−q, p],CN )× CN : ψ(0) = β
}
.

Note that (3.1) and (3.11) are symmetric counterparts: if we start with (3.11) and take its adjoint, we arrive

back at (3.1) so that ˆ̂
Aj(x) = Aj(x) and consequently

ˆ̂A(x) = A(x).

Note also that the coefficient matrices Âj(x) in (3.11) satisfy Hypothesis (H3) if, and only if, this assumption
is met for the coefficients Aj(x) of (3.1). Thus, if we assume Hypothesis (H3), then we can apply Theorem 4
also to (3.12) and conclude that this system has exponential dichotomies Φ̂s,u

± (x, y) on R±. It is now natural to
investigate the relationship between solutions of (3.2) and (3.12). To this end, we use the Hale inner product of
elements Û = (ψ, β) ∈ Ŷ and U = (φ, α) ∈ Y that was introduced in [8] and is defined by

〈Û , U〉(x) := 〈β, α〉 −
q∑

j=−p

∫ j

0

〈ψ(z − j), Aj(x+ z − j)φ(z)〉dz,

where 〈β, α〉 := β̄T · α, and the subscript (x) indicates that the Hale inner product depends explicitly on x

through the coefficient matrices that appear on the right-hand side. Given a subspace E of Y , we define its
annihilator E⊥ ⊂ Ŷ by

E⊥ = {Û ∈ Ŷ : 〈Û , U〉(0) = 0 ∀U ∈ E}.

Note that E⊥ is a closed subspace of Ŷ since the Hale inner product is a continuous bilinear form on Ŷ ×Y . We
let P̂ s,u

± (x) := Φ̂s,u
± (x, x) be the projections associated with the dichotomies of the adjoint system (3.12).

Lemma 3.3 Assume that Aj ∈ C0(R,RN ), then the following is true:

(i) If û(x) and u(x) are H1-solutions of (3.1) and (3.11), respectively, on some common interval I ⊂ R, then
〈Û(x), U(x)〉(x) is independent of x on I, where Û(x) = (û(x+·), û(x)) ∈ Ŷ and U(x) = (u(x+·), u(x)) ∈ Y .

(ii) Assume that Hypothesis (H3) holds. If Û(x) and U(x) are of the form Û(x) = Φ̂s(x, y0)Û0 + Φ̂u(x, y1)Û1

and U(x) = Φs(x, y0)U0 + Φu(x, y1)U1, where Φ̂s,u(x, y) and Φs,u(x, y) are dichotomies of (3.12) and (3.2),
respectively, on R+ or R−, then 〈Û(x), U(x)〉(x) is independent of x ∈ [y0, y1].

(iii) If Hypothesis (H3) holds, then Rg(P̂ s
+(0)) ⊂ Rg(P s

+(0))⊥ and Rg(P̂ u
−(0)) ⊂ Rg(P u

−(0))⊥.
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Proof. The first statement follows from differentiating the Hale inner product 〈Û(x), U(x)〉(x) with respect to
x:

d
dx
〈Û(x), U(x)〉(x) =

d
dx

〈û(x), u(x)〉 −
q∑

j=−p

∫ j

0

〈û(x+ z − j), Aj(x+ z − j)u(x+ z)〉dz


=

d
dx

〈û(x), u(x)〉 −
q∑

j=−p

∫ x+j

x

〈û(z − j), Aj(z − j)u(z)〉dz


=

d
dx
〈û(x), u(x)〉 −

q∑
j=−p

〈û(z − j), Aj(z − j)u(z)〉
∣∣∣z=x+j

z=x
,

which is easily seen to vanish upon using the equations satisfied by the functions û(x) and u(x). Lemma 3.3(ii) is
now a consequence of Theorem 4(i). To prove Lemma 3.3(iii), note that solutions to (3.2) and (3.12) associated
with initial data in Rg(P s

+(0)) and Rg(P̂ s
+(0)), respectively, exist for x ≥ 0 and decay exponentially in x.

Hence, their Hale inner product, which does not depend on x by Lemma 3.3(ii), must vanish, and we conclude
Rg(P̂ s

+(0)) ⊂ Rg(P s
+(0))⊥. The same argument applies to the unstable subspaces.

We comment briefly on some of the difficulties related to the adjoint operator and the Hale inner product. Since
the Hale inner product is a continuous bilinear form, Lax–Milgram implies that there is a bounded operator
S(x) : Ŷ → Y so that 〈Û , U〉(x) = 〈S(x)Û , U〉Y for all (Û , U) ∈ Ŷ × Y . However, S(x) is invertible only when
detA−p(x) and detAq(x) are nonzero. Thus, it is not clear that the Hale inner product behaves like a genuine
dual product: for instance, if detAq(z) vanishes on a set of open measure in (x, x + q), we can find nonzero
elements Û ∈ Ŷ for which 〈Û , U〉(x) = 0 for all U ∈ Y , and, in particular, we cannot expect that equality holds
in the statements asserted in Lemma 3.3(iv)4. An alternative way to proceed is to work with the dynamical
system

Wx(x) = −A(x)∗W (x), W ∈ Y, (3.13)

where A(x)∗ is the Y -adjoint of A(x). Proceeding as in [9, Proof of Lemma 2.3], we find5 that this operator is
given by

A(x)∗
(
ψ̃

β̃

)
=

(
−ψ̃z

A0(x)∗β̃ + ψ̃(0−)− ψ̃(0+)

)
with domain{

(ψ̃, β̃) ∈ L2([−p, q],CN )× CN : ψ̃ ∈ H1((j, j + 1),CN ) ∀j and ψ̃(j+)− ψ̃(j−) = Aj(x)∗β̃ ∀j 6= 0
}
,

where ψ̃(j+) := limz↓j ψ(z) and ψ̃(j−) := limz↑j ψ(z). We may expect that (3.13) has exponential dichotomies
given by the adjoints Φs,u

± (y, x)∗ of the dichotomies of (3.2). This is not clear, however, since (3.13) is not of
the same form as (3.2) and the domain of A(x)∗ depends on x, so that we cannot apply Theorem 4 to (3.13).
For this reason, we work primarily with the dynamical-system formulation (3.12) associated with the adjoint of
L instead of the adjoint (3.13) of the dynamical system (3.2). For later use, we state the following result which
shows that solutions of (3.12) yield solutions of (3.13).

Lemma 3.4 Let Û(x) = (ψ, β)(x) be an H1-solution of (3.12), then

W (x) :=

(
ψ̃

β̃

)
=

(
−
∑q
j=−p χ(0,j)(·)Aj(x+ · − j)∗ψ(x, · − j)

β(x)

)
(3.14)

satisfies (3.13) with values in Y , and we have 〈Û(x), U〉(x) = 〈W (x), U〉Y for all U ∈ Y . Here, χI(y) is the
indicator function of the interval I, and we set χ(0,j)(y) := −χ(j,0)(y) for j < 0.

4We note that it is easy to see that equality holds in Lemma 3.3(iv) whenever det[A−p(x)Aq(x)] 6= 0 for all x.
5The formulae given here and in [9] differ by a minus sign which is due to a sign mistake in [9, Middle of p1091] that does not

change any of the results in that paper.
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Note that the converse of the above statement may not be true if det[Aq(x)A−p(x)] has roots as we need to
invert both A−p(x) and Aq(x) to construct Û from W : pick, for instance, y ∈ (q − 1, q), then (3.14) becomes

ψ̃(x, y) = −
q∑

j=−p
χ(0,j)(y)Aj(x+ y − j)∗ψ(x, y − j) = −Aq(x+ y − q)∗ψ(x, y − q),

and ψ(x, ·) cannot be in L2
loc with respect to the y-variable for appropriate choices of ψ̃ if detAq(x) has a root

of sufficiently high order in the interval (x, x− 1).

Proof. We show first that W (x) = (ψ̃, β̃)(x) lies in the domain of A(x)∗. We have ψ̃(x, ·) ∈ H1(j, j + 1) for all
j since ψ(x, ·) ∈ H1(−q, p). Next, pick any integer k with 0 < k ≤ q, then

ψ̃(x, k+) = −
q∑

j=k+1

Aj(x+ k − j)∗ψ(x, k − j), ψ̃(x, k−) = −
q∑
j=k

Aj(x+ k − j)∗ψ(x, k − j)

and therefore
ψ̃(x, k+)− ψ̃(x, k−) = Ak(x)∗ψ(x, 0)

(3.12)
= Ak(x)∗β(x) = Ak(x)∗β̃(x).

Analogous statements hold for −p ≤ k < 0, and we conclude that W (x) lies in the domain of A(x)∗.

Next, we show that W (x) satisfies (3.13). First, note that ψ̃x(x, y) = ψ̃y(x, y) for y ∈ [−p, q] \ {−p, . . . , q} as
required. Next, we have

ψ̃(x, 0+) = −
q∑
j=1

Aj(x− j)∗ψ(x,−j), ψ̃(x, 0−) =
−1∑
j=−p

Aj(x− j)∗ψ(x,−j),

where we recall the definition χ(0,−j) = −χ(0,j) of the indicator function for j > 0. Thus,

ψ̃(x, 0+)− ψ̃(x, 0−) = −
∑
j∈J̊

Aj(x− j)∗ψ(x,−j) (3.12)
= βx(x) +A0(x)∗β(x) = β̃x(x) +A0(x)∗β̃(x),

which shows that W (x) satisfies (3.13).

Finally, with U = (φ, α), we have

〈Û(x), U〉(x) = 〈β(x), α〉 −
q∑

j=−p

∫ j

0

〈ψ(x, z − j), Aj(x+ z − j)φ(z)〉dz

= 〈β(x), α〉 −
q∑

j=−p

∫ q

−p
〈χ(0,j)(z)ψ(x, z − j), Aj(x+ z − j)φ(z)〉dz

= 〈β(x), α〉 −
∫ q

−p

〈
q∑

j=−p
χ(0,j)(z)Aj(x+ z − j)∗ψ(x, z − j), φ(z)

〉
dz

= 〈β̃(x), α〉+
∫ q

−p
〈ψ̃(x, z), φ(z)〉dz = 〈W (x), U〉Y ,

which completes the proof.

3.3 Proof of Theorem 4

We first consider exponential dichotomies of (3.2) on R± in the space Y , whose existence has been proved in [9,
Theorem 1.2] for the special case p = q. Fortunately, the only place where this restriction has been used is in [9,
Proof of Proposition 3.1], where exponential dichotomies were obtained for an autonomous hyperbolic functional
differential equation

ux(x) =
q∑

j=−p
Aju(x+ j) (3.15)
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on the real line R. Thus, we prove here the existence of exponential dichotomies of the associated dynamical
system

Ux = A0U, A0

(
φ

α

)
=

(
φz

A0α+
∑q
j=−p, j 6=0Ajφ(j)

)
(3.16)

on Y . The spectrum of A0 on Y consists entirely of eigenvalues, and these (and their multiplicity) are in 1:1
correspondence with roots (and their order) of the characteristic equation

det ∆0(ν) := det

ν − q∑
j=−p

Ajeνj

 = 0;

see [9, Lemma 3.1]. We assume that A0 is hyperbolic so that det ∆0(ν) does not have any purely imaginary
roots ν ∈ iR. Denote by L0 the constant-coefficient operator

L0 : L2(R,CN ) −→ L2(R,CN ), u 7−→ ux −
q∑

j=−p
Aju(·+ j) (3.17)

with domain H1(R,CN ), then hyperbolicity of (3.15) implies that L0 has a bounded inverse by [18, Theorem A].
Finally, define the spaces

Eu
0 := {u ∈ L2((−∞, q],CN ) ∩H1((−∞, 0],CN ) : (3.15) is met on R−},

Es
0 := {u ∈ L2([−p,∞),CN ) ∩H1([0,∞),CN ) : (3.15) is met on R+}.

Our first result translates [19, Theorem 3.1], which is formulated for C0-spaces, to the current L2-setting.

Lemma 3.5 Assume that (3.15) is hyperbolic, then there exist strictly positive constants K and κ such that

‖u(x+ ·)‖L2([−p,q]) ≤ Ke−κx‖u(·)‖L2([−p,q])

for each u ∈ Es
0 uniformly in x ≥ 0.

Proof. We first assert that the statement in the lemma follows from the following two claims:

(i) There exists an x0 ≥ 0 such that ‖u(x+ ·)‖L2([−p,q]) ≤ 1
2 supy≥0 ‖u(y + ·)‖L2([−p,q]) for all x ≥ x0.

(ii) There exists a constant K > 0 such that ‖u(x+ ·)‖L2([−p,q]) ≤ K‖u‖L2([−p,q]) for all x ≥ 0.

Indeed, these two claims imply that

‖u(x+ ·)‖L2([−p,q])
(i)

≤ 1
2m

sup
y≥0
‖u(y + ·)‖L2([−p,q])

(ii)

≤ K

2m
‖u(·)‖L2([−p,q])

for all x ≥ mx0 by applying (i) recursively to appropriate translates of u. This establishes exponential decay of
u, and it therefore suffices to prove the claims (i) and (ii).

To see (i), we argue by contradiction and assume that there are sequences xn → ∞ and un ∈ Es
0 with

supy≥0 ‖un(y + ·)‖L2([−p,q]) = 1 and ‖un(xn + ·)‖L2([−p,q]) ≥ 1
2 for all integers n ≥ 0. For x ≥ −xn, we de-

fine the translate vn(x) := un(xn +x) and note that ‖vn(·)‖L2([−p,q]) ≥ 1
2 . It is then easy to see that there exists

a constant K1 > 0 such that, for each m ∈ Z, there exists an integer nm ≥ 0 with

‖vn(·)‖L2([m−2p,m+1+2q]) ≤ K1

for all n > nm. Using the differential equation (3.15), which vn satisfies, we see that ‖vn‖H1([m−p,m+1+q]) ≤ K2 for
some K2 that depends only on K1 and the coefficient matrices in (3.15). Using the embedding H1([m−p,m+1+
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q]) ⊂ C0([m−p,m+1+q]), we conclude that supy∈[m−p,m+1+q] |vn(y)| < K3 and therefore ‖vn‖C1([m,m+1]) ≤ K4,
where we exploited again (3.15). We can now apply Arzela–Ascoli to infer that there is a continuous function v

so that vn → v on each compact subset of R as n→∞. Taking the limit in the integral form of the differential
equation (3.15), we find that v is a differentiable and bounded solution of (3.15) on R. Since ‖v‖L2([−p,q]) ≥ 1

2 ,
the solution v is not zero, which contradicts the fact that the null space of L0 is trivial as L0 has a bounded
inverse. This establishes (i).

To prove (ii), we argue again by contradiction and assume that there exist a sequence un ∈ Es
0 and constants

Kn > 1 such that Kn →∞ and

1 = sup
y≥0
‖un(y + ·)‖L2([−p,q]) = Kn‖un(·)‖L2([−p,q]). (3.18)

We write yn for the point y at which the supremum in the preceding expression is obtained: note that yn is
well-defined because y 7→ ‖u(y + ·)‖L2([−p,q]) is continuous, and that yn ∈ [0, x0] because of (i). Thus, after
passing to a subsequence, we can arrange that yn → ỹ ∈ [0, x0] for an appropriate ỹ. Using (3.18) and the
differential equation (3.15), we infer that the norm ‖un‖H1([m,m+1]) is bounded uniformly in m ≥ 0 and in n.
Thus, we see that un → u in L2 on compact subintervals of R+. Furthermore, since ‖un(·)‖L2([−p,q]) → 0 by
(3.18), we infer that un → u in L2 on compact subsets of [−p,∞), where u|[−p,q] = 0. Taking again the limit in
the integrated form of the differential equation (3.15), we see that u satisfies (3.15) on R+. If we write ũ for the
function that vanishes for R− and coincides with u on R+, then u is a bounded nonzero solution of (3.15) on R,
which is again a contradiction. This establishes (ii) and therefore the statement of the lemma.

Define

Eu
0 := {(φ, α) ∈ Y : (φ, α) = (u|[−p,q], u(0−)) for some u ∈ Eu

0 },

Es
0 := {(φ, α) ∈ Y : (φ, α) = (u|[−p,q], u(0+)) for some u ∈ Es

0},

and note that these definitions make sense due to the definition of the spaces Es,u.

Lemma 3.6 If (3.15) is hyperbolic, then the spaces Es
0 and Eu

0 are closed subspaces of Y with Es
0 ⊕ Eu

0 = Y .

Proof. Using the underlying equation, it is not difficult to see that the spaces Es,u
0 are closed in Y . Furthermore,

it follows from the construction of the Green’s function for L0 in [18, Proof of Theorem 4.1] that {0} × CN is
contained in the sum Es

0 + Eu
0 . Using this property, together with arguments as in [19, Proof of Theorem 3.2],

we can show that H1([−p, q],CN )× CN is contained in the sum Es
0 + Eu

0 , which implies that Es
0 + Eu

0 = Y .

It remains to show that the intersection Es
0 ∩Eu

0 is trivial. Thus, assume that (φs, φs(0+)) = (φu, φu(0−)) lies in
the intersection, then, using the definitions of the spaces Es,u

0 and Es,u
0 , we see that each such element (φ, α) can

be extended to R± so that φ|R± ∈ H1(R±) with φ(0±) = α. We see that φ is therefore continuous on R which,
taken together with the fact that φ|(−∞,q] and φ|[−p,∞) satisfy (3.15) on R− and R+, respectively, shows that φ
is, in fact, C1 on R. Thus, φ is a bounded solution of (3.15) on R and therefore φ = 0 by hyperbolicity. This
shows that Es

0 ∩ Eu
0 = {0} as desired.

The preceding lemma allows us to define the bounded projection P s
0 : Y → Y via Rg(P s

0) = Es
0 and N(P s

0) = Eu
0

and the complementary projection P u
0 := 1− P s

0 .

Lemma 3.7 Assume that (3.15) is hyperbolic, then there are constants K and κ > 0 such that the following is
true. The spaces Ej0 ∩ Y 1 are dense in Ej0, we have A0 : Ej0 ∩ Y 1 → Ej0 for j = s,u, and the spectra of A0|Es

0

and A0|Eu
0

are equal to the intersections of the spectrum of A0 with the left and right open complex half-planes,
respectively. Furthermore, the operators

Φs(x)U0 := (u|[x−p,x+q], u(x)), Φu(x)U0 := (u|[x−p,x+q], u(x))
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with P s
0U0 =: (u|[−p,q], u(0+)) and P u

0 U0 =: (u|[−p,q], u(0−)) define strongly continuous semigroups on Es,u
0 for

x ≷ 0, respectively, with ‖Φs(x)‖+ ‖Φu(−x)‖ ≤ Ke−κ|x| for all x ≥ 0.

Proof. The preceding discussion shows that Φs(x) is a strongly continuous semigroup on Es
0. Using the definition

of Es
0, it follows that the generator of Φs(x), which is automatically closed and densely defined, has domain given

by Es
0 ∩ Y 1 and is, in fact, given by the restriction of A0 to Es

0. The claim about the spectrum of the restriction
of A0 to Es

0 follows from the fact that A0 has only point spectrum.

Thus, the constant-coefficient system (3.16) has an exponential dichotomy Φs,u(x − y) on R on the space Y .
Throughout this paper, we will therefore refer to the projections P s,u

0 as the stable and unstable projections of
A0 and, similarly, to their ranges Es,u

0 as the associated stable and unstable subspaces. Note though that these
projections are not spectral projections in the usual sense. Indeed, the restrictions A0|Es,u

0
: Es,u

0 ∩ Y 1 → Es,u
0

are, in general, not invertible, and the projections P s,u
0 will therefore not, in general, commute with A0. The

following lemma gives conditions under which these projections are spectral projections, which, in turn, implies
stronger regularity for solutions with initial data in Y 1.

Lemma 3.8 If A0 is hyperbolic and det[A−pAq] 6= 0, then the spaces Es
0 and Eu

0 are given, respectively, as the
closures in Y of the sums of the generalized stable and unstable eigenspaces of A0 in Y . Furthermore, P s,u

0 maps
Y 1 into Es,u

0 ∩ Y 1, and, for each U0 ∈ Y 1, the functions Φs(x− y)U0 and Φu(x− y)U0 are strong C1-solutions
of (3.16) for x > y and x < y, respectively.

Proof. If det[A−pAq] 6= 0, then the completeness result [9, Theorem 3.1] shows that the sum of the closures
of the generalized stable and unstable eigenspaces of A0 gives Y . This result together with the definition of
Es,u

0 immediately yields the characterization of the spaces Es,u
0 as the closures of generalized stable and unstable

eigenspaces of A0. Using the denseness and regularity of stable and unstable eigenfunctions of A0 in Es,u
0 and

the property that A0 : Y 1 → Y is invertible, it follows that A0 : Es,u
0 ∩Y 1 → Es,u

0 is invertible. Thus, the spaces
Es,u

1 := Es,u
0 ∩ Y 1 = A−1

0 Es,u are invariant under the stable and unstable projections associated with A0, and
they satisfy Es

1 ⊕ Eu
1 = Y 1. The claimed regularity is now a consequence of these statements.

We now return to the non-autonomous, asymptotically hyperbolic system (3.2). As already mentioned, Lem-
mas 3.5-3.7 together with the results in [9, §4] or [14] imply the existence of exponential dichotomies Φs,u

± (x, y)
of (3.2) on R±.

Next, we discuss the regularity of the mild solutions Φs,u
± (x, y)U0 with U0 ∈ Y or U0 ∈ Y 1 that we obtain from

the exponential dichotomies of (3.2). We pick an arbitrary constant-coefficient operator Aref of the form (3.16)
for which det[A−pAq] 6= 0 and denote the associated exponential dichotomy on R by Φs,u(x− y). We now write
the coefficient operator A(x) in (3.2) as

A(x) = Aref + B(x).

The following lemma summarizes some of the findings in [9] and shows that the regularity of solutions is essentially
determined by those of the constant-coefficient problem associated with Aref .

Lemma 3.9 Assume that Hypothesis (H3) is met. For U0 ∈ Y and x > y ≥ 0, define U(x) = Φs
+(x, y)U0,

then U(x) = Uref(x) + Ũ(x), where Uref(x) = Φs(x − y)U0 and Ũ ∈ L2(R, Y 1) ∩ H1(R, Y ) satisfies Ũx =
A(x)Ũ + B(x)Uref(x). Furthermore, we have Ũ = (φ̃, α̃) with α̃(x + z) = φ̃(x, z) for all x > y, z ∈ [−p, q] and
α̃ ∈ H1(R,CN ). An analogous statement holds for Φu

+(x, y)U0 for 0 ≤ x < y and for the dichotomies on R−.

Proof. For operators L that have a bounded inverse, the statements were proved in [9, Proof of Lemma 4.2
on p 1106]. If L is Fredholm, these arguments can be extended easily using the construction in [27, §5.3.2];
alternatively, details can be found in §3.4 below for the case where L is onto.
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The claims in Theorem 4(i) follow now directly from Lemma 3.9 and the properties of the spaces Es,u
0 and Es,u

0

established above. Theorem 4(iii) follows from Theorem 4(i) upon using (3.1).

It remains to prove Theorem 4(ii). Given U0 = (0, α0) ∈ Y , we note that we can write such elements uniquely as

U0 =

(
0
α0

)
=

(
φs

αs

)
−

(
φu

αu

)
∈ Es

0 ⊕ Eu
0 ,

where Es,u
0 are associated with the reference operator Aref that we introduced above. In particular, φs =

φu =: φ satisfies φ|(−p,0) ∈ H1((−p, 0),CN ) and φ|(0,q) ∈ H1((0, q),CN ) due to the definitions of Es,u
0 and Es,u

0 .
Bootstrapping shows that the solutions Φs(x− y)U0 and Φu(x− y)U0 of the equation Ux = ArefU have second
components αs,u that satisfy αs ∈ H2((y,∞) \ {y + 1, . . . , y + q} and αu ∈ H2((−∞, y) \ {y − 1, . . . , y − p},
respectively, when interpreted as elements of Es,u. Using the equation for Ũ from Lemma 3.9, we arrive at the
regularity stated in Theorem 4(ii). This completes the proof of Theorem 4.

3.4 Proof of Theorems 5 and 6

We begin with the proof of Theorem 5. With the exception of the regularity in y, the claims in Theorem 5,
including analyticity in λ, follow directly from [9, Lemma 4.2] and from Theorem 4(ii). Thus, it suffices to
consider regularity in y and pointwise bounds for the y-derivative of the exponential dichotomies. Since the
proof of regularity in y for invertible L is similar to, and in fact much simpler than, the proof for the case where
L is merely onto, we omit it and focus instead on the proof of Theorem 6.

Thus, assume from now on that L is onto. To prove the assertions in Theorem 6, we will repeat the construction
of exponential dichotomies from [9, 27] and show how it implies our claims. For simplicity, we assume that
the null space N(L) of L is one-dimensional, which implies that the Fredholm index of L is one: the proof for
invertible L is much easier, and a higher-dimensional null space does not introduce any additional difficulties.

Denote by V∗(x) the nonzero smooth solution of Ux = A(x)U that corresponds to a nonzero element in N(L).
It follows as in [27, Lemma 5.7] that V∗(x) decays exponentially to zero as |x| → ∞. Furthermore, Hypothesis
(H3)(iii) implies that V∗(x) 6= 0 for all x.

For y ≥ 0, define the spaces

X = X0 = L2(R, Y )

X1 = {(φ, α) ∈ L2(R, Y ) : (∂x − ∂z)φ ∈ L2(R× [−p, q],CN ), α ∈ H1(R,CN ), [φ(x)](0) = α(x) ∀x}

Xy =
[
C0(R+

y , Y ) ∩ L2(R+
y , Y )

]
⊕
[
C0(R−y , Y ) ∩ L2(R−y , Y )

]
,

where R±y = {x : x ≷ y}. Furthermore, define the bounded linear functional

[V∗, ·] : X −→ R, U 7−→ [V∗, U ] :=
∫ −2q

−∞
〈V∗(x), U(x)〉dx,

and let T be the bounded operator defined as

T : X1 −→ X, U 7−→ Ux −A(·)U.

It was shown in [9, §2] that the Fredholm indices of T and L and the dimensions of their null spaces coincide. In
particular, T is Fredholm with index one, and its null space is spanned by V∗. As shown in [9, §4.1], T extends
to a bounded operator Te : X → [X1]∗ whose Fredholm index and null space coincide with those of T . These
results together with a bordering lemma imply that the operators

T̃ : X1 → X × R, U 7→ (T U, [V∗, U ]), T̃e : X → [X1]∗ × R, U 7→ (TeU, [V∗, U ])
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are bounded and invertible. For each y ≥ 0, define

Sy : Y −→ Xy, U0 7−→ (U+, U−) = T̃ −1
e (δ(· − y)U0, 0)

and
Jy : Y −→ Y × Y, U0 7−→ (U+(0), U−(0)) = ([π1SyU0](0), [π2SyU0](0)),

where πj projects onto the jth component. It follows from [9, Lemma 4.2] that these operators are well defined
and bounded uniformly in y ≥ 0. Note that (U+, U−) = SyU0 is the unique bounded weak solution of

U±x = A(x)U±, x ≷ y

U+(y)− U−(y) = U0∫ −2q

−∞
〈V∗(x), U−(x)〉dx = 0,

which will allow us to use the operators Sy and Jy to construct exponential dichotomies of Ux = A(x)U on R+.

Lemma 3.10 Let y ≥ 0, then the spaces

Es
+(y) := Rg(π1Jy), Eu

+(y) := {U0 ∈ Rg(π2Jy) : JyU0 = (0,−U0)}

are closed with Es
+(y)⊕ Eu

+(y) = Y , and the operators

Φs
+(x, y)U0 := [π1SyU0](x), x ≥ y ≥ 0

Φu
+(x, y)U0 := −[π2SyU0](x), y ≥ x

define an exponential dichotomy of (3.2) on R+.

Proof. First, we have
SyV∗(y) = (V∗, 0), JyV∗(y) = (V∗(y), 0). (3.19)

Since the bounded map Y × Y → Y, (U+, U−) 7→ U+ −U− is a left inverse of Jy, we see that Jy is injective and
that the spaces Es

+(y) := Rg(π1Jy) and Eu
−(y) := Rg(π2Jy) are closed. It now follows as in [27, §5.3.2] that

their intersection is spanned by V∗(0) and their sum is Y .

For each U0 ∈ Es
+(y), we have

JyU0 = (U0 + βV∗(y), βV∗(y))

for some β ∈ R that depends on U0. Thus, setting (U+, U−) = SyU0, we find that U− = βV∗, and the constraint

0 = [V∗,SyU0] = β

∫ −2q

−∞
|V∗(x)|2 dx

shows that β vanishes for each U0 ∈ Es
+(y). Thus, we have

JyU0 = (U0, 0), SyU0 = (U+, 0), ∀U0 ∈ Es
+(y) = Rg(π1Jy). (3.20)

In particular, for each U0 ∈ Es
+(y), there exists a unique bounded weak solution U+(x) of Ux = A(x)U for x > y

with U+(y) = U0.

For U0 ∈ Eu
−(y), we have similarly

JyU0 = ([βyU0]V∗(y),−U0 + [βyU0]V∗(y))

for some linear bounded functional βy : Y → R. Using (3.19), we see that

Jy(U0 − [βyU0]V∗(y)) = (0,−(U0 − [βyU0]V∗(y)))
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for all U0 ∈ Eu
−(y). Thus, the space

Eu
+(y) := {U0 ∈ Eu

−(y) : JyU0 = (0,−U0)} = {U0 ∈ Eu
−(y) : π1JyU0 = 0}

is a complement of RV∗(y) in Eu
−(y). In particular, we have

JyU0 = (0,−U0), SyU0 = (0, U−), ∀U0 ∈ Eu
+(y), (3.21)

and U−(x) is the unique bounded weak solution of Ux = A(x)U for x < y with U−(y) = −U0.

Thus, we have Es
+(y)⊕ Eu

+(y) = Y for all y ≥ 0. Using that the integral constraints involve only the values on
R−, it is not difficult to see that the spaces Es,u

+ (y) are mapped into Es,u
+ (x) under Φs,u

+ (x, y). Equations (3.20)
and (3.21) together with the use of weighted norms as in [27, Proof of Lemma 5.5] therefore give the statement
of the lemma.

The preceding lemma and its proof imply Theorem 6(i)-(ii). To show Theorem 6(iii), which asserts regularity
in y, we fix y ≥ 0, and let h be sufficiently close to 0. We know from the preceding discussion that U(·, h) =
(U+, U−) = Sy+hU0 is the unique bounded weak solution of

U±x = A(x)U±, x ≷ y + h

U+(y + h)− U−(y + h) = U0∫ −2q

−∞
〈V∗(x), U−(x)〉dx = 0.

We set Ũ(x, h) = U(x+ h, h) and see that Ũ(·, h) is the unique weak solution of

Ũ±x = A(x+ h)Ũ±, x ≷ y

Ũ+(y)− Ũ−(y) = U0 (3.22)∫ −2q−h

−∞
〈V∗(x+ h), Ũ−(x)〉dx = 0.

First, we consider the related problem

Ǔ±x = A(x+ h)Ǔ±, x ≷ y

Ǔ+(y)− Ǔ−(y) = U0 (3.23)∫ −2q

−∞
〈V∗(x+ h), Ǔ−(x)〉dx = 0,

and note that it has a unique solution Ǔ(·, h) in Xy. Since the h-dependent parts in the above equation are
bounded operators from X` into X`×R for ` = 0, 1 that depend smoothly on h, we conclude that Ǔ(·, h) depends
smoothly on h as a function from h ∈ (−δ, δ) into Xy. The function

Ũ(·, h) := Ǔ(·, h) + β(h)V∗(·+ h)

with

β(h) :=

∫ −2q

−2q−h〈V∗(x+ h), Ǔ−(x, h)〉dx∫ −2q

−∞ |V∗(x)|2 dx

then satisfies (3.22) since∫ −2q−h

−∞
〈V∗(x+ h), Ũ−(x)〉dx =

∫ −2q−h

−∞
〈V∗(x+ h), Ǔ−(x)〉dx+ β(h)

∫ −2q−h

−∞
|V∗(x+ h)|2 dx

(3.23)
= −

∫ −2q

−2q−h
〈V∗(x+ h), Ǔ−(x)〉dx+ β(h)

∫ −2q−h

−∞
|V∗(x+ h)|2 dx = 0
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by definition of β(h). Next, we observe that β(h) is smooth in h due to the regularity properties of V∗ and
Ǔ−(·, h). Hence, Ũ(·, h) is differentiable in y with values in Xy, and we have

U±h (x, 0) = −U±x (x, 0) + Ũ±h (x, 0) = −U±x (x, 0) + Ǔh(x, 0) + βh(0)V∗(x)

for x > y + p and x < y − q by Theorem 4(iii). Furthermore, |U±x (x, 0)|Y ≤ Ke−κ|x−y|| for x > y + p and
x < y−q, respectively, by using the equation satisfied by U±(x, 0). The same estimate can be shown for Ũh(x, 0)
by writing down the equation satisfied by Ǔ(·, h) and solving it in exponentially weighted norms. We omit the
details.

It remains to consider Theorem 6(iv). To apply the preceding construction to L− λ, we need to verify that it is
onto and satisfies (H3)(iii).

Lemma 3.11 If L is onto and satisfies (H3), then L − λ is also onto and satisfies (H3) for all λ sufficiently
close to zero. In particular, elements in the null space of L− λ cannot vanish on intervals of length p+ q unless
they vanish everywhere.

Proof. Throughout, we assume that λ is sufficiently close to zero. Recall that L is onto and Fredholm due
to (H3). If dim N(L) = d, then the Fredholm index of L is d. These observations imply that L − λ is also
onto and Fredholm with index d. Thus, dim N(L − λ) = d for all λ near zero, and we need to show that v
cannot vanish on any interval of length p + q for each nontrivial v ∈ N(L − λ). We now proceed as above and
construct, for each y ∈ R+, the map Jy(λ) : Y → Y × Y, U0 7→ (U+, U−) associated with L − λ. Arguing
as in the proof of Lemma 3.10, we see that Jy(λ) is injective and bounded uniformly in y ∈ R+ and λ near
zero. Furthermore, the spaces Rg(πjJy(λ)) are closed in Y , their sum is Y , and each nonzero element V (y)
in their intersection Rg(π1Jy(λ)) ∩ Rg(π2Jy(λ)) yields a nonzero element v in N(L − λ via [Sy(λ)V (y)](x) =
(v(x + ·), v(x)). Hypothesis (H3)(iii) implies that Rg(π1Jy(0)) ∩ Rg(π2Jy(0)) has dimension d and is, in fact,
spanned by Vj(y) = (vj(y + ·), vj(y)), where {vj} is a basis on N(L − λ). The assertions of the lemma follow
if we can show that Rg(π1Jy(λ)) ∩ Rg(π2Jy(λ)) has dimension d for each λ near zero and each y ∈ R+ (since
the same argument then applies to y ∈ R−). Since Y is a Hilbert space, we can find closed complements Yj of
the null space of πjJy(0) in Y and conclude that πjJy(0) : Yj → Rg(πjJy(0)) is invertible, since Rg(πjJy(λ)) is
closed in Y . Consider the bounded map

J̃y(λ) : Y1 × Y2 −→ Y, (U1, U2) 7−→ π1Jy(λ)− π2Jy(λ),

and observe that J̃y(λ) is onto. Next, note that (U1, U2) ∈ N(J̃y(0)) if and only if π1Jy(λ)U1 = π2Jy(λ)U2. Since
πjJy(0)|Yj is an isomorphism onto Rg(πjJy(0)), we see that N(J̃y(0)) is isomorphic to Rg(π1Jy(0))∩Rg(π2Jy(0))
and has therefore dimension d. In particular, J̃y(0) is Fredholm with index d, and therefore so is J̃y(λ).
We conclude that dim N(J̃y(λ)) = d for all λ near zero and, arguing as above, see that dim[Rg(π1Jy(λ)) ∩
Rg(π2Jy(λ))] = d for all such λ, and the lemma is proved.

The preceding lemma allows us now to proceed exactly as before to establish analyticity in λ. Define

T̃ (λ) : X1 → X × R, U 7→ (T (λ)U, [V 0
∗ , U ]), T̃e(λ) : X → [X1]∗ × R, U 7→ (Te(λ)U, [V 0

∗ , U ]),

where T (λ)U = Ux−A(·, λ)U , and V 0
∗ spans the null space of T (0). The preceding construction then shows that

the exponential dichotomies are locally analytic in λ, and the exponential bounds for derivatives with respect to
λ follow again from using exponential weights. This completes the proof of Theorem 6.

For later use, we prove a result about the convergence of the stable subspaces associated with an exponential
dichotomy on R+. We denote by A± and L± the operators given by (3.16) and (3.17), respectively, with
coefficient matrices A±j instead of Aj .
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Lemma 3.12 Assume that Hypothesis (H3) is met, then the subspace Es
+(x) := Rg(P s

+(x)) converges to the
stable subspace Es

+ associated with the asymptotic operator A+ as x → ∞. Similarly, the unstable subspace
Eu
−(x) := Rg(P u

−(x)) converges to the unstable subspace Eu
− of A− as x→ −∞.

Proof. The following cutoff procedure is inspired by [19]. Let χ+ : R→ R be a smooth monotone function that
satisfies

χ+(x) :=


1 0 ≤ x

monotone −1 ≤ x ≤ 0
0 x ≤ −1.

(3.24)

Define the operator LL+ : H1 → L2 via

[LL+u](x) = ux(x)−
q∑

j=−p

[
A+
j + (Aj(x)−A+

j )χ+(x− L)
]
u(x+ j) (3.25)

and note that L+ − LL+ is a bounded operator from H1 into itself with ‖L+ − LL+‖H1 = oL(1), where, by
definition, oL(1) goes to zero as L→∞. In particular, LL+ is invertible for all sufficiently large L� 1. Using the
construction of exponential dichotomies given above, it follows that the dynamical system associated with LL+
has exponential dichotomies Φs,u

L (x, y) on R and that Rg(Φs
L(x, x)) is oL(1)-close to Es

+ for x ∈ R. Uniqueness
of weak solutions to (3.2) shows that Rg(Φs

L(x, x)) = Es
+(x) for all x ≥ L, which completes the proof for Es

+(x).

An analogous proof works on R− using a smooth cutoff function χ− defined by

χ−(x) :=


1 x ≤ 0

monotone 0 ≤ x ≤ 1
0 x ≥ 1

and the operator LL− : H1 → L2 defined by

[LL−u](x) = ux(x)−
q∑

j=−p

[
A−j + (Aj(x)−A−j )χ−(x+ L)

]
u(x+ j) (3.26)

which is oL(1) close to L− as L→∞.

4 Resolvent kernels of semidiscrete conservation laws

Throughout this section, we assume that the hypotheses formulated in Theorem 1 are met. We remark though
that (S5) is not used in this section but will become crucial in §5.

Theorem 3 shows that the Green’s function G(j, i, t, s) of the linearization of the system of semidiscrete conser-
vation laws around the Lax shock can be calculated via

G(j, i, t, s) =
−1

2πiσ

∫ γ+iπσ

γ−iπσ

eλ(t−s)G

(
j − σt

h
, i− σs

h
, λ

)
dλ (γ � 1 fixed) (4.1)

from the resolvent kernel of the operator

L : L2(R,CN ) −→ L2(R,CN ), u 7−→ σux −
q∑

j=−p
Aj(·)u(·+ j).

This operator has domain H1(R,CN ), and its coefficients are given by

Aj(x) = ∂jf (u∗(x− p+ 1), . . . , u∗(x+ q))− ∂j+1f (u∗(x− p), . . . , u∗(x+ q − 1)) . (4.2)
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Recall that the resolvent kernel G(x, y, λ) of L is defined as the solution, in the sense of distributions, of

[L − λ]G(·, y, λ) = δ(· − y).

Theorem 5 implies that G(x, y, λ) is well defined and analytic in λ for all λ ∈ {Reλ ≥ 0} \ 2πiσZ since L − λ
is invertible for these values of λ by Hypothesis (S1). To get useful pointwise bounds on the Green’s function
G(j, i, t, s) of the lattice system, it will be necessary to move the contour of integration in (4.1) into Reλ < 0:
this requires that we extend the resolvent kernel G(x, y, λ) to a neighborhood of λ = 0, and the issue is that we
do not know in what sense G(x, y, 0) exists since λ = 0 lies in the spectrum of L by (S2). Thus, much of this
section will be concerned with constructing G(x, y, λ) for λ near zero.

4.1 The asymptotic operators and their adjoints

The results in §3 indicate that asymptotic hyperbolicity of L − λ is the key property that would allow us to
use exponential dichotomies to construct G(x, y, λ). Thus, we first check for which values of λ near zero the
associated asymptotic operators L± − λ with

L± : u 7−→ σux −
q∑

j=−p
(∂j − ∂j+1)f(u±, . . . , u±)︸ ︷︷ ︸

=:A±j

u(·+ j)

are hyperbolic. The characteristic equations associated with L± − λ are given by

det ∆±(ν, λ) := det

σν − λ− q∑
j=−p

(∂j − ∂j+1)f(u±, . . . , u±)eνj

 = 0. (4.3)

In Hypothesis (S1), we assumed that L − λ is invertible for all λ ∈ {Reλ ≥ 0} \ 2πiσZ, and we conclude
that det ∆(ν, λ) 6= 0 for each ν ∈ iR and each λ in the aforementioned set. Furthermore, (S4) implies that
det ∆(ν, 0) 6= 0 does not have any solutions ν ∈ iR \ {0}. Lemma 3.1 then shows that (4.3) can have roots ν
near the imaginary axis for λ near the imaginary axis with | Imλ| ≤ π|σ| only when both ν and λ are near zero.
Thus, it suffices to understand the solutions of (4.3) for both ν and λ near zero.

Lemma 4.1 Assume that (H1) is met, then the equation det ∆±(ν, λ) = 0 has precisely N solutions ν±n (λ) near
the origin for each λ near zero. Furthermore, these solutions are analytic in λ and have the expansion

ν±n (λ) =
λ

σ − a±n
+
〈l±n , B±r±n 〉
|l±n |2

λ2

(a±n − σ)3
+ O(λ3), n = 1, . . . , N, (4.4)

where B± =
∑q
j=−p(1−2j)∂jf(u±, . . . , u±) is defined in (1.8). Finally, there are analytic functions r±n (λ) ∈ RN

with r±n (0) = r±n so that ∆±(ν±n (λ), λ)r±n (λ) ≡ 0.

Proof. Since we set ∂−pf = ∂q+1f = 0, we see that

q∑
j=−p

(∂j − ∂j+1)f(u±, . . . , u±) = 0. (4.5)

Thus, Rouché’s theorem implies that (4.3) has precisely N solutions ν near zero, counted with multiplicity, for
each λ near zero. Next, a calculation shows that ∆±(ν, λ) has the expansion

∆±(ν, λ) = σν − λ−
q∑

j=−p
∂jf(u±, . . . , u±)ν +

q∑
j=−p

(1− 2j)∂jf(u±, . . . , u±)
ν2

2
+ O(ν3)

= σν − λ− f̄u(u±)ν +B±ν2 + O(ν3).
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A straightforward Lyapunov–Schmidt reduction applied to ∆±(ν, λ)r = 0 now yields the statements made in
the lemma upon recalling that a±n 6= σ are the simple, real, distinct eigenvalues of f̄u(u±) with left and right
eigenvectors l±n and r±n , respectively.

Alternatively, solving (4.3) for λ as a function of ν = iγ with γ ∈ R yields the solution branches

λ±n (γ) = −(a±n − σ)iγ − 〈l
±
n , B

±r±n 〉
|l±n |2

γ2 + O(γ3), n = 1, . . . , N,

and (S1) implies that these curves, which lie in the essential spectrum of L, are contained in the open left
half-plane. (S5) implies further that these curves have a quadratic tangency to the imaginary axis at λ = 0.

Remark 4.2 In the context of the weak semidiscrete shocks that we considered in Theorem 2, Lemma 4.1 implies
that ∆+(ν, 0) has a root of order N at ν = 0. Furthermore, Lemma 3.1 and assumption (S4) for u = u0 imply
that ∆+(ν, 0) cannot have any nonzero purely imaginary roots ν, which completes the proof of Theorem 2.

Lemma 4.1 implies in particular that we cannot immediately apply the theory from §3 as the asymptotic operators
are not hyperbolic at λ = 0. We shall see that we can nevertheless extend the resolvent kernel meromorphically
across λ = 0.

First, we consider the dynamical-systems formulation

Ux = A±(λ)U, A±(λ)

(
φ

α

)
=

(
φz

1
σ (A±0 + λ)α+ 1

σ

∑q
j=−p, j 6=0A

±
j φ(j)

)
(4.6)

on Y that is associated with L± − λ. The spectrum of A±(λ) on Y consists entirely of eigenvalues (which we
refer to as spatial eigenvalues), and these are in 1:1 correspondence6 with roots ν of det ∆±(ν, λ); see §3.3. The
preceding discussion shows that the operators A±(λ) are hyperbolic in Reλ > −δ for some small δ > 0 except
when λ is close to zero, when they each have N eigenvalues ν±n (λ) near zero. As these roots will be crucial in
the forthcoming analysis, we state the following remark that will allow us to isolate them from the remaining
eigenvalues.

Remark 4.3 If (H1), (S1), and (S4) are met, then Lemmas 3.1 and 4.1 imply that there are constants ε, η̄ > 0
such that, for each λ ∈ Bε(0), each solution ν of det ∆±(ν, λ) = 0 has distance larger than 4η̄ from the imaginary
axis except for the N weak spatial eigenvalues ν±n (λ) given in (4.4) which have distance smaller than 1

2 η̄ from
the imaginary axis. In particular, det ∆±(ν, λ) = 0 has no solutions ν with η̄ ≤ |Re ν| ≤ 3η̄ for λ ∈ Bε(0). From
now on, we fix the constants ε and η̄, and we mean λ ∈ Bε(0) when we say that λ is near zero.

The eigenvectors of A±(λ) belonging to the eigenvalues ν±n (λ) are given by

V±n (λ) := r±n (λ)

(
eν
±
n (λ)z

1

)
∈ Y, n = 1, . . . , N, (4.7)

and we note that they depend analytically on λ in a neighborhood of zero. We set

Ec
±(λ) = span{V±n (λ) : n = 1, . . . , N}. (4.8)

Next, we use Remark 4.3, the weighted operators L±2η̄
+ − λ and A±2η̄

+ (λ) from (3.7), and the discussion at the
end of §3.1 to obtain two sets of exponential dichotomies of Ux = A+(λ)U on R, one with rates κs = η̄ < 3η̄ = κu

and the other one with rates κs = −3η̄ < −η̄ = κu. We denote the associated subspaces belonging to these two
6We shall always count eigenvalues and roots with their algebraic multiplicity and order, respectively.
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sets of dichotomies by Ecs,uu
+ (λ) and Ess,cu

+ (λ), respectively7. In particular, these subspaces depend analytically
on λ, and we have

Ecs
+ (λ)⊕ Euu

+ (λ) = Y, Ess
+ (λ)⊕ Ecu

+ (λ) = Y. (4.9)

Furthermore, [12, Lemma 4.3 and Proposition 5.1] shows that

Ecs
+ (λ) = Ess

+ (λ)⊕ Ec
+(λ), Ecu

+ (λ) = Euu
+ (λ)⊕ Ec

+(λ) (4.10)

for all λ ∈ Bε(0). Analogous subspaces exist for A−(λ).

Next, consider λ near zero with Reλ > 0. In this region, the resolvent kernel G(x, y, λ) of L−λ involves the stable
dichotomy for x > y and the unstable dichotomy for x < y; see (3.4). Lemma 3.12 shows that the associated
stable subspace for x > y converges to the stable subspace of A+(λ) as x → ∞, and the unstable subspace for
x < y converges similarly to the unstable subspace of A−(λ) as x→ −∞. Thus, to extend the dichotomies into
{Reλ < 0} near λ = 0, we need to first find out how the stable and unstable subspaces of A±(λ) behave near
λ = 0, where hyperbolicity is lost due to the small spatial eigenvalues ν±n (λ). In particular, (4.9)-(4.10) show
that it suffices to investigate this issue inside the center spaces Ec

±(λ) defined in (4.8). Using the information

a−1 < . . . < a−k−1︸ ︷︷ ︸
=:a−n,out

< σ < a−k < . . . < a−N︸ ︷︷ ︸
=:a−n,in

, a+
1 < . . . < a+

k︸ ︷︷ ︸
=:a+

n,in

< σ < a+
k+1 < . . . < a+

N︸ ︷︷ ︸
=:a+

n,out

given in (1.5) on the characteristic speeds a±n of the Lax k-shock, we see that the spatial eigenvalues ν±n (λ) satisfy

ν−1 , . . . , ν
−
k−1︸ ︷︷ ︸

=:ν−n,out(λ)

> 0, ν−k , . . . , ν
−
N︸ ︷︷ ︸

=:ν−n,in(λ)

< 0, ν+
1 , . . . , ν

+
k︸ ︷︷ ︸

=:ν+
n,in(λ)

> 0, ν+
k+1, . . . , ν

+
N︸ ︷︷ ︸

=:ν+
n,out(λ)

< 0 (4.11)

for λ > 0. Thus, for Reλ > 0, the outgoing characteristics contribute to the unstable subspace of A−(λ) and
the stable subspace of A+(λ), while the incoming characteristics contribute to the stable subspace of A−(λ) and
the unstable subspace of A+(λ): we therefore define the finite-dimensional subspaces

R±out(λ) = span{V±n (λ) : a±n ≷ 0}, R±in(λ) = span{V±n (λ) : a±n ≶ 0}, Ec
±(λ) = R±out(λ)⊕R±in(λ)

composed of outgoing and incoming modes, which are analytic in λ near zero. Note that dimR+
out and dimR−out

are N − k and k − 1, respectively. Using these definitions, it follows from the above discussion that the decom-
positions

Euu
− (λ)⊕R−out(λ)︸ ︷︷ ︸

=:F eu
− (λ)

⊕Ess
−(λ)⊕R−in(λ)︸ ︷︷ ︸

=:F es
− (λ)

= Y, Ess
+ (λ)⊕R+

out(λ)︸ ︷︷ ︸
=:F es

+ (λ)

⊕Euu
+ (λ)⊕R+

in(λ)︸ ︷︷ ︸
=:F eu

+ (λ)

= Y (4.12)

and the bounded projections on Y associated with the decompositions F es
± (λ)⊕F eu

± (λ) = Y exist and are analytic
in λ ∈ Bε(0). In particular, the stable and unstable subspaces Es,u

± (λ) of A±(λ) for Reλ > 0 can be extended
analytically as the spaces F es,eu

± (λ) to the ball Bε(0). We emphasize that, for λ < 0, the subspaces F es
± (λ) contain

eigenvectors of A±(λ) that belong to weakly unstable spatial eigenvalues; similarly, the spaces F eu
± (λ) contain

weakly stable spatial eigenvectors when λ < 0.

Next, we collect a few useful properties of the adjoint operator associated with L, which is given by

L∗ : L2(R,CN ) −→ L2(R,CN ), û 7−→ −σûx −
q∑

j=−p
Aj(· − j)∗û(· − j).

The asymptotic operators belonging to L∗ are

L∗± : û 7−→ −σûx −
q∑

j=−q
(∂j − ∂j+1)f(u±, . . . , u±)∗û(· − j).

7Note that it is not clear whether these subspaces are spectral subspaces of A+; see the discussion preceding Lemma 3.8.

25



Note that the associated characteristic equations are given by det ∆±(−ν, λ)∗, and we obtain from Lemma 4.1
analytic nonzero solutions l±n (λ) of ∆±(−ν±n (λ), λ)∗l = 0. In particular, the operators Â±(λ) associated with
the spatial-dynamics formulation

Ûx = Â±(λ)Û

of (L∗± − λ)û = 0 have each precisely N discrete eigenvalues near zero, and these are given by −ν±n (λ), and the
associated eigenfunctions

V̂±n (λ) := l±n (λ)

(
e−ν

±
n (λ)z

1

)
∈ Ŷ , n = 1, . . . , N (4.13)

are analytic in λ.

Lemma 4.4 Assume that Hypothesis (H1) is met, then the Hale inner products of V̂±n (0) and V±m(0) with respect
to the asymptotic operator L± are given by

〈V̂±n (0),V±m(0)〉± = 〈l±n , r±m〉 −
q∑

j=−p

1
σ

∫ j

0

〈l±n , (∂j − ∂j+1)f(u±, . . . , u±)r±m〉dz =
(

1− a±n
σ

)
δmn

for n,m ∈ {1, . . . , N}.

Proof. Using the relations 〈l±n , r±m〉 = δmn, we obtain:

〈V̂±n (0),V±m(0)〉± = 〈l±n , r±m〉 −
q∑

j=−p

1
σ

∫ j

0

〈l±n , (∂j − ∂j+1)f(u±, . . . , u±)r±m〉dz

= δmn −
q∑

j=−p

j

σ
〈l±n , (∂j − ∂j+1)f(u±, . . . , u±)r±m〉

(4.5)
= δmn −

〈
l±n ,

q∑
j=−p+1

∂jf(u±, . . . , u±)r±m

〉

= δmn −
〈
l±n , f̄u(u±, . . . , u±)r±m

〉
=
(

1− a±n
σ

)
δmn,

which proves the lemma.

4.2 Exponential dichotomies in weighted spaces

Consider now the dynamical system

Ux = A(x, λ)U, A(x, λ)

(
φ

α

)
=

(
φz

1
σ (A0(x) + λ)α+ 1

σ

∑q
j=−p, j 6=0Aj(x)φ(j)

)
(4.14)

with Aj(x) as in (4.2) that belongs to L − λ. Similarly, we introduce the dynamical-systems formulation

Ûx = Â(x, λ)Û , Â(x, λ)

(
ψ

β

)
=

(
ψz

− 1
σ (A0(x)∗ + λ)β − 1

σ

∑q
j=−p, j 6=0Aj(x− j)∗ψ(−j)

)
(4.15)

with Û ∈ Ŷ that is induced by the adjoint operator L∗ − λ.

Lemma 4.5 Assume that Hypothesis (H1) is met, then the constant functions Ψn := (l±n , l
±
n ) ∈ Ŷ satisfy (4.15)

with λ = 0 for n = 1, . . . , N .
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Proof. It suffices to prove that L∗l±n = 0 for each n. Since ∂−pf = ∂q+1f = 0, we have

L∗l = −
q∑

j=−p

[
∂jf(u∗(x− j − p+ 1), . . . , u∗(x− j + q))∗ − ∂j+1f(u∗(x− j − p), . . . , u∗(x− j + q − 1))∗

]
l

= −
q∑

j=−p

[
∂jf(u∗(x− j − p+ 1), . . . , u∗(x− j + q))∗

−∂jf(u∗(x− j + 1− p), . . . , u∗(x− j + 1 + q − 1))∗
]
l

= 0,

and the assertion is proved.

We can now prove Lemma 1.1.

Proof of Lemma 1.1. We show that a Lax k-shock that satisfies Hypotheses (H1), (H2), and (S4) converges
exponentially to its asymptotic states u± and that its speed σ is given by the Rankine–Hugoniot condition. Note
that we already know that u′∗(x) converges to zero as |x| → ∞.

Let LL+ be as in (3.25), and define LL,η+ := e−ηxLL+eηx as in (3.7). Choose η̄ as in Remark 4.3, then the
discussion at the end of §3.1 implies that the operators LL,±2η̄

+ are invertible. Consequently, the dynamical system
Ux = A(x, 0)U we introduced in (4.14) has exponential dichotomies Φcs,uu(x, y) with rates κs = η̄ < 3η̄ = κu

and Φcs,uu(x, y) with rates κs = −3η̄ < −η̄ = κu that are defined for x, y ≥ L. Furthermore, using the relation
between the weighted and unweighted systems, we conclude from Lemma 3.12 that Rg(Φj(x, x)) =: Ej(x)→ Ej+
as x→∞ for j = cs, ss, where Ej+ are the subspaces in (4.8)-(4.10) evaluated at λ = 0. Using the properties of
the spaces Ej+ given in (4.8)-(4.10), we see that Ess

+ (x)→ Ess
+ and Ecs

+ (x)→ Ess
+ ⊕ Ec

+ as x→∞.

Next, consider the Lax shock u∗(x) and define U ′∗(x) := (u′∗(x + ·), u′∗(x)) ∈ Y which is then an H1-solution of
Ux = A(x, 0)U on R. Theorem 6(ii) applied to the equation that correspond to LL,2η̄+ implies that U ′∗(x) ∈ Ecs

+ (x)
for all x ≥ L. Next, Lemmas 4.5 and 3.3(i) show that the constant solutions Ψn have nonzero Hale inner product
with elements in Ec

+ and that 〈Ψn, V
ss〉(x) = 0 for all V ss ∈ Es

+(x) with x ≥ L and each n = 1, . . . , N . Consider
now the bounded map

Ψx : Y −→ RN , U0 7−→
(
〈Ψn, U0〉(x)

)
n=1,...,N

for x ≥ L. We claim that N(Ψx|Ecs
+ (x)) = Ess

+ (x) for x ≥ L sufficiently large. Indeed, we already showed that
Ess

+ (x) ⊂ N(Ψx|Ecs
+ (x)). Furthermore, Rg(Ψx|Ecs

+ (x)) = RN for sufficiently large x due to continuity of the Hale
inner product and since Ecs

+ (x) converges to Ess
+ ⊕ Ec

+. Since Ess
+ (x) has codimension N in Ecs

+ (x), the claim
follows. Since U ′∗(x) converges to zero as x → ∞, we conclude from Lemma 3.3(i) that ΨxU

′
∗(x) = 0. Hence,

U ′∗(x) ∈ Ess
+ (x) for all sufficiently large x, which proves that |U ′∗(x)| ≤ Ke−3η̄x for x ≥ L for some K that does

not depend on x. The same arguments apply to x ≤ −L upon using LL− from (3.26). Thus, there is a constant
K such that |U ′∗(x)| ≤ Ke−3η̄|x| for x ∈ R as claimed.

It remains to establish the Rankine–Hugoniot condition for σ. Note that the shock profile u∗(x) is a smooth
solution of the nonlinear functional differential equation

σu′∗(x) = f(u∗(x− p+ 1), . . . , u∗(x+ q))− f(u∗(x− p), . . . , u∗(x+ q − 1)),

and integrating this equation in x over the interval [−L,L] we get

σ(u∗(L)− u∗(−L)) =
∫ L

−L
[f(u∗(x− p+ 1), . . . , u∗(x+ q))− f(u∗(x− p), . . . , u∗(x+ q − 1))] dx

=
∫ L+1

−L+1

f(u∗(x− p), . . . , u∗(x+ q − 1)) dx−
∫ L

−L
f(u∗(x− p), . . . , u∗(x+ q − 1)) dx

=
∫ L+1

L

f(u∗(x− p), . . . , u∗(x+ q − 1)) dx︸ ︷︷ ︸
→f̄(u+) as L→∞

−
∫ −L+1

−L
f(u∗(x− p), . . . , u∗(x+ q − 1)) dx︸ ︷︷ ︸

→f̄(u−) as L→∞

,
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which shows that σ[u∗] = [f̄(u∗)] as claimed.

To obtain differentiability of exponential dichotomies in y and analyticity in λ, we would like to appeal to
Theorem 6 which assumes that the underlying operators are onto. Thus, we now prove Fredholm properties of
the weighted operator Lη = e−ηxLeηx that we introduced in (3.7).

Lemma 4.6 Assume that Hypotheses (H1)-(H2) and (S1)-(S4) are met, and pick η̄ > 0 as in Remark 4.3, then
L±2η̄ is Fredholm with index one, and N(L±2η̄) = span{u′∗}. In particular, L±2η̄ is onto.

We remark that Lemmas 3.11 and 4.6 imply that L±2η̄ − λ is then also surjective and Fredholm with index one
for all λ near zero.

Proof. We focus on L2η̄ as the arguments for L−2η̄ are analogous.

First, we fix λ ∈ (0, ε) and recall that the operator L − λ is invertible and therefore Fredholm with index zero.
Recall also that the dispersion relations det ∆±(ν, λ) = 0 have precisely N roots ν±n (λ) with distance less than
3η̄ of the imaginary axis and that these roots actually lie in a ball of radius less than η̄ centered at the origin.
In fact, we know from (4.11) that k of the N small roots at x = ∞ and k − 1 of the small roots at x = −∞
have positive real part for λ > 0. Applying [18, Theorems B and C], we see that the Fredholm index of L2η̄ − λ
is equal to the difference of the small roots with real part in the interval (0, 2η̄) at x =∞ and x = −∞ so that
this index is equal to k − (k − 1) = 1. Next, we can change λ monotonically back to zero without changing
the Fredholm index of L2η̄ − λ by [18, Theorems B and C] since none of the roots of the dispersion relations
det ∆±(ν, λ) crosses Re ν = 2η̄. Thus, L2η̄ is Fredholm with index one, and the small roots of det ∆±(ν, 0) are
back at the origin.

It remains to show that N(L2η̄) = span{u′∗}. The arguments in the proof of Lemma 1.1 show that u′∗ ∈ N(L2η̄).
Assume that v is another linearly independent element in the null space of L2η̄, then |v(x)| ≤ Keη̄x for x ≤ 0
by definition of L2η̄. In particular, setting V (x) = (v(x+ ·), v(x)) and recalling the constant solutions Ψn from
Lemma 4.5, we have 〈Ψn, V (x)〉(x) = 0 for all x, and, arguing as in the proof of Lemma 1.1 we conclude that
V (x) ∈ Ess

+ (x) for all sufficiently large x � 1. But then we have |v(x)| ≤ Ke−η̄|x| for x ∈ R and therefore
v ∈ N(L), which contradicts (S2).

To construct analytic extensions of the exponential dichotomies from {Reλ > 0} into a neighborhood of λ = 0,
we need to isolate the small spatial eigenvalues from the remainder of the spatial spectrum: this needs to be
done not just for the asymptotic dynamical system (4.6) but for the full problem associated with the operator
L − λ. The following lemma shows that we can isolate the dynamics associated with the strongly decaying and
growing directions. Recall the definitions ι2 : CN → Y, α 7→ (0, α) and π2 : Y → CN , (φ, α) 7→ α from (3.3).

Lemma 4.7 Assume that Hypotheses (H1)-(H2) and (S4) are met, and pick η̄ > 0 as in Remark 4.3. For
λ near zero, equation (4.14) then has exponential dichotomies Φss,cu

+ (x, y, λ) with rates κs = −3η̄ < κu = −η̄
and Φcs,uu

+ (x, y, λ) with rates κs = η̄ < κu = 3η̄ on R+ that are analytic in λ. Furthermore, the operators
Φcs,ss

+ (x, y, λ) and Φcu,uu
+ (x, y, λ) are differentiable in y for x > y + p and 0 ≤ x < y − q, while the operators

π2Φss,uu
+ (x, y, λ)ι2 are differentiable pointwise in y for x ≷ y: the y-derivatives of all these operators satisfy

exponential bounds with the same rates as the original operators though the constants K may be larger. Finally,
setting Ej+(x, λ) := Rg(Φj+(x, x, λ)) for j = ss, cs, we have

Ess
+ (x, λ)→ Ess

+ (λ), Ecs
+ (x, λ)→ Ess

+ (λ)⊕ Ec
+(λ)

as x→∞. Analogous statements hold on R−.

Proof. Lemma 4.6 shows that the operators L±2η̄ satisfy the assumptions of Theorem 6, and the assertions
follow now from this theorem and the discussion at the end of §3.1 where we related dichotomies of the weighted
and unweighted systems.
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4.3 Analytic extension of the exponential dichotomies on R±

We now extend the exponential dichotomies of the system

Ux = A(x, λ)U, A(x, λ)

(
φ

α

)
=

(
φz

1
σ (A0(x) + λ)α+ 1

σ

∑q
j=−p, j 6=0Aj(x)φ(j)

)
(4.16)

on R± analytically from Reλ > 0 to a neighborhood of λ = 0.

Lemma 4.8 Assume that Hypotheses (H1)-(H2) and (S1)-(S4) are met. There are then a positive constant ε
and a family Φs,u

+ (x, y, λ) of bounded evolution operators of (4.16) that are defined for x ≷ y with x, y ∈ R+, are
analytic in λ ∈ Bε(0), give exponential dichotomies of (4.16) for Reλ > 0, and satisfy the estimates

‖Φs
+(x, y, λ)‖L(Y ) =

∑
ν+
out

O
(

eν
+
out(λ)(x−y)

)
, x ≥ y ≥ 0 (4.17)

‖Φu
+(x, y, λ)‖L(Y ) =

∑
ν+
in

O
(

eν
+
in(λ)(x−y)

)
, y ≥ x ≥ 0.

Furthermore, Φs,u
+ (x, y, λ) are differentiable in y for x > y + p and 0 ≤ x < y − q, respectively, with

‖∂yΦs
+(x, y, λ)ι2‖L(RN ,Y ) = O(e−η̄|x−y|) + |λ|

∑
ν+
out

O
(

eν
+
out(λ)(x−y)

)
, x > y + p (4.18)

‖∂yΦu
+(x, y, λ)ι2‖L(RN ,Y ) = O(e−η̄|x−y|) + |λ|

∑
ν+
in

O
(

eν
+
in(λ)(x−y)

)
, y − q > x ≥ 0,

while the operators π2Φss,uu
+ (x, y, λ)ι2 that appear in the explicit expression (4.29) of the extended dichotomies are

differentiable pointwise in y for x ≷ y and satisfy pointwise estimates in CN×N analogous to (4.18) for x ≷ y.
Finally, the stable subspace Rg(Φs

+(x, x, λ)) converges to the extended stable subspace Ess
+ (λ) ⊕R+

out(λ) defined
in (4.12) as x→∞. The same statement with symmetric bounds holds for dichotomies on R−.

Proof. First, we construct H1-solutions U+
n (x, λ) of (4.16) on R+ so that U+

n (x, λ)/|U+
n (x, λ)|Y converges with

uniform rate 2η̄ to the element V+
n (λ) ∈ R+

out(λ)⊕R+
in(λ) as x→∞, where n = 1, . . . , N . To construct U+

n (x, λ),
we consider the system

(L − λ)(r+
n (λ)eν

+
n (λ)x + vn) = 0 (4.19)

where the relation between V+
n (λ) and r+

n (λ) is contained in (4.7). Since (L+ − λ)r+
n (λ)eν

+
n (λ)x = 0 and the

coefficients in L converge exponentially with rate −3η̄ to those of L+, we see that (4.19) is of the form

(L − λ)vn = hn(x, λ), (4.20)

where hn(x, λ) is analytic in λ and there is a constant K so that |hn(x, λ)| ≤ Ke−3η̄x for x ≥ 0. Using the
cutoff function χ+ from (3.24), we define he

n(x, λ) := χ+(x+ p+ q)hn(x, λ), which is analytic in λ and satisfies
|he
n(x, λ)| ≤ Ke−3η̄|x| for x ∈ R. Following the discussion centered around (3.9)-(3.10) in §3.1, we now consider

(L−2η̄ − λ)wn = e2η̄xhe
n(x, λ). (4.21)

By construction, the right-hand side is in L2(R), and the discussion after Lemma 4.6 shows that L−2η̄ − λ

is onto and Fredholm with index one. Thus, adding an appropriate normalization condition, equation (4.21)
has a solution wn(·, λ) ∈ H1 that depends analytically on λ. We conclude that vn(x, λ) = e−2η̄xwn(x, λ) is
an H1-solution of (4.20) that is analytic in λ and satisfies |vn(x)| ≤ Ke−2η̄x for x ≥ 0. Defining V +

n (x, λ) =
(v+
n (x+ ·, λ), v+

n (x, λ)) ∈ Y 1 for x ≥ 0 and recalling that eν
+
n (λ)xV+

n (λ) is the solution of the asymptotic system
(4.6) that corresponds to the solution r+

n (λ)eν
+
n (λ)x of (L+ − λ)u = 0, we see that

U+
n (x, λ) = eν

+
n (λ)xV+

n (λ) + V +
n (x, λ), n = 1, . . . , N
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are H1-solutions of (4.16) that depend analytically on λ with |V +
n (x, λ)|Y ≤ Ce−2η̄x as x → ∞. For x ≥ 0, we

set
Ec

+(x, λ) := span{U+
n (x, λ)}n=1,...,N .

Next, we construct solutions Ψ+
n (x, λ) of the adjoint system (4.15) that converge exponentially with rate −2η̄ to

the adjoint eigenfunctions V̂±n (λ) given in (4.13) as x→∞. Since the adjoint eigenfunctions V̂±n (0) are solutions
of the full equation Û = Â(x, 0)Û due to Lemma 4.5, we seek corrections to e−ν

+
n (λ)xV̂±n (λ) in the form λV̂n and

therefore consider the system
(L∗ − λ)(l+n (λ)e−ν

+
n (λ)x + λv̂n) = 0. (4.22)

Indeed, Lemma 4.5 implies that (4.22) is of the form

(L∗ − λ)v̂n = ĥn(x, λ), (4.23)

where ĥn(x, λ) is analytic in λ and |ĥn(x, λ)| ≤ Ke−3η̄x for x ≥ 0 for some constant K. Set ĥe
n(x, λ) :=

χ+(x + p + q)ĥn(x, λ), which is analytic in λ and satisfies |ĥe
n(x, λ)| ≤ Ke−3η̄|x| for x ∈ R. As before, we now

wish to solve
(L∗,−2η̄ − λ)ŵn = ĥe

n(x, λ) (4.24)

for ŵ ∈ H1. Note that the right-hand side lies in L2. Inspecting the coefficients, it is easy to check that the
operator L∗,−2η̄ coincides with [L2η̄]∗. Recall that L2η̄ − λ is surjective and Fredholm of index one, and [18,
Theorem A] implies that L∗,−2η̄ − λ is injective and that its range has codimension one. To determine its range,
note that we can choose an H1-function w∗(·, λ) that depends analytically on λ and spans the one-dimensional
null space of L2η̄ − λ. We also know from Lemma 3.11 that w∗ cannot vanish on any interval of length p + q.
It follows again from [18, Theorem A] that an element h̄ ∈ L2 is in the range of L∗,−2η̄ − λ if, and only if, its
scalar product with w∗ vanishes. Using that w∗ does not vanish everywhere on R−, we can now modify the
right-hand side ĥe

n(x, λ) for x ∈ R− so that the modified function is still analytic in λ and lies in the range of
L∗,−2η̄ − λ. Thus, (4.24) has an H1-solution ŵn(·, λ) that is analytic in λ, which then corresponds to a solution
v̂n(x, λ) = e−2η̄xŵn(x, λ) is an H1-solution of (4.23) that is analytic in λ and satisfies |v̂n(x)| ≤ Ke−2η̄x for
x ≥ 0. Setting V̂ +

n (x, λ) = (v̂+
n (x+ ·, λ), v̂+

n (x, λ)) ∈ Y 1 for x ≥ 0, we obtain that

Ψ+
n (x, λ) = e−ν

+
n (λ)xV̂+

n (λ) + λV̂ +
n (x, λ), n = 1, . . . , N (4.25)

are solutions of (4.15) on R+, lie in Ŷ 1, are C1 in x ≥ 0 and analytic in λ near zero, and satisfy

V̂ +
n (x, λ) = O(e−2η̄|x|), x ≥ 0.

In particular, we have
∂xΨ+

n (x, λ) = λO(e−ν
+
n (λ)x), n = 1, . . . , N. (4.26)

Theorem 6(i) and Lemmas 3.3(iii) and 4.4 show furthermore that

〈Ψ+
n (x, λ), U+

m(x, λ)〉(x) = δmn, Ψ+
n (x, λ) ∈ Ess

+ (x, λ)⊥, Ψ+
n (x, 0) ∈ Euu

+ (x, 0)⊥ (4.27)

for all x ≥ 0, where the annihilators are computed with respect to the Hale inner product.

We can now construct the analytic extensions of the exponential dichotomies. First, we claim that

Ecs
+ (y, λ) = Ess

+ (y, λ)⊕ Ec
+(y, λ) (4.28)

for all y ≥ 0. Using the convergence properties of the spaces Ej+(x, λ) from Lemma 4.7 and the construction
of the solutions U+

n , we know that (4.28) is true for all sufficiently large y. Using the same results, we also see
easily that the right-hand side in (4.28) is always contained in Ecs

+ (y, λ). Assume therefore that V (y) ∈ Ecs
+ (y, λ)

lies in a complement of Ess
+ (y, λ)⊕Ec

+(y, λ), and we can then arrange that 〈Ψ+
n (y, λ), V (y)〉(y) = 0 for all n. For
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x sufficiently large, V (x) = Φcs
+(x, y, λ)V (y) therefore satisfies 〈Ψ+

n (x, λ), V (x)〉(x) = 0 for all n, and using that
(4.28) is true for all such x we conclude that V (x) ∈ Ess

+ (x, λ) for large x. But the uniqueness property stated
in Theorem 6(ii) implies that V (y) ∈ Ess

+ (y, λ) in contradiction to our assumption. Thus, (4.28) is true for all
x ≥ 0.

Since the last inclusion in (4.27) may not hold for all λ near zero, we need to construct a new strong unstable
subspace that is perpendicular to Ψn(y, λ) for all λ. Define the bounded and analytic mapping

huu
+ (λ) : Euu

+ (0, λ) −→ Ec
+(0, λ), V uu

+ 7−→ −
N∑
n=1

U+
n (0, λ)〈Ψ+

n (0, λ), V uu
+ 〉(0)

and note that huu
+ (0) = 0 by (4.27). We can now define the extended exponential dichotomies via

Φs
+(x, y, λ) := Φss

+(x, y, λ) +
N∑

n=k+1

U+
n (x, λ)〈Ψ+

n (y, λ), ·〉(y), x ≥ y ≥ 0 (4.29)

Φu
+(x, y, λ) := Φuu

+ (x, y, λ) + Φcs
+(x, 0, λ)huu

+ (λ)Φuu
+ (0, y, λ)︸ ︷︷ ︸

=:Φ̌uu
+ (x,y,λ)

+
k∑

n=1

U+
n (x, λ)〈Ψ+

n (y, λ), ·〉(y), y ≥ x ≥ 0,

where the operators Φcs,uu
+ (x, y, λ) are defined in Lemma 4.7. The operators in (4.29) are analytic in λ, and

it is easy to check that they define an analytic extension of the original exponential dichotomies. Note that
Ψn(y, λ) ∈ Rg(Φ̌uu

+ (y, y, λ))⊥ for all y ≥ 0 and all λ near zero.

For α ∈ CN , note that the Hale inner product

〈Ψ+
n (y, λ), ι2α〉(y) = 〈π2Ψ+

n (y, λ), α〉CN

of Ψ+
n and an element of the form ι2α depends on y only through Ψ+

n . This property taken together with
(4.26) and Theorem 6(iii) yields the desired estimates for the derivatives of Φs,u

+ (x, y, λ)ι2 with respect to y. The
remaining claims in Lemma 4.8 follow from Lemma 4.7 and the preceding analysis.

4.4 Meromorphic extension of the exponential dichotomy on R

In Lemma 4.8, we extended the exponential dichotomies Φs,u
± (x, y, λ) analytically for λ near zero. The resulting

dichotomies are defined separately for x, y ∈ R+ and x, y ∈ R−. To extend the Green’s function analytically
near λ = 0, we need to construct an exponential dichotomy on R. To see what is involved in this construction,
we shall denote the ranges of the projections Φs

+(0, 0, λ) and Φu
−(0, 0, λ) by Ees

+ (λ) and Eeu
− (λ), respectively. A

standard argument, see for instance [25, Theorem 2], then shows that the exponential dichotomies Φs
+(x, y, λ) and

Φu
−(x, y, λ) fit together at x = y = 0 to produce an exponential dichotomy on R if and only if Ees

+ (λ)⊕Eeu
− (λ) = Y .

As we shall prove below, these subspaces have a nontrivial intersection when λ = 0, and the best we can do is
to construct a dichotomy on R that is meromorphic in a ball centered at λ = 0 with a simple pole at the origin.

It follows from the spectral stability assumption (S2) that

U ′∗(x) = (u′∗(x+ ·), u′∗(x)) ∈ Y 1

is a bounded H1-solution of the spatial-dynamics system Ux = A(x, 0)U . Similarly, the spectral stability
assumption (S3) implies that there is a nonzero vector ψ∗ ∈ RN that is perpendicular to the outgoing eigenvectors
of f̄u(u±) so that ψ∗ ⊥ [r−1 , . . . , r

−
k−1, r

+
k+1, . . . , r

+
N ]. Note that the vector ψ∗ is a linear combination of the

incoming left eigenvectors l±n,in. For later use, we remark that

M := 〈ψ∗, [u∗]〉RN 6= 0 (4.30)
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by the spectral stability assumption (S3). Finally, let

Ψ∗(x) = (ψ∗, ψ∗) ∈ Ŷ

be the associated solution of the adjoint equation (4.15), given by Ûx = Â(x, λ)Û , then we have

Ψ∗(0) ⊥
[
R+

out(0) +R−out(0) + Ess
+ (0, 0) + Euu

+ (0, 0) + Ess
−(0, 0) + Euu

− (0, 0)
]

(4.31)

by (4.27) and Lemmas 3.3(iii) and 4.4, where the annihilator is defined through the Hale inner product 〈·, ·〉(0).
We will also use the function W∗(x) that is associated with Ψ∗(x) via (3.14).

Lemma 4.9 Assume that Hypotheses (H1)-(H2) and (S1)-(S4) are met, then there is an ε > 0 such that the
linear mapping

ι(λ) : Ees
+ (λ)× Eeu

− (λ) −→ Y, (U s, Uu) 7−→ U s − Uu

is Fredholm with index zero for all λ ∈ Bε(0). Furthermore, we have Ees
+ (λ)⊕Eeu

− (λ) = Y for all λ ∈ Bε(0)\{0}
and

Ees
+ (0) ∩ Eeu

− (0) = span{U∗(0)}, [Ees
+ (0) + Eeu

− (0)]⊥ = span{Ψ∗(0)},

where the annihilator [. . . ]⊥ is defined via the Hale inner product 〈·, ·〉(0) at x = 0.

Proof. The spectral stability assumption (S1) and Theorem 5 imply that the system (4.16) has an exponential
dichotomy on R for each λ with Reλ > 0. Thus, ι(λ) is invertible, and therefore Fredholm with index zero, for
Reλ > 0. Next, we prove that ι(0) is Fredholm with index zero. Let χ(x) be a smooth monotone function with
χ(x) = sgn(x) for |x| ≥ 1, and define

L̃η := e−ηχ(x)xLeηχ(x)x : H1(R,RN ) −→ L2(R,RN ),

u 7−→ σ (ux + η[χ(x) + χ′(x)x]u)−
q∑

j=−p
Aj(x)eη[χ(x+j)(x+j)−χ(x)x]u(·+ j).

Since χ(x)+χ′(x)x = sgn(x) for |x| ≥ 1 and χ(x+j)(x+j)−χ(x)x = j sgn(x) for |x| ≥ p+q+1, the operator L̃η

is bounded, and the associated asymptotic operators are given by L̃η± = e−ηxL±eηx. The arguments presented
in the proof of Lemma 4.6 imply that L̃η± are hyperbolic for η = ±2η̄, while the discussion at the end of §3.1
implies that the N spatial eigenvalues ν±n (0) at zero associated with L± become ν±n (0)∓ η for the operators L̃η±.
In particular, for η > 0, these eigenvalues satisfy ν+

n (0)− η < 0 and ν−n (0) + η > 0. Thus, for η > 0, the stable
and unstable eigenspaces associated with the spatial-dynamics formulation of L̃η contain those of L. Since L̃η

is asymptotically hyperbolic, it follows from [18, Theorem A] that the intersection of the former two spaces is
finite-dimensional. The preceding arguments then show that the same is true for the intersection of Ees

+ (0) and
Eeu
− (0), and we conclude that the null space of ι(0) is finite-dimensional. Since Ees

+ (0) and Eeu
− (0) are the ranges

of bounded projections, they are closed, and the range of ι(0), which is given by their sum, is therefore also
closed. Similar arguments for the operator L̃η with η < 0 show that the codimension of the range of ι(0) is finite.
Thus, ι(0) is Fredholm, and its index is therefore zero as ι(λ) depends continuously on λ. Continuity in λ then
implies that ι(λ) is Fredholm with index zero for all λ ∈ Bε(0).

The remaining arguments needed to complete the proof are very similar to those in [1, Proof of Lemma 5]: the
only differences are that we use the Hale inner product instead of the scalar product in Y and that we appeal
to Lemma 4.4 and (4.29) for properties of the Hale inner product and the extended exponential dichotomies at
λ = 0. We therefore omit the details.

Define the spaces
Ept

0 := span{U ′∗(0)}, Eψ0 := span{W∗(0)},
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then Lemma 4.9 implies that there are closed subspaces Es
0 and Eu

0 of Y such that

Ees
+ (0) = Es

0 ⊕ E
pt
0 , Eeu

− (0) = Eu
0 ⊕ E

pt
0 . (4.32)

The following lemma can be viewed an an replacement of the more common Evans-function analysis in the
meromorphic extension of resolvent kernels.

Lemma 4.10 Assume that Hypotheses (H1)-(H2) and (S1)-(S4) are met. For each λ ∈ Bε(0) \ {0}, there is a
unique mapping h+(λ) : Eeu

+ (λ)→ Ees
+ (λ) so that Eeu

− (λ) = graphh+(λ). This mapping is of the form

h+(λ) = h+
a (λ) + h+

p (λ),

where h+
a (λ) is analytic in λ ∈ Bε(0) with h+

a (0)|Rg(Φuu
+ (0,0,0)) = 0, while h+

p (λ) is given by

h+
p (λ)V =

1
Mλ
〈Ψ∗(0), V 〉(0)U

′
∗(0),

where M 6= 0 is given in (4.30). Similarly, for each λ ∈ Bε(0) \ {0}, there is a unique map h−(λ) : Ees
− (λ) →

Eeu
− (λ) so that Ees

+ (λ) = graphh−(λ). This map has a meromorphic representation analogous to the one given
above for h+(λ) with h−p (λ) = −h+

p (λ).

In particular, the maps h±(λ) are meromorphic on Bε(0) with a simple pole at λ = 0.

Proof. Our proof is similar to [1, Proof of Lemma 6] but avoids the need for changing the extended exponential
dichotomies we constructed in Lemma 4.8. We use the coordinates

(V s, V pt, V u, V ψ) ∈ Es
0 ⊕ E

pt
0 ⊕ Eu

0 ⊕ E
ψ
0

and indicate the range of operators by the appropriate superscript: the mapping guψ(λ), for instance, maps into
Eu

0 ⊕ E
ψ
0 . Using (4.32) and analyticity of the extended dichotomies on R±, we see that

Eu
−(λ) : Ṽ = Ṽ u + Ṽ pt + λhsψ(λ)(Ṽ u + Ṽ pt)

Es
+(λ) : V = V s + V pt + λguψ(λ)(V s + V pt) (4.33)

Eu
+(λ) : V = V u + V ψ + gs,pt(λ)(V u + V ψ)

for unique analytic mappings hsψ(λ), guψ(λ), and gs,pt(λ) that are all analytic in λ near zero. Our goal is to
write Eu

−(λ) as a graph over Eu
+(λ) with values in Es

+(λ). Thus, consider

Ṽ u + Ṽ pt + λhsψ(λ)(Ṽ u + Ṽ pt) =
[
V u + V ψ + gs,pt(λ)(V u + V ψ)

]
+
[
V s + V pt + λguψ(λ)(V s + V pt)

]
, (4.34)

where, for given (Ṽ u, Ṽ pt), we need to express (V s, V pt) in terms of (V u, V ψ) so that (4.34) is true. Writing
(4.34) in components, we obtain

Ṽ u = V u + λgu(λ)(V s + V pt), Ṽ pt = V pt + gpt(λ)(V u + V ψ).

Substituting these expressions into the stable component of (4.34), we obtain

λhs(λ)
[
V u + λgu(λ)(V s + V pt) + V pt + gpt(λ)(V u + V ψ)

]
= V s + gs(λ)(V u + V ψ),

which we can solve for V s so that

V s =
[
idEs

0
− λ2hs(λ)gu(λ)

]−1

×
(
λhs(λ)[V u + λgu(λ)V pt + V pt + gpt(λ)(V u + V ψ)]− gs(λ)(V u + V ψ)

)
=: hs

1(λ)(V u + V ψ) + λhs
2(λ)V pt, (4.35)
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where hs
j(λ) is analytic in λ near zero. Finally, the Eψ0 -component of equation (4.34) is given by

λhψ(λ)
[
V u + λgu(λ)(hs

1(λ)(V u + V ψ) + λhs
2(λ)V pt + V pt) + V pt + gpt(λ)(V u + V ψ)

]
= V ψ + λgψ(λ)(hs

1(λ)(V u + V ψ) + λhs
2(λ)V pt + V pt),

which is of the form [
idEψ0 + λhψ1 (λ)

]
V ψ = λ

[
hψ(λ)− gψ(λ) + λhψ2 (λ)

]
︸ ︷︷ ︸

=:Mψ(λ)

V pt + λhψ3 (λ)V u, (4.36)

where all mappings are analytic in λ near zero. We claim that

Mψ(0) = hψ(0)− gψ(0) : Ept
0 −→ Eψ0

is invertible with inverse given by

V pt = Mpt(0)V ψ =
1

〈ψ∗, [u∗]〉RN
〈Ψ∗(0), V ψ〉(0)U

′
∗(0) =

1
M
〈Ψ∗(0), V ψ〉(0)U

′
∗(0), (4.37)

where M 6= 0 by (4.30): we shall prove this claim below and proceed now assuming that (4.37) is true. Using
(4.37), we can solve (4.36) uniquely for V pt to get

V pt =
1
λ
Mψ(λ)−1[idEψ0 + λhψ2 (λ)]V ψ −Mψ(λ)−1hψ3 (λ)V u =:

1
λ
Mpt(0)V ψ + hpt

1 (λ)(V u + V ψ), (4.38)

where hpt
1 (λ) is analytic in λ near zero. Using this expression in (4.35), we obtain

V s = hs
3(λ)(V u + V ψ), (4.39)

where hs
3(λ) is analytic in λ near zero. Finally, substituting (4.38) and (4.39) into the graph representation (4.33)

of Ees
+ (λ), we see that

V s + V pt + λguψ(λ)(V s + V pt) =
1
Mλ
〈Ψ∗(0), V ψ〉(0)U

′
∗(0) + hs,pt

4 (λ)(V u + V ψ) ∈ Ees
+ (λ),

where hs,pt
4 (λ) is analytic in λ near zero. Thus, using the continuous projection P0 : Y → Y onto Eu

0 ⊕E
ψ
0 with

null space Es
0 ⊕ E

pt
0 , we arrive at the desired graph representation

h+(λ)V =
1
Mλ
〈Ψ∗(0), V 〉(0)U

′
∗(0) + hs,pt

4 (λ)P0V, V ∈ Eeu
+ (λ)

of Eeu
− (λ), where we used that Ψ∗(0) lies in the annihilator of Eeu

− (0) +Es
+(0). Finally, for λ = 0, we know from

(4.29) and Theorem 6(i) that Rg(Φuu
+ (0, 0, 0)) ⊂ Eeu

− (0), which shows that h+
a (0)|Rg(Φuu

+ (0,0,0)) = 0.

It remains to verify that Mψ(0) = hψ(0) − gψ(0) : Ept
0 → Eψ0 is invertible with inverse given by (4.37). Hence,

we need to find expressions for the Eψ0 -components of the graphs of Ees
+ (λ) and Eeu

− (λ) over Ept
0 . We focus on

Ees
+ (λ) = Rg(Φs

+(0, 0, λ)). Using the definition (4.33) of gψ(λ), we see that

〈Ψ∗(0), gψ(0)U ′∗(0)〉(0) = 〈Ψ∗(0), ∂λΦs
+(0, 0, 0)U ′∗(0)〉(0).

Therefore, exploiting the expression (4.29) for Φs
+(x, y, λ), we obtain

Φs
+(x, 0, λ)U ′∗(0) = Φss

+(x, 0, λ)U ′∗(0) +
N∑

n=k+1

U+
n (x, λ)〈Ψ+

n (0, λ), U ′∗(0)〉(0).

Since the Hale inner products terms in the rightmost sum vanish at λ = 0, we find

V s(x) := ∂λΦs
+(x, 0, 0)U ′∗(0) = ∂λΦss

+(x, 0, 0)U ′∗(0) +
N∑

n=k+1

U+
n (x, 0)〈∂λΨ+

n (0, 0), U ′∗(0)〉(0). (4.40)
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Setting vs := π2V
s, we also know that vs is an H1-solution of Lv = u′∗ on R+. Hence, by [11, (4.8)], we have

d
dx
〈ψ∗, vs(x)〉(x) = 〈ψ∗, u′∗(x)〉RN ,

and we conclude that

〈ψ∗, vs(x)〉(x) − 〈ψ∗, vs(0)〉(0) = 〈ψ∗, u∗(x)〉RN − 〈ψ∗, u∗(0)〉RN .

Using (4.31), (4.40), and the fact that the term ∂λΦss
+(x, 0, 0)U ′∗(0) in (4.40) decays to zero exponentially in x,

we find
−〈ψ∗, vs(0)〉(0) = 〈ψ∗, u+〉RN − 〈ψ∗, u∗(0)〉RN .

The analogous calculation on R− for hψ(0) gives

〈ψ∗, vu(0)〉(0) = −〈ψ∗, u−〉RN + 〈ψ∗, u∗(0)〉RN .

Thus,
〈Ψ∗(0), [hψ(0)− gψ(0)]U ′∗(0)〉(0) = 〈ψ∗, vu(0)− vs(0)〉(0) = 〈ψ∗, u+ − u−〉RN = 〈ψ∗, [u∗]〉RN ,

and (4.37) follows easily.

The proof for h−(λ) is analogous: the only difference is that Mψ(0) is now given by gψ(0)− hψ(0) which shows
that h−p (λ) = −h+

p (λ).

We can now proceed as in [1, §4.2] to extend the exponential dichotomy on R meromorphically from Reλ > 0
to a neighborhood of λ = 0. We shall only state the results and refer to [1] for further details. First, using the
projections P s

+(x, λ) := Φs
+(x, x, λ) and P u

−(x, λ) := Φu
−(x, x, λ), we see that the operators

P̃ s
+(x, λ) := P s

+(x, λ)− Φs
+(x, 0, λ)h+(λ)Φu

+(0, x, λ) x ≥ 0

Φ̃s
+(x, y, λ) := Φs

+(x, y, λ)P̃ s
+(y, λ) x ≥ y ≥ 0

Φ̃u
+(x, y, λ) := (1− P̃ s

+(x, λ))Φu
+(x, y, λ) y ≥ x ≥ 0

(4.41)

and
P̃ u
−(x, λ) := P u

−(x, λ)− Φu
−(x, 0, λ)h−(λ)Φs

−(0, x, λ) x ≤ 0

Φ̃u
−(x, y, λ) := Φu

−(x, y, λ)P̃ u
−(y, λ) x ≤ y ≤ 0

Φ̃s
−(x, y, λ) := (1− P̃ u

−(x, λ))Φs
−(x, y, λ) y ≤ x ≤ 0

(4.42)

define exponential dichotomies on R± with projections P̃ s,u
± (x, λ). By construction

P̃ s
+(0, λ) = 1− P̃ u

−(0, λ) ∀ λ 6= 0, (4.43)

and the Laurent series of these two operators coincide at λ = 0, since the contribution of the pole at λ = 0 is,
in both cases, given by the matrix M̃0. Thus, the dichotomies in (4.41) and (4.42) fit together at x = y = 0 and
give the desired meromorphic exponential dichotomy on R for λ near zero via

Φs(x, y, λ) :=


Φ̃s

+(x, y, λ) x > y ≥ 0

Φ̃s
+(x, 0, λ)Φ̃s

−(0, y, λ) x ≥ 0 > y

Φ̃s
−(x, y, λ) 0 > x > y

(4.44)

for x > y, and an analogous expression for Φu(x, y, λ) for x < y. This completes the meromorphic extension of
the exponential dichotomies on R for λ ∈ Bε(0).
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4.5 Pointwise bounds for the resolvent kernel

Theorem 5 shows that

G(x, y, λ) :=

{
π2Φs(x, y, λ)ι2 for x > y,

−π2Φu(x, y, λ)ι2 for x < y

is the meromorphic extension of the resolvent kernel of L − λ from Reλ > 0 to a neighborhood of λ = 0, where

ι2 : CN −→ Y, α 7−→ (0, α), π2 : Y −→ CN , (φ, α) 7−→ α.

The following theorem contains the desired pointwise bounds of the resolvent kernel G(x, y, λ) and its y-derivative
Gy(x, y, λ).

Theorem 7 Under the assumptions of Theorem 1, there are positive constants ε, η̄ > 0 so that the resolvent
kernel G(x, y, λ) of L∗ − λ has a meromorphic extension for λ ∈ Bε(0) of the form

G(x, y, λ) =
1
λ
u′∗(x)

∑
ν±in

e−ν
±
in(λ)y〈l±in(λ), ·〉CN + G̃(x, y, λ), y ≷ 0, (4.45)

where l±in(λ) is analytic in λ ∈ Bε(0), and we have the pointwise decomposition

∂`yG̃(x, y, λ) = O(e−η̄|x−y|) + |λ|` ·



∑
ν+
out,ν

+
in

[
O
(

eν
+
out(λ)(x−y)

)
+ O

(
eν

+
out(λ)xe−ν

+
in(λ)y

)]
, x > y > 0∑

ν−in,ν
+
out

O
(

eν
+
out(λ)xe−ν

−
in(λ)y

)
, x > 0 > y∑

ν−out,ν
−
in

[
O
(

eν
−
in(λ)(x−y)

)
+ O

(
eν
−
out(λ)xe−ν

−
in(λ)y

)]
, 0 > x > y

(4.46)
for ` = 0, 1, where each term of the form O(. . .) is analytic in λ ∈ Bε(0), and analogous estimates for x < y.

Proof. The estimates asserted above are stronger than those proved in [1] for time-periodic viscous shocks, and
we therefore give a complete proof. We focus on the case x > y as the case x < y is completely analogous. Recall
that h±(λ) = h±a (λ) + h±p (λ), where h±a (λ) is analytic in λ, while

h±p (λ) : Y −→ Y, V 7−→ ±1
Mλ
〈Ψ∗(0), V 〉(0)U

′
∗(0).

Using (4.41)-(4.44), we find that

Φs(x, y, λ) = Φs
+(x, y, λ)− Φs

+(x, 0, λ)h+
a (λ)Φu

+(0, y, λ)︸ ︷︷ ︸
(a)

−Φs
+(x, 0, λ)h+

p (λ)Φu
+(0, y, λ)︸ ︷︷ ︸

(i)

x > y ≥ 0

Φs(x, y, λ) = Φs
+(x, 0, λ)Φs

−(0, y, λ) + Φs
+(x, 0, λ)Φu

−(0, 0, λ)h−a (λ)Φs
−(0, y, λ)︸ ︷︷ ︸

(b)

x > 0 > y

+ Φs
+(x, 0, λ)Φu

−(0, 0, λ)h−p (λ)Φs
−(0, y, λ)︸ ︷︷ ︸

(ii)

(4.47)

Φs(x, y, λ) = Φs
−(x, y, λ) + Φu

−(x, 0, λ)h−a (λ)Φs
−(0, y, λ)︸ ︷︷ ︸

(c)

+ Φu
−(x, 0, λ)h−p (λ)Φs

−(0, y, λ)︸ ︷︷ ︸
(iii)

0 > x > y,

and we need to estimate ∂`yπ2Φs(x, y, λ)ι2 for ` = 0, 1. Recall from (4.29) that

Φs
+(x, y, λ) = Φss

+(x, y, λ) +
N∑

n=k+1

U+
n (x, λ)〈Ψ+

n (y, λ), ·〉(y), x ≥ y ≥ 0 (4.48)

Φu
+(x, y, λ) = Φuu

+ (x, y, λ) + Φcs
+(x, 0, λ)huu

+ (λ)Φuu
+ (0, y, λ) +

k∑
n=1

U+
n (x, λ)〈Ψ+

n (y, λ), ·〉(y), y ≥ x ≥ 0,
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where each single term on the right-hand side is analytic in λ, and analogous expressions for Φs,u
− (x, y, λ).

The terms labelled (a)-(c) are analytic in λ and satisfy the estimates (4.46) with ` = 0 due to (4.17). Lemma 4.8
implies that the terms π2Φss,uu

± (x, y, λ)ι2 are differentiable in y and that their y-derivatives satisfy (4.46) with
` = 1. Similarly, we find from (4.18), (4.48), and Lemma 4.8 that the remaining y-dependent terms Φu

+(0, y, λ)
and Φs

−(0, y, λ) in (a)-(c) are differentiable in y with estimates that are compatible with (4.46) for ` = 0 provided
y > q and y < −p, respectively. Furthermore, by (4.26), each y-derivative of Ψ±n (y, λ) gives an additional factor
λ. Since huu

+ (0) = h+
a (0)|Rg(Φuu

+ (0,0,0)) = 0 by Lemmas 4.8 and 4.10, it follows that the remaining terms either
obey a uniform exponential estimate of the form O(e−η̄|x−y|) or else also generate an extra factor λ. It remains
to discuss the differentiability of Φu

+(0, y, λ) and Φs
−(0, y, λ) with respect to y for y ∈ [0, q+1] and y ∈ [−p−1, 0],

respectively. For these values of y, we can simply replace the value x0 = 0 at which we split the exponential
dichotomies on [0,∞) and (−∞, 0] by points x0 = −q− 1 and x0 = p+ 1, respectively, and repeat the extension
given in the preceding section to obtain differentiability with respect to y for y ∈ [0, q + 1] and y ∈ [−p − 1, 0],
respectively. The resulting bounds in y will look slightly different but this is irrelevant as y is in a bounded
interval. This completes the discussion of the analytic terms (a)-(c).

Next, we discuss the terms (i)-(iii) in (4.47). We focus first on the term (i). Upon substituting the expression
for h+

p (λ) into (i) and multiplying from the left and right by π2 and ι2, respectively, we obtain

π2Φs
+(x, 0, λ)h+

p (λ)Φu
+(0, y, λ)ι2u0 (4.49)

=
1
Mλ

〈
Ψ∗(0),Φu

+(0, y, λ)ι2u0

〉
(0)
π2Φs

+(x, 0, λ)U ′∗(0),

where x > y > 0 and u0 ∈ CN is arbitrary. First, consider the term Φs
+(x, 0, λ)U ′∗(0). Since U ′∗(x) is a solution

of (4.16) for λ = 0 that decays to zero exponentially, we have

P ss
+ (0, 0)U ′∗(0) = U ′∗(0)

from Lemma 4.7. Using this expression, we obtain

Φs
+(x, 0, λ)U ′∗(0) = Φs

+(x, 0, λ)(P ss
+ (0, 0)− P ss

+ (0, λ) + P ss
+ (0, λ))U ′∗(0) (4.50)

= Φss
+(x, 0, λ)U ′∗(0) + λO(‖Φs

+(x, 0, λ)‖)

= Φss
+(x, 0, 0)U ′∗(0) + λO(‖Φs

+(x, 0, λ)‖),

where all O(...) terms are analytic in λ. Exploiting (4.17), we arrive at

π2Φs
+(x, 0, λ)U ′∗(0) = u′∗(x) + λ

∑
ν+
out

O
(

eν
+
out(λ)x

)
. (4.51)

Next, consider the term
〈
Ψ∗(0),Φu

+(0, y, λ)ι2u0

〉
(0)

in (4.49). Substituting the expression (4.29) for Φu
+(0, y, λ)

yields

〈
Ψ∗(0),Φu

+(0, y, λ)ι2u0

〉
(0)

=
〈
Ψ∗(0),Φss

+(0, y, λ)ι2u0

〉
(0)

+
N∑

n=k+1

〈
Ψ∗(0), U+

n (0, λ)
〉

(0)

〈
Ψ+
n (y, λ), ι2u0

〉
(y)

(4.31)
=

N∑
n=k+1

〈
Ψ∗(0), U+

n (0, λ)
〉

(0)

〈
Ψ+
n (y, λ), ι2u0

〉
(y)

+ λO
(
e−2η̄y

)
(4.25)

=
N∑

n=k+1

〈
Ψ∗(0), U+

n (0, λ)
〉

(0)
e−ν

+
n (λ)y

〈
V̂+
n (λ), ι2u0

〉
(y)

+ λO
(
e−2η̄y

)
=

∑
ν+
in

e−ν
+
in(λ)y

〈
Ψ∗(0), U+

n (0, λ)
〉

(0)
〈l+in(λ), u0〉CN + λO

(
e−2η̄y

)
,
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where all O(...) terms are analytic in λ. Subsuming the analytic coefficients 〈Ψ∗(0), U+
n (0, λ)〉(0) into l+in(λ), we

obtain 〈
Ψ∗(0),Φu

+(0, y, λ)ι2u0

〉
(0)

=
∑
ν+
in

e−ν
+
in(λ)y〈l+in(λ), u0〉CN + λO

(
e−2η̄y

)
. (4.52)

Finally, substituting (4.51) and (4.52) into (4.49), we arrive at

π2Φs
+(x, 0, λ)h+

p (λ)Φu
+(0, y, λ)ι2u0 =

1
λ
u′∗(x)

∑
ν+
in

e−ν
+
in(λ)y〈l+in(λ), u0〉CN

+
∑
ν+
out,ν

+
in

O
(

eν
+
out(λ)x

)
e−ν

+
in(λ)y + O

(
e−2η̄(x+y)

)
+ λ

∑
ν+
out

O
(

eν
+
out(λ)xe−2η̄y

)
,

where the O(...) terms are analytic in λ. This, and an analogous estimate for the y-derivative, establishes (4.45)
and (4.46) for the term (i) in (4.47). Finally, the analysis of the term (iii) in (4.47) proceeds in exactly the
same fashion. The only difference for term (ii) is the appearance of the extra term Φu

−(0, 0, λ) = P u
−(0, λ), which

changes the computations in (4.50). Using that P u
−(0, 0)U ′∗(0) = U ′∗(0), we obtain

Φs
+(x, 0, λ)P u

−(0, λ)U ′∗(0) = Φs
+(x, 0, λ)(P u

−(0, λ)− P u
−(0, 0) + P u

−(0, 0))U ′∗(0)

= Φs
+(x, 0, λ)U ′∗(0) + λO(‖Φs

+(x, 0, λ)‖)

and can now proceed exactly as in (4.50). This observation completes the proof of Theorem 7.

5 Pointwise bounds on the Green’s function and nonlinear stability

In this section, we complete the proof of Theorem 1. First, we show that the analytic extension and the pointwise
bounds of the resolvent kernel G(x, y, λ) that we established in Theorem 7 allow us to obtain pointwise bounds
of the Green’s function G(j, i, t, s) of the lattice dynamical system (2.2). The pointwise bounds for G(j, i, t, s)
can then be used as in [4, §5] to establish nonlinear stability.

Recall from Theorem 3 and equation (2.3) in §2 that G(j, i, t, s) can be found from G(x, y, λ) via the inverse
Laplace transform formula

G(j, i, t, s) = G
(
j − σt

h
, i− σs

h
, t− s

)
where G(x, y, τ) =

−1
2πiσ

∫ γ+iπσ

γ−iπσ

eλτG(x, y, λ) dλ. (5.1)

The following theorem gives the desired pointwise bounds for G(x, y, τ).

Theorem 8 Under the assumptions of Theorem 1, the temporal Green’s function G(x, y, τ) from (5.1) can be
written as G(x, y, τ) = E(x, y, τ) + G̃(x, y, τ) so that the following is true for y ≤ 0 (with analogous expressions
and estimates for y ≥ 0): we have

E(x, y, τ) = u′∗(x)
∑
a−n>0

[
errfn

(
y + a−n τ√
4(τ + 1)

)
− errfn

(
y − a−n τ√
4(τ + 1)

)]
l−n

for some appropriate constants l−n ∈ RN , and there are constants η,K,M > 0 with

|G̃(x, y, τ)|+ |∂yG̃(x, y, τ)| ≤ Ke−η|x−y|

for 0 ≤ τ ≤ 1 and

|∂`yG̃(x, y, τ)| ≤ Ke−η(|x−y|+τ) +Kτ−
`
2

[
N∑
n=1

τ−
1
2 e−(x−y−a−n τ)2/Mτe−ηmax(x,0)

+
∑

a−n>0, a−m<0

χ{|a−n τ |≥|y|}τ
− 1

2 e−(x−a−m(τ−|y/a−n |))
2/Mτe−ηmax(x,0)

+
∑

a−n>0, a+
m>0

χ{|a−n τ |≥|y|}τ
− 1

2 e−(x−a+
m(τ−|y/a−n |))

2/Mτeηmin(x,0)


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for ` = 0, 1 and τ ≥ 1, where a±n are the eigenvalues of f̄u(u±), and the indicator function χI(x) of an interval
I ⊂ R is one for x ∈ I and zero otherwise.

We remark that the preceding theorem gives only pointwise bounds on the remainder term Green’s function
G̃(x, y, τ), while, in contrast, [4, Theorem 4.8] provides a leading-order expansion of this term for one-sided
schemes into an explicit sum of moving Gaussians plus a faster-decaying remainder. With a little more effort,
we can derive a similar expansion for general schemes but decided to omit the derivation as it is not needed in
the nonlinear stability proof.

Proof. First, consider the case 0 ≤ τ ≤ 1. Recall that G(x, y, τ) is given by

G(x, y, τ) =
−1

2πiσ

∫ γ+iπσ

γ−iπσ

eλτG(x, y, λ) dλ (5.2)

due to (5.1). Condition (S1) and Theorem 5 imply that G(x, y, λ) is analytic in λ for Reλ > 0 and satisfies the
pointwise bound |∂`yG(x, y, λ)| ≤ Ke−η|x−y| with ` = 0, 1 for constants K and η > 0 that are locally uniform
near each λ. Using these bounds and the fact that the integral in (5.2) is over an interval of bounded length, we
can evaluate the integral for some γ > 0 and obtain the estimate

|∂`yG(x, y, τ)| ≤ Ke−η|x−y|

for some η > 0 with ` = 0, 1. Since E(x, y, τ) satisfies a similar bound for 0 ≤ τ ≤ 1, we obtain the result.

Next, consider the case τ ≥ 1. Cauchy’s integral theorem applied to (5.2) implies that[
eλτ G̃(x, y, λ)

]λ=γ+iπσ

λ=γ−iπσ
≡ 0 (5.3)

for each λ with Reλ ≥ −ε. Equation (5.3) may be recognized as the key property [4, (4.5)] of relative periodicity
with respect to the underlying lattice. Applying Cauchy’s integral theorem a second time to (5.2), we thus have

G̃(x, y, τ) :=
−1

2πiσ

∮
Γ

eλτ G̃(x, y, λ) dλ,

where

Γ =
[
− ε

2
− iπσ,− ε

2
− ir

]
∪
[
− ε

2
− ir, r − ir

]
∪ [r − ir, r + ir] ∪

[
r + ir,− ε

2
+ ir

]
∪
[
− ε

2
+ ir,− ε

2
+ iπσ

]
for any r with 0 < r � 1. This is a representation on a contour that corresponds exactly to the low-frequency
part of the contour used to begin the arguments of [28, §8] and [21, §7]. Since our bounds for the individual
meromorphic pieces of G̃(x, y, λ) as well as the initial contour Γ are the same as for the low-frequency estimates
in the viscous case treated there, we obtain the same bounds for G̃(x, y, τ) with τ ≥ 1 that were obtained in
[21, 28] in the viscous case. It is here where the hypothesis (S5) enters crucially to guarantee the Gaussian nature
of the estimates for G̃(x, y, τ). Finally, since we have the same description of

E(x, y, λ) :=
1
λ
u′∗(x)

∑
ν±in

e−ν
±
in(λ)y〈l±in(λ), ·〉CN , y ≷ 0

as in the viscous case, we obtain the corresponding description of

E(x, y, τ) :=
−1

2πiσ

∮
Γ

eλτE(x, y, λ) dλ

for τ ≥ 1 that was obtained in [21, 28] in the viscous case. This completes the proof.
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We remark that, compared with [4], we have somewhat simplified the proof for the pointwise estimates by working
directly with the finite contour integral representation (5.2); see [1] for a similar argument in the time-periodic
case. In particular, the short-time bounds for 0 ≤ τ ≤ 1 stated here are somewhat sharper than the ones
formulated in [4, Theorem 4.11], which were singular as τ → 0. This is, however, a minor point as the same
estimates are available by the techniques of [4].

Proof of Theorem 1. Since the nonlinear stability analysis in [4, §5] uses only the pointwise bounds of
Theorem 8, we can proceed in exactly the same fashion to prove Theorem 1. We refer the reader to [4, §5] for
the details.

6 Discussion

Semidiscrete conservation laws arise most commonly through spatial discretizations of conservation laws posed
on the line R. In this paper, we kept the spatial step size h fixed, but it is natural to ask what happens when h
goes to zero. In particular, it would be interesting to see whether the bounds on the temporal Green’s function
are uniform in the step size h or, more ambitiously, whether convergence, in an appropriate sense, of the temporal
Green’s function of the semidiscrete system to that of the limiting inviscid system can be proved. We remark
that the resolvent kernel sees the spatial step size h only through a linear scaling of the eigenvalue parameter λ,
so the key issue is to carefully analyse the estimation of the temporal Green’s function that we outlined in §5.

Discretizing a system of conservation laws in both space and time leads to a discrete dynamical system posed
on a lattice. Establishing the existence of discrete shocks in this setting is very difficult and has only been
carried out in special cases. In [13, 17, 23], the existence of weak discrete shocks with vanishing or rational
speeds has been shown. If the speed satisfies certain Diophantine conditions, the existence and stability of weak
discrete shocks was proved in [15, 16]. In [7], Green’s function bounds for stationary discrete shocks of arbitrary
shock strength were obtained. Nonlinear stability of stationary weak discrete shocks was shown in [24] under
assumptions that are weaker than those in [16]. One interesting problem in this context is to prove the nonlinear
stability of spectrally stable discrete shocks with rational speed and arbitrary strength: such an analysis could
build on the Green’s function bounds obtained in [7].

The existence of discrete travelling waves with arbitrary wave speeds for dissipative lattice systems was addressed
in [5] using a very different approach: The authors of [5] started with the assumption that a semidiscrete travelling
wave has been found such that the spectrum of the linearization L, given in (1.6), has a simple eigenvalue at zero,
while the rest of the spectrum is contained in the open left half plane. They then proved in [5, Theorem B] that
this assumption implies the existence of discrete travelling shocks with wave speeds that depend continuously on
h = ∆x/∆t for h near zero, where ∆x is the spatial step size, and ∆t the temporal step size of an Euler scheme.
Thus, in short, existence and strong spectral stability of a semidiscrete shock implies the existence of discrete
shocks without any restriction on the wave speed. Shock profiles of semidiscrete conservation laws cannot be
strongly spectrally stable. It is an open and very interesting problem to see whether the assumption of strong
spectral stability could be replaced by sufficiently fast algebraic decay of solutions to the linearized semidiscrete
equation.
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