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Abstract

We show that the fast travelling pulses of the discrete FitzHugh–Nagumo system in the weak-recovery

regime are nonlinearly stable. The spectral conditions that need to be verified involve linear operators that

are associated to functional differential equations of mixed type. Such equations are ill-posed and do not

admit a semi-flow, which precludes the use of standard Evans-function techniques. Instead, we construct

the potential eigenfunctions directly by using exponential dichotomies, Fredholm techniques and an infinite-

dimensional version of the Exchange Lemma.
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1 Introduction

In this paper we consider the stability of travelling pulse solutions to the discrete FitzHugh–Nagumo
system

u̇j(t) = α[uj+1(t)− 2uj(t) + uj−1(t)] + g
(
uj(t)

)
− wj(t),

ẇj(t) = ε
(
uj(t)− γwj(t)

)
,

(1.1)

where j ∈ Z and uj , wj ∈ R. The nonlinearity g(u) = g(u; a) that we use throughout this paper is
given by the cubic polynomial

g(u; a) = u(1− u)(u− a) (1.2)

for some 0 < a < 1
2 , but our techniques work equally well for the general class of bistable nonlin-

earities considered in [21]. Throughout this paper we assume that α > 0 and 0 < γ < 4(a − 1)−2,
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which ensures that the origin is the only j-independent equilibrium for (1.1) when ε > 0. We also
need the following condition, which in view of [33, Thm. 2.6] can be satisfied by picking the detuning
parameter a > 0 to be sufficiently small.

Hypothesis (H) The lattice system (1.1) with ε = 0 admits a travelling wave solution

(uj , wj)(t) =
(
qf (j + c∗t), 0

)
(1.3)

for some speed c∗ > 0 and profile qf ∈ C1(R,R) that satisfies the limits

lim
ξ→−∞

qf (ξ) = 0 and lim
ξ→∞

qf (ξ) = 1. (1.4)

Inserting the travelling wave Ansatz

(uj , wj)(t) = (ū, w̄)(j + ct) (1.5)

into (1.1) leads to the singularly perturbed functional differential equation of mixed type (MFDE)

cū′(ξ) = α[ū(ξ + 1)− 2ū(ξ) + ū(ξ − 1)] + g
(
ū(ξ)

)
− w̄(ξ),

cw̄′(ξ) = ε
(
ū(ξ)− γw̄(ξ)

)
.

(1.6)

Our assumption on γ guarantees that (0, 0) is the only equilibrium of (1.6) when ε > 0. However,
when ε = 0 this system admits an entire manifold M =

{
(u, g(u)) : u ∈ R

}
of equilibria. As

illustrated in Figure 1, we pick two submanifolds ML and MR that lie to the left of the first
knee and to the right of the second knee of g. The pair (qf , 0) solves (1.6) at ε = 0 and connects
(0, 0) ∈ML to (1, 0) ∈MR. By exploiting the mirror symmetry of the cubic polynomial g, one can
see that there exists w∗ > 0 such that this equation also admits a solution (qb, w∗) that connects
MR to ML, i.e., (

lim
ξ→−∞

qb(ξ), w∗

)
∈MR and

(
lim
ξ→∞

qb(ξ), w∗

)
∈ML. (1.7)

Let us write Γ0 for the singular homoclinic orbit that arises by combining these two orbits with
the segments of MR and ML that connect w = 0 to w = w∗; see Figure 1. In the previous paper
[21], we constructed a branch of fast pulse solutions to (1.6) that bifurcate off Γ0 as ε moves away
from zero and wind around this singular homoclinic orbit exactly once.

Theorem 1.1 (See [21]). Consider the discrete FitzHugh–Nagumo equation (1.1) with the non-
linearity (1.2) and suppose that (H) is satisfied; then for every sufficiently small ε > 0, there exist
functions ū(ε), w̄(ε) ∈ C1(R,R) and a wave speed c(ε) > 0 that depends continuously on ε > 0 with
c(0) = c∗, such that

(uj , wj)(t) =
(
ū(ε), w̄(ε)

)(
j + c(ε)t

)
(1.8)

is a travelling pulse solution of (1.1) that winds around Γ0 once and satisfies the limits

lim
ξ→±∞

(
ū(ε), w̄(ε)

)
(ξ) = (0, 0). (1.9)

Up to temporal translations, this pulse is unique1 among solutions with these properties.

The main result that we set out to prove in this paper states that the fast pulses described in
Theorem 1.1 are nonlinearly stable. Of course, we have to allow for asymptotic phase shifts due to
the temporal invariance of (1.1). A precise version of this result will be stated in §2.

1We refer to [21] for a definition of the winding number and a precise version of the uniqueness claim.
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Fig. 1: Shown are the singular homoclinic orbit Γ0 comprising of the front (qf , 0), the back (qb, w∗) and
segments of ML and MR. Also shown are the pulse solutions (ū, w̄)(ε) described in Theorem 1.1.

Theorem 1.2. Consider the setting of Theorem 1.1. For every sufficiently small ε > 0, the travelling
pulse solution

(uj , wj)(t) =
(
ū(ε), w̄(ε)

)(
j + c(ε)t

)
(1.10)

is asymptotically stable with an asymptotic phase shift: each solution to the system (1.1) that is
sufficiently close to this pulse at t = 0 will remain in a small neighbourhood of the pulse for all t > 0
and converge to some temporal translate of the pulse as t→∞.

Before we outline the ideas behind the proofs of the our stability result, we briefly recall the
motivation for studying the discrete FitzHugh–Nagumo equation and comment on related work.

One natural way for the discrete system (1.1) to arise is when α = h−2 � 1, in which case we
may think of (1.1) as the spatial finite-difference discretization of the FitzHugh–Nagumo PDE

ut = uxx + g(u)− w,
wt = ε(u− γw), (1.11)

on a grid with node distance h. This PDE has been studied extensively in the literature, serving
as a tractable simplification of the Hodgkin–Huxley equations that are widely used to model the
propagation of signals through myelinated nerve fibers [20]. However, from a modelling point of view
it turns out to be more natural to use the discrete system (1.1) and avoid the h→ 0 limit that leads
to the PDE (1.11). This is related to the fact that a nerve axon is almost entirely surrounded by
an insulating myeline coating, which admits small regularly-spaced gaps that are referred to as the
nodes of Ranvier [35]. The insulation induced by the myeline causes excitations of the nerve at these
nodes to effectively jump from one node to the next [25, 31], leading to a system of the form (1.1) to
describe the electrochemical properties at the j-th node of Ranvier [28]. Many other natural systems
admit such an intrinsic discrete structure. As a consequence, models involving lattice differential
equations (LDEs) have appeared in a wide range of scientific disciplines, including chemical reaction
theory [14, 30], material science [1, 5] and image processing and pattern recognition [12].

The search for travelling pulse solutions to the PDE (1.11) has led to the development of many
new mathematical techniques. The existence of a branch of fast2 pulses for (1.11) that bifurcates
from the singular orbit Γ0 as in Theorem 1.1 was first established by Carpenter [6] and Hastings
[18], who obtained their results independently using classical singular perturbation theory [6] and
the Conley index [18]. A more streamlined approach was developed by Jones and coworkers [27],
who used a geometrical construction called the Exchange Lemma to exhibit these fast pulses as
intersections of Wu(0) and Ws(ML), thereby also obtaining their local uniqueness. Jones proved in

2The term ’fast’ here refers to the fact that (1.11) also admits a branch of slow pulses with speed c = O(
√
ε).
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Fig. 2: The Floquet spectrum of the linearization of (1.1) about the fast pulse is illustrated for ε > 0: the
spectrum near the origin consists of a curve of essential spectrum, a simple eigenvalue at the origin, and
at most one additional simple stable eigenvalue λ2 near zero. Depending on the values of a and γ, λ2 is an
eigenvalue (panels (i) and (ii)) or a resonance pole (panel (iii)), and λ2 may lie to the right or left of the
rightmost elements of the essential spectrum. We refer to §7 for further details.

[26] that these fast pulses are stable with respect to the dynamics of the PDE (1.11). His arguments
were significantly simplified by Yanagida [38], but both authors essentially used shooting arguments
to construct and analyze an Evans function [15] that encodes the stability properties of the pulses.

In contrast, very few rigorous results have appeared in the literature for the discrete FitzHugh–
Nagumo equation (1.1). Previous work either replaced the cubic polynomial g by specially tailored
nonlinearities [10, 13, 37] or employed formal asymptotic arguments [7–9]. On the other hand,
numerical simulations give strong evidence for the existence of stable pulse solutions of (1.1), and
we refer in particular to the work [9] of Carpio and Bonilla. Much more is known for the Nagumo
lattice system

u̇j = α[uj+1 − 2uj + uj−1] + g(uj), (1.12)

which arises when considering (1.1) for ε = 0 with wj ≡ 0. In particular, results concerning the
existence of the front solution qf mentioned in (H) can be found in [17, 29, 33]. The first result
pertaining to the stability of the front qf with respect to the dynamics of (1.12) was obtained by
Zinner [39], using methods based upon the comparison principles developed in [29].

We now comment on the proof of Theorem 1.2 for the FitzHugh–Nagumo system, for which
comparison principles are not available. The key step of our stability analysis is concerned with
the spectral stability of the pulse solution, which we address by investigating the spectrum of the
linearization of the travelling-wave equation (1.6) about the pulse. The corresponding eigenvalue
problem is given by

c(ε)u′(ξ) = α[u(ξ − 1) + u(ξ + 1)− 2u(ξ)] + g′
(
ū(ε)(ξ)

)
u(ξ)− w(ξ)− λu(ξ),

c(ε)w′(ξ) = ε
(
u(ξ)− γw(ξ)

)
− λw(ξ). (1.13)

We will see that the essential spectrum associated to (1.13) lies at a distance O(ε) to the left
of the imaginary axis. Furthermore, the translational invariance of (1.6) implies that there is one
eigenvalue at λ = 0. The pulse is constructed by gluing a stable front and a stable back together,
each of which have a simple eigenvalue at the origin. Thus, we can think of the pulse as a bound
state of a front and a back, and we may therefore expect to find two eigenvalues near the origin that
come from the eigenvalues of the front and back at the origin. One of these will be the translational
eigenvalue of the pulse that we already discussed, while the second eigenvalue can be thought of
as an interaction eigenvalue of the front and the back. Our task is to make this intuitive picture
precise by showing that (1.13) can have at most one non-zero eigenvalue near the origin, and that
this eigenvalue lies in the left half-plane. Since the initial-value problem associated with the linear
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MFDE (1.13) is ill-posed [36], we cannot readily use Evans-function techniques to track eigenvalues.
Instead, we use exponential dichotomies to explicitly construct potential eigenfunctions of (1.13) for
(λ, ε) near (0, 0). These potential eigenfunctions are continuous up to two jumps, and requiring that
these jumps vanish yields a two-dimensional set of bifurcation equations that depend on λ and ε:
any solution λ of this system corresponds to an eigenvalue or a resonance pole (the eigenfunction
associated with the latter may not be bounded). We show that the bifurcation equations are given in
terms of appropriate Melnikov integrals, whose sign is known, and use this information to calculate
the leading-order expansion of λ2 in terms of ε. In particular, in contrast to the Evans-function
techniques used in [26, 38], our approach therefore gives the approximate location of the second
eigenvalue λ2. The dynamics of (1.1) near the pulse (ū, w̄)(ε) will depend on the location of λ2

relative to the imaginary axis and the essential spectrum. In §7, we provide numerical evidence that
shows that the three possibilities illustrated in Figure 2 can all occur. The final step of the stability
analysis is to conclude the nonlinear orbital stability of the pulse from its spectral stability. In §2, we
give an overview of two different strategies, due respectively to [11] and [4], that allow us to relate
spectral and nonlinear stability.

The remainder of this paper is organized as follows. In §2, we formulate a set of spectral condi-
tions that guarantees the nonlinear stability of travelling-wave solutions to a general class of lattice
systems. We proceed in §3 with an overview of the existence and stability properties of the front and
back solutions qf and qb. In §4, we recall the construction of the pulses (ū, w̄)(ε) from [21] as this
information will be crucial for the stability analysis. Finally, we outline our approach for proving
the spectral stability of these pulses in §5, leaving the technical details to §6.

2 Nonlinear Stability

In this section we formulate a set of spectral conditions that guarantee the nonlinear stability of
travelling wave solutions to the lattice system3

U̇j = F(U)j = F
(
Uj−1, Uj , Uj+1

)
, j ∈ Z, Uj ∈ Rn (2.1)

in which we take F : R3n → R
n to be C2-smooth with n ≥ 1. We are interested in non-trivial waves

that move to the left4, as described in the following condition.

Hypothesis (HV) The LDE (2.1) admits a solution U(t) = Ū(t) that has

Ūj(t) = V̄ (j + ct) (2.2)

for some wave profile V̄ ∈ C1(R,Rn) and some wave speed c > 0. The profile V̄ satisfies the
limits V̄ (ξ)→ V̄± as ξ → ±∞ and V̄ ′ does not vanish everywhere.

There are two possible approaches to analyzing spectral and nonlinear stability of the travelling-
wave solution Ū(t). First, Ū(t) can be viewed as a relative periodic orbit of the lattice system (2.1).
Indeed, we have

Ūj(t) = Ūj−1(t+ 1/c) (2.3)

for all t so that the profile at times t = k/c for integers k looks like the profile at t = 0 but shifted by
k lattice points to the left. We could therefore use Floquet theory applied to the infinite-dimensional
ordinary differential equation (2.1) to identify appropriate spectral stability assumptions that imply
nonlinear stability. This program was carried out in [11], and we will review it in §2.1. The second
approach focuses on the profile V̄ (ξ): this function satisfies a functional differential equation of

3Our restriction to nearest-neighbour interactions is arbitrary; any finite-range interaction can be treated in the
same fashion.

4Waves that move to the right can be treated by switching j 7→ −j.
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Fig. 3: Illustration of the spectral conditions (S1)-(S3). The spectrum of L is invariant under the operation
λ 7→ λ+ 2πic.

mixed type, and we might expect that the linearization of this MFDE about the profile V̄ gives
an appropriate notion of spectral stability that one could utilize to show nonlinear stability via the
associated Green’s functions. This approach was first used in [4] and we will also follow it in this
paper. Our choice is motivated primarily by the fact that our existence proof for the pulses also
relies on a detailed analysis of an MFDE, which will allow us to reuse many of the tools developed
in [21]. We now describe this framework in more detail.

We consider solutions U(t) to (2.1) that take values in the sequence space

`∞ = {U ∈ (Rn)Z : |U |`∞ := supj∈Z |Uj | <∞}. (2.4)

In addition, we introduce the spaces

`p = {U ∈ (Rn)Z : |U |`p := [
∑
j∈Z |Uj |

p]1/p <∞} (2.5)

for 1 ≤ p <∞, which we use to characterize perturbations from the wave Ū .
The discreteness of the spatial variable j implies that one cannot pass to a reference frame in

which the wave Ū becomes stationary without destroying the structure of (2.1). This is the central
difficulty that needs to be addressed in any stability analysis concerning Ū . We will handle this
problem using the approach pioneered by Benzoni-Gavage and coworkers [3, 4]. The main idea is
to fill the space between the lattice points by looking for solutions to (2.1) that can be written as
Uj(t) = V (t, j+ ct) for some V ∈ C(R+×R,Rn). This function must hence solve the non-local PDE

∂tV (t, ξ) + c∂ξV (t, ξ) = F
(
V (t, ξ − 1), V (t, ξ), V (t, ξ + 1)

)
(2.6)

By construction, V (t, ξ) = V̄ (ξ) is now a stationary solution to this problem and it is therefore
natural to proceed by linearizing (2.6) around V̄ .

The main result of this section, Proposition 2.1, shows that stability properties for Ū can indeed
be read off from spectral properties of the operator L : W 1,∞(R,Cn)→ L∞(R,Cn) that is given by

LV = −cV ′ + LV. (2.7)

Here we have introduced the notation

[LV ](ξ) =
1∑

j=−1

Aj(ξ)V (ξ + j), (2.8)

in which A−1(ξ) = D1F
(
V̄ (ξ − 1), V̄ (ξ), V̄ (ξ + 1)

)
and A0(ξ) and A1(ξ) are defined analogously.
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An easy computation shows that

e−2πik(L − λ)e2πik = L − 2πikc− λ (2.9)

for all k ∈ Z, in which the exponential shift operator eν is defined by

[eνV ](ξ) = eνξV (ξ). (2.10)

In particular, the spectrum of L is invariant under the operation λ 7→ λ+ 2πic. This should be seen
as a direct consequence of the fact that the lattice cannot see modulations on a scale finer than the
lattice size. Since we have LV̄ ′ = 0, the entire set 2πicZ is contained in the spectrum of L.

Our stability result imposes the conditions (S1)-(S3) listed below. As illustrated in Figure 3, these
conditions basically state that the spectrum of L is contained in the open left half-plane, except for
isolated simple eigenvalues at λ ∈ 2πicZ that arise as a consequence of translational invariance.

Hypothesis (S1) There exists δ0 > 0 such that L − λ is invertible as a map from W 1,∞(R,Cn)
into L∞(R,Cn) for all λ ∈ C \ 2πicZ that have Reλ ≥ −δ0.

Hypothesis (S2) The only nontrivial solutions V ∈ W 1,∞(R,Cn) of LV = 0 are V = V̄ ′ and
scalar multiples thereof.

Hypothesis (S3) The equation LV = V̄ ′ does not admit a solution V ∈W 1,∞(R,Cn).

The following proposition states that the preceding spectral stability properties imply nonlinear
stability of the travelling wave with respect to the original lattice dynamical system.

Proposition 2.1. Consider the LDE (2.1) and suppose that (HV) and (S1)-(S3) are satisfied. Then
there exist constants δ > 0, C > 0 and β > 0 such that the following holds true for any 1 ≤ p ≤ ∞.
For any initial condition U0 ∈ `p that can be bounded by∣∣U0 − Ū(0)

∣∣
`p
≤ δ, (2.11)

there is a ϑ∗ ∈ R such that the solution x of (1.1) with U(0) = U0 satisfies∣∣U(t)− Ū(t+ ϑ∗)
∣∣
`p
≤ Ce−βt

∣∣U0 − Ū(0)
∣∣
`p

(2.12)

for every t > 0.

We prove this result in §2.2, exploiting an identity derived in [4] that describes the linearized flow
of (2.1) near the wave Ū in terms of Green’s functions for L−λ. We show that these Green’s functions
are meromorphic with simple poles at λ ∈ 2πicZ, allowing us to properly isolate the non-decaying
part of the linearized flow that is responsible for the asymptotic phase shift.

We remark that a similar nonlinear stability analysis was performed in [2] for the far more
difficult setting where the translational eigenvalues at λ ∈ 2πicZ are embedded in the essential
spectrum. This situation is encountered when studying Lax shocks in semi-discrete conservation
laws. To analyze the corresponding Green’s functions for L − λ, the system LV = 0 was rewritten
as an ODE posed on the augmented space L2([−1, 1],Cn)× Cn. The resulting enlarged system can
be shown to admit exponential dichotomies, which can in turn be used to define the desired Green’s
functions and analyze their behaviour. Our approach here uses a more direct method, which does
not require us to work in this augmented state space and hence avoids many technical issues related
to the regularity of solutions.

In the special case that p = ∞ and Ū is a pulse, i.e., V̄− = V̄+ in (HV), the conclusions in
Proposition 2.1 can be derived by combining the results in [4] and [11]. In the latter paper, the
authors avoid the non-local comoving PDE (2.6) and study (2.1) directly. They exploit the fact that
the wave Ū is shift-periodic in the sense of (2.3). By developing a shift-periodic version of Floquet
theory, the authors are able to analyze the stability properties of the discrete Nagumo equation
(1.12). The main disadvantage of this approach compared to the use of Green’s function techniques
is that spectral conditions that are weaker than (S1)-(S3) cannot be readily accommodated. In §2.1
we discuss these issues in greater detail.
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2.1 Shift-Periodic Orbits

In this part, we discuss the results obtained in [11], where a shift-periodic version of Floquet theory
was developed to analyze the stability of a travelling wave solution Ū to (2.1). In particular, we will
show how Proposition 2.1 with p = ∞ and V̄− = V̄+ can be derived from these results by relating
the spectrum of the appropriate shift-periodic monodromy operator to the spectrum of the operator
L defined in (2.7).

Looking for solutions to (2.1) of the form U(t) = Ū(t) +W (t), we find that W must satisfy the
time-dependent LDE

Ẇ (t) = DF
(
Ū(t)

)
W (t) +N

(
t,W (t)

)
, (2.13)

in which

N (t,W ) = F
(
Ū(t) +W

)
−F

(
Ū(t)

)
−DF

(
Ū(t)

)
W. (2.14)

Since V̄ is bounded, we have N (t,W ) = O(|W |2) and D2N (t,W ) = O(|W |) as W → 0, uniformly
for t ∈ R. Here D2 denotes differentiation with respect to the second variable.

Upon introducing the right-shift operator S ∈ L(`∞) that acts as (SU)j = Uj−1, the shift-
periodicity of the wave Ū can be formulated as

Ū(t) = SŪ(t+ c−1), t ∈ R. (2.15)

Since F commutes with shifts on the lattice, the non-autonomous terms in (2.13) are also shift-
periodic in the sense that

DF
(
Ū(t)

)
W = SDF

(
Ū(t+ c−1)

)
S−1W, N (t,W ) = SN

(
t+ c−1,S−1W

)
. (2.16)

These observations show that it indeed makes sense to develop a shift-periodic version of Floquet
theory to study the stability properties of Ū . As a first step, one needs to identify the appropriate
monodromy operator associated to the linear part of (2.13). Using standard ODE techniques, one
can see that for any t0 ∈ R and j0 ∈ Z, the LDE

Ẇ (t) = DF
(
Ū(t)

)
W (t) (2.17)

with the initial condition Wj(t0) = δjj0 has a unique solution W = W t0j0 that is defined for all
t ∈ R. This allows us to define a Green’s function G(t, t0) ∈ L(`∞) by writing

Gjj0(t, t0) = W t0j0
j (t) (2.18)

and observing that the unique solution to (2.17) with the initial condition W (t0) = z is given by

Wj(t) = (G(t, t0)z)j :=
∑
j0∈Z

Gjj0(t, t0)zj0 . (2.19)

Differentiating (2.1), we see that

˙̄U(t) = G(t, 0) ˙̄U(0) (2.20)

holds for all t ∈ R and hence, exploiting (2.15),

˙̄U(0) = SG(c−1, 0) ˙̄U(0). (2.21)

Writing R = SG(c−1, 0), we hence expect R to be the appropriate generalization of the monodromy
map. As usual, we define the spectrum of R to be the set

σ(R) = {ζ ∈ C | R − ζ : `∞ → `∞ is not invertible. } (2.22)

The following result shows that R can indeed be used to study the stability of Ū .
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Proposition 2.2 (See [11, Thm. A] and [11, §5]). Consider the LDE (2.1) and suppose that
(HV) is satisfied.5 Suppose furthermore that

σ(R) \ {1} ⊂ {ζ : |ζ| < 1} (2.23)

and that the eigenvalue 1 ∈ σ(R) is simple. Then the conclusions of Proposition 2.1 hold for p =∞,
i.e., Ū is asymptotically stable in `∞ with an asymptotic phase shift.

This result was established in [11] by constructing a local `∞-coordinate system around the wave
Ū and analyzing the monodromy map in these new coordinates. The arguments used to construct this
coordinate system are very technical and it is therefore not clear if they work in `p with 1 ≤ p <∞.
In addition, it is not at all obvious how spectral conditions that are weaker than (2.23) can be
treated.

In practice, it is often hard to analyze the operator R directly. Fortunately, one can use a spectral
mapping result due to Benzoni-Gavage and coworkers [4] to work around this difficulty and analyze
the operator L from (2.7) instead. As a preparation, we introduce the point spectra and essential
spectra of the operators R and L that are defined by

σess(L) = {λ ∈ C | L − λ is not a Fredholm operator with index zero},

σp(L) = {λ ∈ C \ σess(L) | LV = λV for some non-zero V ∈W 1,∞(R,Cn)},

σess(R) = {ζ ∈ C | R − ζ is not a Fredholm operator with index zero},

σp(R) = {ζ ∈ C \ σess(R) | RW = λW for some non-zero W ∈ `∞}.

(2.24)

Lemma 2.3 (See [4, §3]). Consider the LDE (2.1) and suppose that (HV) is satisfied. Suppose
furthermore that V̄ (ξ) − V̄± = O(e−β|ξ|) as ξ → ±∞ for some β > 0. Then we have the spectral
mapping

exp[c−1σp(L)] = σp(R) \ {0}. (2.25)

In addition, if ζ is a non-zero eigenvalue of R and ζ = eλ/c, then the multiplicity of λ as an eigenvalue
of L equals the multiplicity of ζ as an eigenvalue of R. Finally, in the special case V̄− = V̄+, we also
have the spectral mapping

exp[c−1σess(L)] = σess(R) \ {0}. (2.26)

Proof. The statements concerning the point spectrum follow from [4, Thm. 3.8]. In the special case
V̄− = V̄+, the arguments in the proof of [4, Lem. 3.4] can be used to strengthen the inclusions [4,
Eq. (3.13)] and obtain (2.26).

This spectral mapping result provides a link between the spectral conditions (S1)-(S3) concerning
L and the spectral conditions on R that appear in Proposition 2.2.

Corollary 2.4. Consider the LDE (2.1) and suppose that (HV) and (S1)-(S3) are satisfied. Suppose
furthermore that V̄− = V̄+. Then the conclusions of Proposition 2.1 hold for p = ∞, i.e., Ū is
asymptotically stable in `∞ with an asymptotic phase shift.

Proof. Condition (S1) implies that 0 ∈ σ(L) is isolated, which in view of [32, Thm. A] means that
the characteristic equations

cz −
1∑

j=−1

[ lim
ξ→±∞

Aj(ξ)]ezj = 0 (2.27)

cannot have roots with z ∈ iR. By applying [32, Prop 5.3] to [33, Eq. (6.4)], we hence find that V̄
approaches its limits V̄± at an exponential rate. We may hence use Lemma 2.3 to verify the spectral
conditions on R mentioned in Proposition 2.2.

5The assumptions in [11] concerning the nonlinearity F and the travelling wave Ū are weaker than those stated
here.
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Fig. 4: The entire orbital neighbourhood of the wave Ū is spanned by the branches Ws(ϑ).

2.2 Proof of Proposition 2.1

Throughout the remainder of this section we give a direct proof of Proposition 2.1, bypassing the
monodromy operator R and the local coordinate system around Ū developed in [11]. The key
ingredient that we will use is that the Green’s function G for the lattice system (2.17) can be
related to the Green’s functions G(ξ, ξ0, λ) that solve

(L − λ)G(·, ξ0, λ) = δ(· − ξ0) (2.28)

in the sense of distributions. Indeed, we have the following representation for G.

Lemma 2.5 ([4, Thm. 4.2]). Consider the LDE (2.1) and suppose that (HV) is satisfied. For each
fixed sufficiently large γ � 1, each pair t > t0 and all j, j0 ∈ Z, we have

Gjj0(t, t0) = − 1
2πi

∫ γ+iπc

γ−iπc
eλ(t−t′)G(j + ct, j0 + ct0, λ)dλ. (2.29)

In view of the symmetry (2.9), we see that

G(ξ, ξ0, λ+ 2πikc) = e2πik(ξ0−ξ)G(ξ, ξ0, λ) (2.30)

for all k ∈ Z, which implies that the integration contour in (2.29) can be shifted to the left as long
as G(ξ, ξ0, ·) remains analytic. In fact, we will show that G(ξ, ξ0, λ) is meromorphic for λ ≈ 0. This
will allow us to shift the integration contour to the left of the imaginary axis and write

G(t, t0) = E(t, t0) + G̃(t, t0), (2.31)

in which G decays exponentially and E(t, t0) projects onto the center part of the flow induced by
G, which is spanned by ˙̄U(t). For every ϑ ∈ R, we will construct a co-dimension one branch of
initial conditionsWs(ϑ) that is transverse to ˙̄U(ϑ) at Ū(ϑ), for which the associated solutions to the
lattice system (2.1) converge exponentially to Ū(·+ ϑ). As illustrated in Figure 4, the entire orbital
neighbourhood of the wave Ū can subsequently be spanned by such initial conditions by varying
ϑ ∈ R.

We start our analysis by constructing the Green’s functions G(ξ, ξ0, λ) associated to the operators
L − λ. As a preparation, let us introduce the limiting operator

L∞V = −cV ′ + L∞V, (2.32)
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in which

[L∞V ](ξ) =
1∑

j=−1

[
lim
ξ→∞

Aj(ξ)
]
V (ξ + j). (2.33)

Arguing as in the proof of Corollary 2.4, we may use [32, Thm. 4.1] to conclude that L∞ is invertible
and has a Green’s function G∞(ξ) that is continuous on R \ {0}, decays exponentially as ξ → ±∞
and satisfies L∞G∞ = δ(·) in the sense of distributions. This function G∞ can be used to construct
Green’s functions for L − λ.

Lemma 2.6. Suppose that (S1) holds. Consider any λ ∈ C \ σ(L). Then the function

G(ξ, ξ0, λ) = G∞(ξ − ξ0)−
[
(L − λ)−1[L− L∞ − λ]G∞(· − ξ0)

]
(ξ) (2.34)

satisfies (L − λ)G(·, ξ0, λ) = δ(· − ξ0) in the sense of distributions. In addition, G(·, ξ0, λ) is C0-
smooth on R \ {ξ0} and C1-smooth on R \ {ξ0 − 1, ξ0, ξ0 + 1}. Finally, there exist β > 0 and C > 0
such that

G(ξ, ξ0, λ) ≤ Ce−β|ξ−ξ0| (2.35)

holds for all ξ, ξ0 ∈ R.

Proof. The bound (2.35) can be computed directly from (2.34) by using the exponential decay of
G∞ and evaluating (L − λ)−1 on the space L∞β if ξ < ξ0 and L∞−β if ξ > ξ0. Here we have used the
shorthand L∞β = eβ

(
L∞(R,Cn)

)
with norm ‖f‖L∞β = ‖e−βf‖L∞ , where e±β are as in (2.10). The

remaining properties can be verified by a direct calculation.

We will write L∗ : W 1,∞(R,Cn)→ L∞(R,Cn) for the formal adjoint of L, which is given by

[L∗V ](ξ) = cV ′(ξ) +
1∑

j=−1

A∗j (ξ − j)V (ξ − j). (2.36)

We remark that (S1) and (S2) in combination with [32, Thm. A] imply that dim KerL∗ = 1. In
particular, we have

KerL∗ = span{d} (2.37)

for some non-zero d ∈ C1(R,R) that we will use throughout the remainder of this section. The
following result describes the pole that arises as the contour of integration in (2.29) is shifted to the
left of the imaginary axis.

Lemma 2.7. Consider the LDE (2.1) and suppose that (HV) and (S1)-(S3) are satisfied. Then
there exists δλ > 0 such that for all λ ∈ C with 0 < |λ| < δλ we have the representation

G(ξ, ξ0, λ) = E(ξ, ξ0, λ) + G̃(ξ, ξ0, λ). (2.38)

Here the meromorphic term can be written as

E(ξ, ξ0, λ) = −
[
λ

∫ ∞
−∞

d(ξ′)∗V̄ ′(ξ′)dξ′
]−1

V̄ ′(ξ)d(ξ0)∗, (2.39)

while the remainder G̃(ξ, ξ0, λ) depends analytically on λ in the region |λ| < δλ and satisfies the
bound

G̃(ξ, ξ0, λ) ≤ Ce−β|ξ−ξ0| (2.40)

for some C > 0 and β > 0.
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Proof. Without loss of generality, we will assume that d does not vanish identically on either R−
or R+. Indeed, if this condition fails, the proof given here can be modified by choosing different
half-lines. Arguing as in [24, §3]6, we may show that the inhomogeneous equations LV = f can be
solved on the half-lines R±. Proceeding as in [24, §6], we can show that for any f ∈ L∞(R,Cn),
a bounded pair (V −, V +) =: L∗f with V − ∈ C((−∞, 1],Cn) and V + ∈ C([−1,∞),Cn) can be
constructed in such a way that LV ± = f on R±. In addition, V + and V − agree on [−1, 1] if and
only if the integral

M(f) =
∫ ∞
−∞

d(ξ)∗f(ξ)dξ (2.41)

vanishes.7 Now, for λ 6= 0, notice that (L − λ)−1f must be given by

(V −, V +) = L∗f + λL∗(V −, V +) + κV̄ ′ (2.42)

for some κ ∈ C, which in view of the requirement M
(
f + λ(V −, V +)

)
= 0 must satisfy

κM(V̄ ′) = − 1
λ
M(f)−M(L∗f)− λM

(
L∗(V +, V −)

)
. (2.43)

Observing that M(V̄ ′) 6= 0 in view of (S3) and [32, Thm. A] allows us to write

(L − λ)−1f = − M(f)
λM(V̄ ′)

V̄ ′ + B(λ)f, (2.44)

in which ‖B(λ)‖ ≤ C for all |λ| ≤ δλ. The proof can be completed by computing∫∞
−∞ d(ξ)∗[(L− L∞)G∞(· − ξ0)](ξ)dξ =

∫∞
−∞ d(ξ)∗[(L − L∞)G∞(· − ξ0)](ξ)dξ

= −
∫∞
−∞ d(ξ)∗[L∞G∞(· − ξ0)](ξ)dξ

= −d(ξ0)∗
(2.45)

and using weighted norms as in the proof of Lemma 2.6 to estimate the remainder G̃(ξ, ξ0, λ).

Using the symmetry (2.30), we can now shift the integration path in (2.29) slightly to the left
of the imaginary axis. We pick up a residue from the simple pole at λ = 0 that comes from the
meromorphic term E(ξ, ξ0, λ).

Corollary 2.8. Consider the LDE (2.1) and suppose that (HV) and (S1)-(S3) are satisfied. For
any pair t > t0 and any j, j0 ∈ Z, we have the representation

Gjj0(t, t0) = Ejj0(t, t0) + G̃jj0(t, t0), (2.46)

in which

Ej,j0(t, t0) =
[ ∫ ∞
−∞

d(ξ)∗V̄ ′(ξ)dξ
]−1

V̄ ′(j + ct)d(j0 + ct0)∗, (2.47)

while G̃ satisfies the bound

G̃jj0(t, t0) ≤ Ce−β(t−t0)e−β|j+ct−j0−ct0| (2.48)

for some C > 0 and β > 0.

6Condition (HB) in [24] may not be true. However, since L∗ has a one-dimensional kernel, the integration interval
in [24, Eq. (3.28)] can be chosen to be arbitrarily small. In addition, we only need this equation to hold for a single
ξ > 0 and a single ξ < 0.

7We emphasize that we do not need the Hale inner product [24, Eq. (2.7)] to be non-degenerate for the ’if’ part
of this statement to work. Indeed, we only need [24, Lem. 4.3(ii)] to hold for ξ = 0, after which we may conclude
β(0) = 1 in [34, Eq. (4.12)].
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For any t ∈ R, we introduce the operator Πc(t) ∈ L(`p) that act as

Πc(t)W = E(t, t)W (2.49)

and write Πs(t) = I − Πc(t). Although it is not immediately clear from the representation (2.47),
the operators Πc(t) and hence Πs(t) are projections that correspond to the center and stable parts
of the flow induced by G.

Lemma 2.9. Consider the LDE (2.1) and suppose that (HV) and (S1)-(S3) are satisfied. Then the
operators Πc(t) and Πs(t) are projections and for any t > t0 we have

G(t, t0) = E(t, t0)Πc(t0) + G̃(t, t0)Πs(t0). (2.50)

Proof. To see that (Πc(t))2 = Πc(t), it suffices to show that∑
j∈Z

d(j + ct)∗V̄ ′(j + ct) =
∫ ∞
−∞

d̄(ξ)∗V̄ ′(ξ)dξ. (2.51)

To see this, we note that a simple computation (see e.g. [24, Eq. (4.8)]) yields

cd(ξ)∗V̄ ′(ξ) =
1∑

j=−1

∫ j

0

d(ξ + θ − j)∗Aj(ξ + θ − j)V̄ ′(ξ + θ)dθ (2.52)

for all ξ ∈ R, which ensures that the sum and integral in (2.51) pick up exactly the same terms.
The explicit form of E and the computation above show that E(t, t0) = E(t, t0)Πc(t0), which

implies E(t, t0)Πs(t0) = 0. In addition, using (2.20) we find G(t, t0)Πc(t0) = E(t, t0), which implies
G̃(t, t0)Πc(t0) = 0 and completes the proof.

Before we turn to the proof of our nonlinear stability result, we need to introduce the family of
weighted function spaces

BCη(I, Y ) = {W ∈ C(I, Y ) : ‖W‖η := supξ∈Ie
−η|ξ| ‖W (ξ)‖ <∞}, (2.53)

in which η ∈ R, I ⊂ R is an interval and Y is a Banach space. We will write W ∈ BC1
η(I, Y ) if both

W and W ′ belong to BCη(I, Y ).

Proof of Proposition 2.1. Recall the constant β > 0 from Corollary 2.8. Let us consider any Ws ∈
Range Πs(0) and consider the fixed point problem

W (t) = G̃(t, 0)Ws +
∫ t

0

G̃(t, t0)Πs(t0)N (t0,W (t0))dt0 +
∫ t

∞
E(t, t0)Πc(t0)N (t0,W (t0))dt0, (2.54)

posed on the space BC−β/2([0,∞), `p). One may show in a standard fashion that (2.54) admits a
unique solutionW∗(Ws) for every sufficiently smallWs, with Πs(0)W∗(Ws)(0) = Ws and Πc(0)W∗(Ws)(0) =
O((Ws)2). By construction, the function Ū +W∗(Ws) now satisfies (2.1).

We have hence found a codimension one branch of initial conditions that converge to Ū at an
exponential rate. Of course, we may repeat this procedure for any ϑ∗ ∈ R to find similar branches
that converge to Ū(·+ϑ∗). Together, these branches span the orbital vicinity of Ū , which concludes
the proof.
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Fig. 5: Illustrated here are the definitions of wmin, wmax, esL, esR, ML and MR.

3 Preliminaries: The Discrete Nagumo Equation

In this section we introduce the notation that we use throughout the remainder of this paper and
gather some results for the linearization around the travelling wave solutions qf and qb to the discrete
Nagumo system (1.12). More precisely, we study the MFDE

c∗v
′ = L

(
qf
)
v − λv, (3.1)

related to the front qf , along with the MFDE

c∗v
′ = L

(
qb
)
v − λv (3.2)

related to the back qb. Here we have introduced the following notation for any u ∈ C(R,R),

[L(u)v](ξ) = α[v(ξ − 1) + v(ξ + 1)− 2v(ξ)] + g′
(
u(ξ)

)
v(ξ). (3.3)

As a preparation, let us pick closed intervals IL and IR with 0 ∈ IL and 1 ∈ IR that avoid the
knees of the cubic, i.e., g′(u) < 0 for all u ∈ IL ∪ IR. In addition, let us pick two constants wmin < 0
and wmax > 0 in such a way that both wmin, wmax ∈ g(IL) ∩ g(IR). We may now define two smooth
functions

s̃L : [wmin, wmax]→ IL and s̃R : [wmin, wmax]→ IR (3.4)

in such a way that

g
(
s̃L(w)

)
= g
(
s̃R(w)

)
= w for all w ∈ [wmin, wmax]. (3.5)

In terms of these functions, the manifoldsML andMR mentioned in the introduction and depicted
in Figure 5 can be written as

ML = {(s̃L(w), w)}w∈[wmin,wmax] and MR = {(s̃R(w), w)}w∈[wmin,wmax]. (3.6)

Our first step is to study the autonomous linear equations that arise by taking the limits ξ → ±∞
in (3.1) and (3.2). In fact, we will study the general class of autonomous equations

c(ε)v′ = L
(
s̃#(ϑ)

)
v − λv, for # = L,R, (3.7)

in which we take ε > 0 to be small and allow any ϑ ∈ [wmin, wmax]. Looking for solutions of the form
v(ξ) = ezξ, we must solve the characteristic equation

∆#(ε, ϑ, λ, z) = 0, (3.8)
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in which we have introduced the characteristic functions

∆#(ε, ϑ, λ, z) = c(ε)z − α(ez + e−z − 2)− g′
(
s̃#(ϑ)

)
+ λ, for # = L,R. (3.9)

Our first result ensures that we can find a vertical strip −η∗ ≤ Re z ≤ η∗ for which the char-
acteristic equation (3.8) is free of roots, uniformly for the parameters (ε, ϑ, λ) in which we will be
interested. We will use this constant η∗ ubiquitously throughout the rest of this paper.

Lemma 3.1. There exist constants δ0 > 0, δε > 0, η∗ > 0 and κ > 0 such that the inequality

Re ∆#(ε, ϑ, λ, z) ≥ κ > 0, # = L,R, (3.10)

holds for all ε ∈ [0, δε], ϑ ∈ [wmin, wmax], λ ∈ C with Reλ ≥ −δ0 and z ∈ C with |Re z| ≤ η∗.

Proof. Pick κ > 0 in such a way that g′
(
s̃#(ϑ)

)
< −3κ for all ϑ ∈ [wmin, wmax], both for # = L,R.

Observe that

Re ∆#(ε, ϑ, λ, p+ iq) = c(ε)p+ α
(
2− cos q(ep + e−p)

)
− g′

(
s̃#(ϑ)

)
+ Reλ. (3.11)

Choosing η∗ in such a way that ∣∣c(ε)p+ α(2− ep − e−p)
∣∣ ≤ κ (3.12)

holds for all p ∈ [−η∗, η∗], we pick δ0 = κ and compute

Re ∆#(ε, ϑ, λ, p+ iq) ≥ c(ε)p+ α(2− ep − e−p)− g′
(
s̃#(ϑ)

)
+ Reλ ≥ −κ+ 3κ− κ = κ, (3.13)

as desired.

Returning to the non-autonomous MFDEs (3.1) and (3.2), we introduce the associated operators

Λf,λ : BC1
0 (R,C)→ BC0(R,C) and Λb,λ : BC1

0 (R,C)→ BC0(R,C) (3.14)

that act as

Λf,λv = −c∗v′ + L(qf )v − λv and Λb,λv = −c∗v′ + L(qb)v − λv. (3.15)

In order to describe solutions to the homogeneous system (3.1) that remain bounded on half-lines,
we introduce the spaces

Pf,λ =
{
v ∈ BC0

(
(−∞, 1],C

)
| v solves (3.1) on (−∞, 0]

}
,

Qf,λ =
{
v ∈ BC0

(
[−1,∞),C

)
| v solves (3.1) on [0,∞)

}
,

(3.16)

and their counterparts Pb,λ, Qb,λ associated to (3.2).
In order to capture the initial conditions associated to the functions in these spaces, we will use

the notation evξu ∈ C([−1, 1],C) to denote the state of a function u ∈ C(R,C) at ξ. As illustrated
in Figure 6, this state is defined by

[evξu](θ) := u(ξ + θ), θ ∈ [−1, 1]. (3.17)

This allows us to define the spaces

Pf,λ =
{
φ ∈ C([−1, 1],C) | φ = ev0v for some v ∈ Pf,λ

}
,

Qf,λ =
{
φ ∈ C([−1, 1],C) | φ = ev0v for some v ∈ Qf,λ

}
,

(3.18)

and their counterparts Pb,λ and Qb,λ for (3.2).
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Fig. 6: Panel (i) shows the graph of a given function u, while panel (ii) illustrates the associated function
evξu : [−1, 1]→ C for a fixed ξ.

Lemma 3.2. There exists δ0 > 0 such that the operators Λf,λ and Λb,λ are Fredholm with index
zero for all λ ∈ C that have Reλ ≥ −δ0.

Proof. In view of [32, Thm. A], the operators Λf,λ and Λb,λ are Fredholm if and only if the charac-
teristic equations

∆#(0, 0, λ, z) = 0, ∆#(0, w∗, λ, z) = 0, # = L,R, (3.19)

which are associated to (3.1) and (3.2) in the limits ξ → ±∞, admit no roots z ∈ iR. This however
follows directly from Lemma 3.1. To see that the Fredholm index of Λf,λ is zero, imitate the proof
of Lemma 3.1 to observe that the equation

s∆L(0, 0, λ, z) + (1− s)∆R(0, 0, λ, z) = 0 (3.20)

admits no roots z ∈ iR for all 0 ≤ s ≤ 1 and invoke the spectral flow result [32, Thm. C]. The fact
that Λb,λ also has index zero follows in a similar fashion.

Lemma 3.3. There exists δ0 > 0 such that the identities

dim Ker Λf,λ = 0, dim Ker Λb,λ = 0 (3.21)

and the splittings

C([−1, 1],C) = Pf,λ ⊕Qf,λ = Qb,λ ⊕Qb,λ (3.22)

hold for any λ ∈ C \ 2πic∗Z that has Reλ ≥ −δ0.

Proof. Recall the constant δ0 from Lemma 3.2 and consider the set

S = {λ ∈ C | Reλ ≥ −δ0 and dim Ker Λf,λ > 0}. (3.23)

Combining [19, Thm. 5.A.1] and the proof of [11, Prop 2.2(3)], we see that the set S contains
only isolated points. Now consider λ /∈ 2πic∗Z and suppose that Λf,λv = 0 for some non-zero
v ∈ BC1

0 (R,R). The lattice function Ui(t) = eλtv(i+ c∗t) then satisfies the linearization (2.17) and
has Ui(t + c−1

∗ ) = eλ/c∗Ui+1(t), which shows RUi = eλ/c∗Ui. However, [11, Thm. C] implies that
the spectral condition (2.23) must hold, which shows Reλ < 0. In view of the symmetry (2.9), we
can hence decrease δ0 to ensure that (3.21) holds for all λ under consideration. The splitting (3.22)
follows from [34, Thm. 4.3].

For the remainder of this section, we will restrict ourselves to the case λ = 0 and use the
shorthands Λf = Λf,0, Λb = Λb,0, Pf = Pf,0 and Qf = Qf,0. We will need to consider the formal
adjoints

Λ∗f : BC1
0 (R,C)→ BC0(R,C) and Λ∗b : BC1

0 (R,C)→ BC0(R,C) (3.24)
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that act as

Λ∗fv = c∗v
′ + L(qf )v and Λ∗bv = c∗v

′ + L(qb)v. (3.25)

We introduce the kernels

Kf = Ker Λf , K
∗
f = Ker Λ∗f ,

Kb = Ker Λb, K
∗
b = Ker Λ∗b ,

(3.26)

which are now non-empty since Λfq′f = 0 and Λbq′b = 0. The following description of these kernels
follows directly from [33, Theorem 4.1].

Lemma 3.4. Suppose that (H) is satisfied. Then we have q′f (ξ) > 0 and q′b(ξ) < 0 for all ξ ∈ R,
together with

Kf = span{q′f}, Kb = span{q′b}. (3.27)

In addition, there exist two bounded functions df and db that decay exponentially at both ±∞ and
have df (ξ) > 0 and db(ξ) > 0 for all ξ ∈ R, such that

K
∗
f = span{df}, K

∗
b = span{db}. (3.28)

Associated to these kernels, we define the spaces

Bf = span{ev0q
′
f}, Bb = span{ev0q

′
b}. (3.29)

We now find that

Pf ∩Qf = Bf and Pb ∩Qb = Bb. (3.30)

In view of these non-empty intersections, we introduce the normalized spaces

P̂f =
{
v ∈ Pf |

∫ 0

−∞ q′f (ξ)v(ξ)dξ = 0
}
,

Q̂f =
{
v ∈ Qf |

∫ 0

+∞ q′f (ξ)v(ξ)dξ = 0
}
,

(3.31)

together with

P̂f =
{
φ ∈ C([−1, 1],C) | φ = ev0v for some v ∈ P̂f

}
,

Q̂f =
{
φ ∈ C([−1, 1],C) | φ = ev0v for some v ∈ Q̂f

} (3.32)

and their natural counterparts P̂b, Q̂b, P̂b and Q̂b.
In order to obtain a splitting for the state space C([−1, 1],C) along the lines of (3.22), we need

to use the Hale inner product [16]. In the current setting this bilinear form is given by

〈ψ, φ〉 := c∗ψ(0)∗φ(0)− α
[∫ 1

0

ψ(σ − 1)∗φ(σ) dσ +
∫ −1

0

ψ(σ + 1)∗φ(σ) dσ
]

(3.33)

for any pair φ, ψ ∈ C([−1, 1],C). The Hale inner product is non-degenerate in the sense that if
〈ψ, φ〉 = 0 for all ψ ∈ C([−1, 1],C), then necessarily φ = 0 [34]. As a consequence of [34, Thm. 4.3],
we have the characterization

P̂f ⊕ Q̂f ⊕Bf = {φ ∈ C([−1, 1]) | 〈ev0 df , φ〉 = 0}. (3.34)

Let us now pick a one-dimensional space Γf ⊂ C([−1, 1],C) that has the property that φ ∈ Γf
satisfies φ = 0 if and only if 〈ev0df , φ〉 = 0. Picking Γb in a similar fashion, we now see that

C([−1, 1],C) = Bf ⊕ Q̂f ⊕ P̂f ⊕ Γf = Bb ⊕ Q̂b ⊕ P̂b ⊕ Γb. (3.35)
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Fig. 7: The definition of the cut-off function χsl(w).

As customary, the homoclinic orbits (qf , 0) and (qb, w∗) for the travelling wave equation (1.6)
break when changing c and ε. The key ingredient we will use in this paper is that the arising gaps
can be captured in the finite dimensional spaces Γf and Γb. As a consequence, the size of such gaps
can be measured effectively by means of the Hale inner product. This is particularly useful in view
of the identity

d
dξ 〈evξy, evξv〉 = y(ξ)∗[Λfv](ξ) + [Λ∗fy](ξ)∗v(ξ)

= y(ξ)∗[Λbv](ξ) + [Λ∗by](ξ)∗v(ξ),
(3.36)

which holds for any pair y, v ∈ C1(R,C) and ξ ∈ R. Indeed, picking y = df or y = db and integrating
(3.36), we will be able to use Melnikov-type identities to quantify the size of the aforementioned
gaps.

4 Construction of Travelling Pulses

In this section we briefly recall the building blocks that were used in [21] to construct the travelling
pulses described in Theorem 1.1. Our approach towards proving the nonlinear stability of these
pulses will proceed along similar lines and rely heavily on the estimates described in the results
below. We give a short illustrated sketch of the pulse construction in §4.1 and defer the technical
details to §4.2. A more comprehensive overview of the material presented here can be found in [21,
§3].

4.1 Sketch of construction

Instead of looking at (1.6) directly, we choose a C∞-smooth cut-off function χsl : R → R as shown
in Figure 7 and consider the system

cu′(ξ) = α[u(ξ + 1) + u(ξ − 1)− 2u(ξ)] + g
(
u(ξ)

)
− w(ξ),

cw′(ξ) = ε
(
u(ξ)− γw(ξ)

)
χsl

(
w(ξ)

)
.

(4.1)

This modification allows us to talk about solutions that connect the manifoldsML andMR without
worrying about the complications that arise when w leaves the region [wmin, wmax].

Let us first consider what happens to the front (qf , 0) as the parameters (c, ε) move away from
(c∗, 0). In general, we do not expect heteroclinic connections from (0, 0) toMR to persist. However,
such connections can in fact be found if we allow them to have a discontinuity in the u-component
at ξ = 0. Furthermore, such discontinuous connections are fixed uniquely by the requirement that
the jump at ξ = 0 lies in the one-dimensional space Γf introduced in (3.35). The resulting solutions
are called quasi-fronts and are depicted in Figure 8. We remark that the jump in Γf is of order
O(ε+ |c− c∗|). In addition, the signs of the derivatives of this jump with respect to c and ε can be
determined by evaluating Melnikov integrals.

In a similar fashion, a family of discontinuous quasi-back solutions branches off from the back
(qb, w∗) as (c, ε) are varied. In this case, there is an additional degree of freedom, as we may move
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Fig. 8: Shown is a quasi-front solution which consists of two solutions that lie respectively in the unstable
manifold of the equilibrium (u,w) = 0 and the stable foliation of the slow manifold MR. These solutions
will, in general, not coincide but can be chosen so that their difference at ξ = 0 lies in the one-dimensional
subspace Γf of the phase space C([−1, 1],R). The new equilibria insideMR are created by the cut-off function
in (4.1).

Fig. 9: Shown is a quasi-back solution which consists of two solutions that lie respectively in the stable
manifold of the slow manifold ML and the unstable foliation of the slow manifold MR. Compared to the
quasi-fronts, there is an additional degree of freedom when constructing quasi-backs as one can choose the
stable fibre of ML to which to converge.

Fig. 10: An illustration of quasi-solutions and their passage near the slow manifold MR.
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the quasi-back up and down slightly. Depicted in Figure 9, these quasi-backs connect MR back
to ML and have a jump at ξ = 0 that now is contained in Γb. This time, the jump is of order
O(ε+ |c− c∗|+ |w(0)− w∗|).

Using an infinite-dimensional version of the Exchange Lemma, the quasi-fronts and quasi-backs
can be glued together near MR at the price of two additional jumps that can also be contained in
the spaces Γf and Γb. The resulting quasi-solutions are depicted in Figure 10.

We now have three free parameters in the problem and two one-dimensional jumps that need to
be closed. The contribution from the exchange lemma is C1-exponentially small with respect to the
time spent nearMR, which is of order O(1/ε). This contribution can hence safely be neglected and
the remaining equations can be solved to yield the one-parameter branch of solution described in
Theorem 1.1.

4.2 Summary of results from [21]

In this part we recall the key technical results that were obtained in [21] and present them in a form
that will be useful for our analysis in §5-6. To simplify our notation, we will depart from the setting
in [21, §3] and assume a-priori knowledge of the wave speeds c(ε) here. We hence study the system

c(ε)u′(ξ) = α[u(ξ + 1) + u(ξ − 1)− 2u(ξ)] + g
(
u(ξ)

)
− w(ξ),

c(ε)w′(ξ) = ε
(
u(ξ)− γw(ξ)

)
χsl

(
w(ξ)

)
.

(4.2)

We start by studying the behaviour of the equilibrium manifold M as ε moves away from zero.
Our first result shows how the invariant manifolds ML and MR persist for ε > 0.

Proposition 4.1 (See [21, §4]). Consider the nonlinear system (4.2). There exists a constant δε >
0 together with two C∞-smooth functions

sR, sL : [wmin, wmax]× [0, δε]→ R (4.3)

that satisfy the following properties.

(i) For each ϑ ∈ [wmin, wmax] and ε ∈ [0, δε], we have

sR(ϑ, 0) = s̃R(ϑ) and sL(ϑ, 0) = s̃L(ϑ). (4.4)

(ii) For each ϑ ∈ [wmin, wmax] and ε ∈ [0, δε], the unique solution of the ODE

c(ε)w′(ξ) = ε
(
sR(w(ξ), ε)− γw(ξ)

)
χsl

(
w(ξ)

)
, w(0) = ϑ, (4.5)

yields a solution
(
sR(w, ε), w

)
to (4.2). The same statement holds upon replacing the subscript

R by L.

(iii) There exists a constant δ > 0 such that any solution (u,w) to (4.2) with 0 ≤ ε ≤ δε that
has both wmin ≤ w(ξ) ≤ wmax and

∣∣u(ξ)− s̃R
(
w(ξ)

)∣∣ < δ for all ξ ∈ R must in fact satisfy
u(ξ) = sR(w(ξ), ε) for all ξ ∈ R. The same statement holds for the subscript L.

Our second result describes the quasi-front and quasi-back solutions to (4.2) depicted in Figures 8
and 9. As explained in §4.1, these solutions should be seen as orbits that bifurcate from qf and qb and
connect ML to MR and vice-versa, at the price of a discontinuity at ξ = 0 that can be contained
in the spaces Γf and Γb. As a preparation, we introduce the notation

X̂f = Q̂f ⊕ P̂f ⊕ Γf and X̂b = Q̂b ⊕ P̂b ⊕ Γb (4.6)

and recall the exponent η∗ that appears in Lemma 3.1.
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Proposition 4.2 (See [21, §5]). Pick a sufficiently large constant ξ∗ > 0 and a sufficiently small
constant δε̃ > 0. Then for every pair (ξ0, ε) with ξ0 ≥ ξ∗ and 0 ≤ εξ0 ≤ δε̃, there exists a set of
functions

ū−qf(ξ0, ε), ū−qb(ξ0, ε) ∈ C((−∞, 1],R),

ū+
qf(ξ0, ε), ū+

qb(ξ0, ε) ∈ C([−1,∞),R),

w̄qf(ξ0, ε), w̄qb(ξ0, ε) ∈ C(R,R)

(4.7)

that satisfies the following properties.

(i) The pairs (ū±qf , w̄qf) and (ū±qb, w̄qb) satisfy (4.2) on the intervals R±.

(ii) We have the inclusions

ev0 ū
−
qf(ξ0, ε) ∈ ev0 qf + X̂f , ev0 ū

+
qf(ξ0, ε) ∈ ev0 qf + X̂f ,

ev0 ū
−
qb(ξ0, ε) ∈ ev0 qb + X̂b, ev0 ū

+
qb(ξ0, ε) ∈ ev0 qb + X̂b.

(4.8)

(iii) We have the jump conditions

ev0 ū
−
qf(ξ0, ε)− ev0 ū

+
qf(ξ0, ε) ∈ Γf , ev0 ū

−
qb(ξ0, ε)− ev0 ū

+
qb(ξ0, ε) ∈ Γb. (4.9)

(iv) Choose any ξ0 ≥ ξ∗. Restricting qf and qb to the appropriate intervals, we have ū±qf(ξ0, 0) = qf
and ū±qb(ξ0, 0) = qb. In addition, we have w̄qf(ξ0, 0) = 0 and w̄qb(ξ0, 0) = w∗.

(v) Choose any ξ0 ≥ ξ∗. Upon taking the appropriate restrictions, the maps

ε̃ 7→



ū−qf(ξ0, ε̃/ξ0) ∈ BC−η∗
(
(−∞, 1],R

)
ū+

qf(ξ0, ε̃/ξ0) ∈ BC0([−1, ξ0],R)
e−η∗ξ0

[
ū+

qf(ξ0, ε̃/ξ0)− sR(w̄qf(ξ0, ε̃/ξ0), ε̃/ξ0)
]
∈ BC−η∗([ξ0,∞),R)

w̄qf(ξ0, ε̃/ξ0) ∈ BC−η∗((−∞, 0],R)
w̄qf(ξ0, ε̃/ξ0) ∈ BC0([0, ξ0],R)
eνξ0w̄qf(ξ0, ε̃/ξ0) ∈ BCν([ξ0,∞),R)

(4.10)

and

ε̃ 7→



e−η∗ξ0
[
ū−qb(ξ0, ε̃/ξ0)− sR(w̄qb(ξ0, ε̃/ξ0), ε̃/ξ0)

]
∈ BC−η∗((−∞,−ξ0],R)

ū−qb(ξ0, ε̃/ξ0) ∈ BC0

(
[−ξ0, 1],R

)
ū+

qb(ξ0, ε̃/ξ0) ∈ BC0

(
[−1, ξ0],R

)
e−η∗ξ0

[
ū+

qb(ξ0, ε̃/ξ0)− sL(w̄qb(ξ0, ε̃/ξ0), ε̃/ξ0)
]
∈ BC−η∗([ξ0,∞),R)

eνξ0w̄qb(ξ0, ε̃/ξ0) ∈ BCν((−∞,−ξ0],R)
w̄qb(ε̃/ξ0) ∈ BC0([−ξ0, ξ0],R)
eνξ0w̄qb(ξ0, ε̃/ξ0) ∈ BCν([ξ0,∞),R)

(4.11)

are all C2-smooth with derivatives that can be bounded independently of ξ0 ≥ ξ∗. Here ν is a
constant of order ν = O(δε̃/ξ∗).

We remark that the exponential terms appearing in property (v) above merely serve to counteract
the effects of the weight in (2.53) on intervals that start at ±ξ0.

Our third result describes the correction terms that are necessary to join the quasi-fronts and
quasi-backs together. Due to the singular nature of the limit ε → 0, it turns out to be fruitful to
introduce new variables T sl and T that measure the time needed to travel between the Poincaré
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sections ev0 qf + X̂f and ev0 qb + X̂b in the slow and fast time scales. These time scales are related
via the identification

T sl = εT. (4.12)

We choose T sl
∗ in such a way that the unique solution to the ODE

c∗w
′(ζ) = s̃R(ζ)− γw(ζ), w(0) = 0 (4.13)

has w(T sl
∗ ) = w∗. This ODE corresponds to the flow alongMR in the slow time scale and hence T sl

∗
can be interpreted as the slow time spent on the segment of the singular orbit Γ0 that is contained
in the slow-manifold MR.

Treating T sl and T as independent variables, we will be interested in the parameter space

Ω = Ω(ξ∗, δsl,MT ) = {(ξ0, T sl, T ) | ξ0 ≥ ξ∗ and
∣∣T sl − T sl

∗
∣∣ < δλ and T ≥MT ξ0}. (4.14)

For any ω ∈ Ω, the result below shows that a quasi-solution for (4.2) can be constructed that is
C1-exponentially close to the corresponding quasi-front and quasi-back with respect to the time T .
Such a quasi-solution is illustrated in Figure 10.

Proposition 4.3 (See [21, §6]). Pick sufficiently large constants ξ∗ > 0, MT > 0 and a suffi-
ciently small constant δsl > 0. Then for every

ω = (ξ0, T sl, T ) ∈ Ω = Ω(ξ∗, δsl,MT ), (4.15)

there exists a quadruplet (ūqsf(ω), ūqsb(ω), ūqsx(ω), w̄qs(ω)) with

ūqsf(ω) ∈ C((−∞, 1],R),
ūqsb(ω) ∈ C([T − 1,∞),R),
ūqsx(ω) ∈ C([−1, T + 1],R),
w̄qs(ω) ∈ C(R,R),

(4.16)

that satisfies the following properties.

(i) The pair
(
ūqsf(ω), w̄qs(ω)

)
satisfies (4.2) on the interval (∞, 0], the pair

(
ūqsx(ω), w̄qs(ω)

)
satisfies (4.2) on [0, T ] and the pair

(
ūqsb(ω), w̄qs(ω)

)
satisfies (4.2) on [T,∞).

(ii) We have the inclusions

ev0 ūqsf(ω) ∈ ev0 qf + X̂f , ev0 ūqsx(ω) ∈ ev0 qf + X̂f ,

evT ūqsx(ω) ∈ ev0 qb + X̂b, evT ūqsb(ω) ∈ ev0 qb + X̂b.
(4.17)

(iii) We have the jump conditions

ev0ūqsf(ω)− ev0ūqsx(ω) ∈ Γf , evT ūqsx(ω)− evT ūqsb(ω) ∈ Γb. (4.18)

(iv) Taking the appropriate restrictions, the maps

ω 7→ Ū(ω) =


ūqsf(ω)− ūqf(ω) ∈ BC−η∗((−∞, 1],R),
ūqsx(ω)− ūqf(ω) ∈ BCη∗([−1, 1

2T ],R),
[ūqsx(ω)− ūqb(ω)(· − T )]eη∗T ∈ BCη∗([

1
2T, T + 1],R),

[ūqsb(ω)− ūqb(ω)(· − T )]e−η∗T ∈ BC−η∗([T − 1,∞),R),

(4.19)
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together with

ω 7→ W̄ (ω) =


w̄qs(ω)− w̄qf(T sl/T ) ∈ BC−η∗((−∞, 0],R),
w̄qs(ω)− w̄qf(T sl/T ) ∈ BCη∗([0,

1
2T ],R),

[w̄qs(ω)− w̄qb(T sl/T )(· − T )]eη∗T ∈ BCη∗([
1
2T, T ],R),

[w̄qs(ω)− w̄qb(T sl/T )(· − T )]e−η∗T ∈ BC−η∗([T,∞),R),

(4.20)

are C1-smooth with respect to T sl. In addition, there exists C > 0 such that the estimates∥∥Ū(ω)
∥∥+

∥∥W̄ (ω)
∥∥ ≤ Ce−η∗T∥∥DT slŪ(ω)

∥∥+
∥∥DT slW̄ (ω)

∥∥ ≤ CeνT e−η∗T
(4.21)

hold for all ω ∈ Ω and integers 0 ≤ ` ≤ r. Here ν > 0 is a constant of order ν = O((ξ∗MT )−1).

Our final result shows that for all sufficiently small ε > 0, the parameter ω can be chosen in such
a way that the jumps mentioned in property (iii) above actually vanish. This yields the branch of
solutions described in Theorem 1.1.

Proposition 4.4 (See [21, §3.4]). Pick any sufficiently large ξ∗ > 0, MT > 0 and a sufficiently
small δsl > 0. For any ξ0 ≥ ξ∗, there exists a δε(ξ0) > 0 and a C1-smooth function Tnl : (0, δε]→ R

such that the map

ωnl : (0, δε(ξ0)]→ Ω, ε 7→ (ξ0, εTnl(ε), Tnl(ε)) (4.22)

is well-defined. Furthermore, for each 0 < ε < min{δε(ξ0), δε}, the travelling pulse (ū, w̄)(ε) coin-
cides with the quasi-solution

(
ūqsf , ūqsx, ūqsb, w̄qs

)(
ωnl(ε)

)
, where the constant δε and the branch of

solutions (ū, w̄)(ε) were defined in Theorem 1.1.

5 Spectral Stability

In order to establish our main result Theorem 1.2, we will need to study the operators

L(ε)− λ : BC1
0 (R,C2)→ BC0(R,C2) (5.1)

that act as

[L(ε)− λ](u,w) = −c(ε)(u′, w′) +
(
L
(
ū(ε)

)
u− w, ε(u− γw)

)
− λ(u,w). (5.2)

In view of Proposition 2.1, it suffices to establish the following result.

Proposition 5.1 (Spectral Stability). Consider the setting of Theorem 1.1. Then for any suffi-
ciently small ε > 0, the operator L(ε) satisfies the conditions (S1) through (S3) in §2. In particular,
the eigenvalues at λ ∈ 2πic(ε)Z are simple and isolated and there is no additional spectrum in the
half-plane Reλ ≥ −δ0(ε) for some δ0(ε) > 0.

In this section we outline our proof of this result, leaving some of the technical details to §6. In §5.1
we study the essential spectrum σess(L(ε)) and show that it lies to the left of the line Reλ = −γε.
In §5.2 we characterize the part of the point spectrum σp(L(ε)) that lies to the right of the line
Reλ = −δ0, for some small constant δ0 > 0 that will not depend on ε.

In the limiting case ε = 0, the entire imaginary axis is contained in the essential spectrum. This
means that our region of interest Reλ ≥ −δ0 will always contain part of the essential spectrum
if ε > 0 is sufficiently small. As a consequence, it is very hard to perform any direct search for
eigenvalues that works uniformly for all small ε > 0.
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To avoid this problem, we will look for solutions to L(ε)v = λv that behave as v(ξ) = O(e2ηξ)
as ξ → ±∞, for some appropriate exponent η > 0. If λ lies to the right of essential spectrum, one
may show that v is bounded and thus an actual eigenfunction. On the other hand, v may grow
exponentially as ξ →∞ if λ lies to the left of the essential spectrum, in which case we refer to λ as
a resonance pole.

The translational invariance of the travelling wave system (1.6) implies that λ = 0 is always
an eigenvalue. Since we are gluing a front and a back together, we expect the presence of a second
potential eigenvalue λ2 ≈ 0. In §5.2 we calculate the speed with which λ2 moves to the left as ε
increases. Whether or not λ2 is an actual eigenvalue depends on how this speed compares to the
rate at which the essential spectrum moves into the left half-plane, which is computed in §5.1.

5.1 Essential spectrum

We set out to describe the essential spectrum σess(L(ε)). Note first that the limits

lim
ξ→±∞

(
ū(ε), w̄(ε)

)
(ξ) = (0, 0) (5.3)

together with [32, Thm. C] imply that the Fredholm index of L(ε)−λ is automatically zero if L(ε)−λ
is in fact Fredholm. In view of [32, Thm. A] this is the case if and only if the characteristic equation

det ∆L(ε)(λ, z) = 0 (5.4)

admits no roots z ∈ iR. Here the characteristic function ∆L(ε) is given by

∆L(ε)(λ, z) =
(

∆L(ε, 0, λ, z) 1
−ε c(ε)z + λ+ γε

)
. (5.5)

Setting out to locate the roots of (5.4), we will establish the following result.

Proposition 5.2. There exist constants δ0 > 0, δε > 0 and 0 < η < 1
4η∗ such that the following

properties hold.

(i) For every ε ∈ [0, δε], we have

σess(L(ε)) ⊆ {λ ∈ C | Reλ ≤ −γε}. (5.6)

(ii) Choose any 0 < ε ≤ δε and pick any λ ∈ C that has Reλ > −γε. Then the characteristic
equation det ∆L(ε)(λ, z) = 0 admits no roots with 0 ≤ Re z ≤ 4η.

(iii) Writing λess(ν, ε) for the rightmost λ ∈ C that has det ∆L(ε)(λ, iν) = 0, we have the expansion

λess(ν, ε) = −iνc− ε
(
γ +

1
a+ 2α(1− cos ν)

)
+O(ε2), ν ∈ R. (5.7)

We start by establishing (i) in the result above. This actually follows from Lemma 3.1 after a
very simple computation.

Lemma 5.3. Recall the constants δ0 > 0, δε > 0 and η∗ > 0 that appear in Lemma 3.1.
Suppose that det ∆L(ε)(λ, z) = 0 for some ε ∈ [0, δε], λ ∈ C that has Reλ ≥ −δ0 and z ∈ C that

has |Re z| ≤ η∗. Then we have the inequality

Reλ ≤ −γε− c(ε) Re z. (5.8)
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Proof. Solving the characteristic equation (5.4), we may compute

Reλ = −γε− Re ∆L(ε, 0, λ, z)−1ε− c(ε) Re z
= −γε− ε

|∆L(ε,0,λz)|2 Re ∆L(ε, 0, λ, z)− c(ε) Re z
≤ −γε− c(ε) Re z.

(5.9)

In order to establish (ii) in Proposition 5.2, we need to track the behaviour of the root z = λ/c∗
as ε moves away from zero.

Lemma 5.4. There exist constants δε > 0, 0 < δ0 < δ∗0 and 0 < η1 < η2, together with a smooth
function

z∗ : {(λ, ε) ∈ C× [0, δε] : |Reλ| ≤ δ∗0} → C (5.10)

that has z∗(λ, 0) = −λ/c∗, such that the following holds true.
Suppose that det ∆L(ε)(λ, z) = 0 for some ε ∈ [0, δε] and some pair λ, z ∈ C that has Reλ ≥ −δ0

and −η1 ≤ |Re z| ≤ η2. Then we must also have Reλ ≤ δ∗0 , Re z ≤ η1 and

z = z∗(λ, ε). (5.11)

Proof. Recall the constants δ0 > 0, δε > 0 and η∗ > 0 that appear in Lemma 3.1. Pick any λ0 ∈ iR
and note that ∆L(ε, 0, λ0, z) = 0 has no roots in the strip |Re z| ≤ η∗ for ε ∈ [0, δε]. In view of the
factorization

det ∆L(0)(λ0, z) = ∆L(0, 0, λ0, z)(c∗z + λ0), (5.12)

we may conclude that z = −λ0/c∗ ∈ iR is the unique root of the characteristic equation

det ∆L(0)(λ0, z) = 0 (5.13)

that has |Re z| ≤ η∗. Using [23, Lem. 3.1], we note that the imaginary part of any root z of the
characteristic equation (5.4) can be a-priori bounded if λ and ε are restricted to compact intervals.
This allows us to find δλ > 0 such that the characteristic equation

det ∆L(ε)(λ0 + λ, z) = 0 (5.14)

admits no roots with |Re z| = 1
2η∗ for any |λ| < δλ and any ε ∈ [0, δε], possibly after decreasing

δε. This allows us to define z∗(λ, ε) as the unique root of (5.4) in the strip |Re z| ≤ 1
2η∗, for all

(λ, ε) ≈ (λ0, 0). This locally defined function z∗ can be extended to the entire domain stated in
(5.10) by repeating this procedure for all λ0 ∈ iR and using the symmetry (2.9).

Write η2 = η∗ and choose δ0 > 0 and η1 > 0 to be so small that

η1 ≤
1
2
η∗ and δ0 < c(ε)η1 < δ∗0 (5.15)

for all ε ∈ [0, δε]. The statement now follows from Lemma 5.3 and the properties of z∗.

Proof of Proposition 5.2. Item (i) follows from Lemma 5.3. Item (ii) follows from Lemma 5.4 by
noting that any λ ∈ C that has −γε < λ < δ∗0 lies to the right of the essential spectrum, which in
view of z∗(λ, 0) = −λ/c∗ means that Re z∗(λ, ε) < 0. Item (iii) can be explicitly computed by fixing
ν ∈ R and noting that the characteristic equation det ∆L(ε)(λ, iν) = 0 is a quadratic polynomial
with respect to λ.
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Fig. 11: Illustration of the regions R1, R2 and R3. Besides λ = 0 ∈ R1, we expect to find a second potential
eigenvalue in R1.

5.2 Point Spectrum

We are now ready to study the point spectrum σp(L(ε)). In particular, we will look for bounded
solutions (u,w) to the MFDE

c(ε)u′ = L
(
ū(ε)

)
u− w − λu,

c(ε)w′ = ε(u− γw)− λw. (5.16)

In view of the observation (2.9), we only need to look for eigenvalues λ in the horizontal strip
|Imλ| ≤ c(ε)π. Since we wish to use arguments that work uniformly for ε ∈ (0, δε], we will decrease
δε to ensure that c(ε) < 3

2c∗ < 2c(ε) holds for all ε ∈ [0, δε] and use the slightly larger strip

R = {λ ∈ C | −3
2
πc∗ ≤ Imλ ≤ 3

2
πc∗}. (5.17)

As illustrated in Figure 11, the strip R can be split into three subregions that we will each consider
separately. In particular, we choose constants M > 0, δ0 > 0 and δλ > 0 and introduce the regions

R1(δ1) = {λ ∈ R :| |λ| < δ1},
R2(δ0, δ1,M) = {λ ∈ R : −δ0 ≤ Reλ ≤M and |λ| ≥ δ1},
R3(M) = {λ ∈ R : Reλ > M}.

(5.18)

Note that the translational eigenvalue λ = 0 is contained in R1. We expect to find an additional
eigenvalue or resonance pole in R1, but will rule out eigenvalues in the regions R2 and R3.

We recall the exponent η > 0 that appears in Proposition 5.2. A direct consequence of this result
and [32, Prop 7.2] is that for any λ to the right of the line Reλ = −γε, the set of bounded solutions
(u,w) to (5.16) is identical to the set of solutions to this equation that behave as (u,w)(ξ) = O(e2ηξ)
as ξ → ±∞. For any ν ∈ R and any function f , we will use the notation eνf to denote the
exponentially shifted function

[eνf ](ξ) = eνξf(ξ). (5.19)

Inserting the Ansatz

(u,w) = e2η

(
ũ, w̃

)
(5.20)
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into (5.16), we see that (ũ, w̃) must satisfy the new equation

c(ε)(D + 2η)u = L2η

(
ū(ε)

)
u− w − λu,

c(ε)(D + 2η)w = ε(u− γw)− λw. (5.21)

Here we have dropped the tildes and introduced the notation

[L2η(ū)v](ξ) = α[e2ηv(ξ + 1) + e−2ηv(ξ − 1)− 2v(ξ)] + g′
(
ū(ξ)

)
v(ξ). (5.22)

We will write L2η(ε) : BC1
0 (R,C)→ BC0(R,C) for the exponentially shifted version of L(ε), which

acts as

L2η(ε)(u,w) = −c(ε)(D + 2η)(u,w) +
(
L2η

(
ū(ε)

)
u− w, ε(u− γw)

)
. (5.23)

Throughout the remainder of this section, we will look for bounded solutions to (5.21) instead of
(5.16). The advantage of this approach is that the essential spectrum has been shifted away from
the imaginary axis, uniformly for ε ∈ [0, δε] and Reλ ≥ −δ0. This will allow us to look for potential
eigenvalues in the regions R1 and R2 without the need to worry about the location of λ relative to
the essential spectrum.

Region R1

In order to locate potential eigenvalues in the region R1, we will use a two-stepped procedure that
mimics the construction of the travelling pulses (ū, w̄)(ε) as outlined in §4. Indeed, we will first
consider the MFDE

c(ε)(D + 2η)u = L2η

(
Aqf(ε, ξ0)

)
u− w − λu,

c(ε)(D + 2η)w = ε(u− γw)− λw, (5.24)

in which the function Aqf , which is related to the quasi-fronts described in Proposition 4.2, is given
by

Aqf(ε, ξ0)(ξ) =

{
ū−qf(ε, ξ0)(ξ) ξ ≤ 0,

ū+
qf(ε, ξ0)(ξ) ξ > 0.

(5.25)

In addition, we will be interested in the counterpart of (5.24) associated to the quasi-backs, which
is given by

c(ε)(D + 2η)u = L2η

(
Aqb(ε, ξ0)

)
u− w − λu,

c(ε)(D + 2η)w = ε(u− γw)− λw, (5.26)

now with

Aqb(ε, ξ0)(ξ) =

{
ū−qb(ε, ξ0)(ξ) ξ ≤ 0,

ū+
qb(ε, ξ0)(ξ) ξ > 0.

(5.27)

For notational convenience, we introduce the parameter p = (ξ0, ε) which we take from the set

Dp = Dp(ξ∗, δε̃) = {(ξ0, ε) | ξ0 ≥ ξ∗ and 0 ≤ εξ0 ≤ δε̃}. (5.28)

Proposition 5.5 (See §6.1). Pick a sufficiently large constant ξ∗ > 0 and sufficiently small con-
stants δε̃ > 0 and δλ > 0. Then for every p ∈ Dp(ξ∗, δε̃) and any λ ∈ C that has |λ| ≤ δλ, there exists
a unique set of functions

u−qf(p, λ), u−qb(p, λ) ∈ BC−η((−∞, 1],C),
u+

qf(p, λ), u+
qb(p, λ) ∈ BC−η([−1,∞),C),

wqf(p, λ), wqb(p, λ) ∈ BC−η(R,C),
(5.29)

that satisfies the following properties.
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(i) The pairs (u±qf , wqf) satisfy (5.24) on the intervals R±. Similarly, the pairs (u±qb, wqb) satisfy
(5.26) on the intervals R±.

(ii) For any p ∈ Dp(ξ∗, δε̃) and |λ| ≤ δλ, we have

ΠBf ev0 e2η u
−
qf(p, λ) = ΠBf ev0 e2η u

−
qf(p, λ) = ev0 q

′
f ,

ΠBbev0 e2η u
−
qb(p, λ) = ΠBbev0 e2η u

−
qb(p, λ) = ev0 q

′
b.

(5.30)

(iii) For any p ∈ Dp(ξ∗, δε̃) and |λ| ≤ δλ, we have

ξ∞f (p, λ) := ev0 e2η u
−
qf(p, λ)− ev0 e2η u

+
qf(p, λ) ∈ Γf ,

ξ∞b (p, λ) := ev0 e2η u
−
qb(p, λ)− ev0 e2η u

+
qb(p, λ) ∈ Γb.

(5.31)

In addition, for any ξ0 ≥ ξ∗, the maps

(ε̃, λ) 7→
(
u−qf(ξ0, ε̃/ξ0, λ), u+

qf(ξ0, ε̃/ξ0, λ), wqf(ξ0, ε̃/ξ0, λ)
)

(ε̃, λ) 7→
(
u−qb(ξ0, ε̃/ξ0, λ), u+

qb(ξ0, ε̃/ξ0, λ), wqb(ξ0, ε̃/ξ0, λ)
)

(ε̃, λ) 7→
(
ξ∞f (ξ0, ε̃/ξ0, λ), ξ∞b (ξ0, ε̃/ξ0, λ)

) (5.32)

are C2-smooth with derivatives that can be bounded independently of ξ0, with

ξ∞f (ξ0, 0, 0) = 0, ξ∞b (ξ0, 0, 0) = 0. (5.33)

In addition, pick the unique df ∈ Kf and db ∈ Kb that have df (0) = 1 and db(0) = 1. Then there
exists C > 0 such that for any ξ0 ≥ ξ∗ we have the estimates∣∣∣〈ev0df , Dεξ

∞
f (ξ0, 0, 0)〉 −Mf,ε

∣∣∣ ≤ Cξ0e
−ηξ0 ,∣∣∣〈ev0df , Dλξ

∞
f (ξ0, 0, 0)〉 −Mf,λ

∣∣∣ ≤ Ce−ηξ0 ,

|〈ev0db, Dεξ
∞
b (ξ0, 0, 0)〉 −Mb,ε| ≤ Cξ0e

−ηξ0 ,

|〈ev0db, Dλξ
∞
b (ξ0, 0, 0)〉 −Mb,λ| ≤ Ce−ηξ0 ,

(5.34)

with

Mf,ε = 0

Mf,λ = −
∫∞
−∞ df (ξ)q′f (ξ)dξ < 0,

Mb,ε = c−1
∗ (sR(w∗)− γw∗)

∫∞
−∞ db(ξ)dξ > 0,

Mb,λ = −
∫∞
−∞ db(ξ)q′b(ξ)dξ > 0.

(5.35)

We are now ready to turn our attention to the linearization of (4.2) near the quasi-solutions de-
scribed in Proposition 4.3. Recalling the parameter ω = (ξ0, T sl, T ) that we take from the parameter
space

Ω(ξ∗, δsl,MT ) = {(ξ0, T sl, T ) | ξ0 ≥ ξ∗ and
∣∣T sl − T sl

∗
∣∣ < δλ and T ≥MT ξ0}, (5.36)

we write ε = T sl/T and set out to solve the system

c(ε)(D + 2η)u = L2η(Aqs(ω))u− w − λu
c(ε)(D + 2η)w = ε(u− γw)− λw, (5.37)

in which the function Aqs is given by

Aqs(ω)(ξ) =

 ūqsf(ω)(ξ) ξ ≤ 0,
ūqsx(ω)(ξ) 0 ≤ ξ ≤ T,
ūqsb(ω)(ξ) ξ ≥ T.

(5.38)
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Proposition 5.6 (See §6.2). Pick sufficiently large constants ξ∗ > 0, MT > 0 and sufficiently
small constants δsl > 0 and δλ > 0. Then for each ω = (ξ0, T sl, T ) ∈ Ω = Ω(ξ∗, δsl,MT ) and λ ∈ C
that has |λ| < δλ, there exists a unique quadruplet (uqsf(ω, λ), uqsb(ω, λ), uqsx(ω, λ), wqs(ω, λ)) with

uqsf(ω, λ) ∈ L
(
C

2, BC0((−∞, 1],C)
)
,

uqsb(ω, λ) ∈ L
(
C

2, BC0([T − 1,∞),C)
)
,

uqsx(ω, λ) ∈ L
(
C

2, BC0([−1, T + 1],C)
)
,

wqs(ω, λ) ∈ L
(
C

2, BC0(R,C)
)
,

(5.39)

that satisfies the following properties.

(i) The pair (uqsf , wqs) satisfies (5.37) on (−∞, 0], the pair (uqsx, wqs) satisfies (5.37) on [0, T ]
and the pair (uqsb, wqs) satisfies (5.37) on [T,∞).

(ii) For any ω ∈ Ω and |λ| ≤ δλ, we have

ΠBf ev0 e2η uqsf(ω, λ)(κ̃f , κ̃b) = ΠBf ev0 e2η uqsx(ω, λ)(κ̃f , κ̃b) = κ̃fev0 q
′
f ,

ΠBbe2η evT uqsx(ω, λ)(κ̃f , κ̃b) = ΠBb e2η evT uqsb(ω, λ)(κ̃f , κ̃b) = κ̃bev0 q
′
b.

(5.40)

for all (κ̃f , κ̃b) ∈ C2.

(iii) For any ω ∈ Ω and |λ| ≤ δλ, we have

ξf (ω, λ) := ev0 e2η [uqsf(ω)− uqsx(ω)] ∈ L(C2,Γf ),
ξb(ω, λ) := evT e2η [uqsx(ω)− uqsb(ω)] ∈ L(C2,Γb).

(5.41)

In addition, for every ξ0 ≥ ξ∗, the maps ξf and ξb are C1-smooth with respect to T sl, T and λ.
Finally, consider the maps ξ̃f (ω, λ) ∈ L(C2,Γf ) and ξ̃b(ω, λ) ∈ L(C2,Γb) defined by

ξ̃f (ω, λ)(κ̃f , κ̃b) := ξf (ω, λ)(κ̃f , κ̃b)− ξ∞f (ξ0, T sl/T, λ)κ̃f ,
ξ̃b(ω, λ)(κ̃f , κ̃b) := ξb(ω, λ)(κ̃f , κ̃b)− ξ∞b (ξ0, T sl/T, λ)κ̃b.

(5.42)

Then there exists a constant C > 0 such that for every ω ∈ Ω and |λ| < δλ, we have the estimate∣∣∣ξ̃f (ω, λ)
∣∣∣+
∣∣∣ξ̃b(ω, λ)

∣∣∣+
∣∣∣D(T sl,T,λ)ξ̃f (ω, λ)

∣∣∣+
∣∣∣D(T sl,T,λ)ξ̃b(ω, λ)

∣∣∣ ≤ Ce−ηT . (5.43)

In order to solve the eigenvalue problem L2η(ε)(u,w) = λ(u,w) for λ ∈ R1, it hence suffices to
analyze the bifurcation equations (

ξf (ωnl(ε), λ)
ξb(ωnl(ε), λ)

)(
κ̃f
κ̃b

)
= 0. (5.44)

The results obtained so far imply that there is a β > 0 so that(
ξf (ωnl(ε), λ)
ξb(ωnl(ε), λ)

)
=
(
λMf,λ +O(λ2 + ε(|ε|+ |λ|)| ln ε|) O(e−β/ε)

O(e−β/ε) λMb,λ + εMb,ε +O(λ2 + ε(|ε|+ |λ|)| ln ε|)

)
,

where Mf,λ,Mb,λ,Mb,ε are given in (5.35).
Before we continue with the analysis of equation (5.44), we comment on its interpretation. The

estimates in Proposition 5.6 show that the solutions to the weighted eigenvalue problem are obtained
by gluing together the weighted Nagumo eigenfunctions e2ηξq′f (ξ) and e2ηξq′b(ξ) with amplitudes
(κ̃f , κ̃b). Since the first jump occurs at ξ = 0 and the second jump at ξ = T with T ≥ δ/ε, we see
that we can alternatively use the amplitudes κf := κ̃f and κb := e2ηT κ̃b of the unweighted Nagumo
eigenfunctions q′f and q′b to obtain the equivalent system(

λMf,λ +O(λ2 + ε(|ε|+ |λ|)| ln ε|) e−2ηTO(e−β/ε)
e2ηTO(e−β/ε) λMb,λ + εMb,ε +O(λ2 + ε(|ε|+ |λ|)| ln ε|)

)(
κf
κb

)
= 0. (5.45)

The next three results establish that (S2), (S3) and part of (S1) in §2 hold for L(ε).
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Corollary 5.7. There exists δε > 0 such that for all 0 < ε < δε, the only solutions (u,w) ∈
BC1

0 (R,C2) to the equation

L2η(ε)(u,w) = 0 (5.46)

are (u,w) = e−2η(ū, w̄)(ε) and scalar multiples thereof, while the equation

L2η(ε)(u,w) =
(
e−2ηū

′(ε), e−2ηw̄
′(ε)
)

(5.47)

admits no solutions (u,w) ∈ BC1
0 (R,C2). In particular, λ = 0 is a simple eigenvalue for L2η(ε) and

hence also for L(ε).

Proof. The fact that Mf,ε = 0 and Mb,ε 6= 0 implies that

dim Ker
(
ξf (ωnl(ε), 0)
ξb(ωnl(ε), 0)

)
≤ 1 (5.48)

for sufficiently small ε > 0. Since

L2η(ε)
(
e−2ηū

′(ε), e−2ηw̄
′(ε)
)

= 0 (5.49)

holds by construction, the statement concerning (5.46) follows.
In view of (5.49), there exists a pair κ̃f (ε) and κ̃b(ε) for which

e−2η

(
ū′(ε), w̄′(ε)

)
∼
(
uqsf , uqsx, uqsb, wqs

)
(ωnl(ε), 0)(κ̃f (ε), κ̃b(ε)). (5.50)

Here the symbol ∼ means that the function on the left can be obtained by appropriately concatenat-
ing the functions on the right. Differentiating (5.37) with respect to λ and evaluating at ω = ωnl(ε)
and λ = 0, we find that the only possible candidate for a solution to (5.47) is given by

(u,w) ∼ Dλ

(
uqsf , uqsx, uqsb, wqs

)
(ωnl(ε), 0)

(
κ̃f (ε), κ̃b(ε)

)
, (5.51)

which is an actual solution if and only if

Dλξf (ωnl(ε), 0)
(
κ̃f (ε), κ̃b(ε)

)
= Dλξb(ωnl(ε), 0)

(
κ̃f (ε), κ̃b(ε)

)
= 0. (5.52)

However, for all sufficiently small ε > 0 this is precluded by the Melnikov identities (5.35).

Corollary 5.8. Pick any sufficiently small δλ > 0. Then there exists δε > 0 such that the following
holds true. For every 0 < ε < δε, there exists a unique λ2 = λ2(ε) ∈ C \ {0} that has |λ2| < δλ and

dim Ker (L2η(ε)− λ2) > 0. (5.53)

In addition, λ2 is real and admits the expansion

λ2(ε) = −εM−1
b,λMb,ε +O

(
ε2 ln(1/ε)

)
. (5.54)

In particular, if

M−1
b,λMb,ε < γ + a−1, (5.55)

then λ2(ε) is an eigenvalue for the unshifted operator L(ε).

Proof. Consider any small ε > 0 and suppose that (5.53) holds for some small λ ∈ C. This implies
that (5.44) holds for some non-zero pair (κ̃f , κ̃b) ∈ C2. Writing

ξ∞f (ξ0, ε, λ) = λM̃f,λ(ξ0, ε, λ) + εM̃f,ε(ξ0, ε, λ),
ξ∞b (ξ0, ε, λ) = λM̃b,λ(ξ0, ε, λ) + εM̃b,ε(ξ0, ε, λ),

(5.56)
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and also

M̃f (ξ0, λ, ε) = M̃f,λ(ξ0, λ, ε)−1M̃f,ε(ξ0, λ, ε),
M̃b(ξ0, λ, ε) = M̃b,λ(ξ0, λ, ε)−1M̃b,ε(ξ0, λ, ε),
Mb = M−1

b,λMb,ε,

(5.57)

we find the bifurcation equation(
λ+ εM̃f (ξ0, λ, ε)

)(
λ+ εM̃b(ξ0, λ, ε)

)
+ h(ξ0, λ, ε) = 0. (5.58)

Here h(ξ0, ·), M̃f (ξ0, ·) and M̃b(ξ0, ·) are C1-smooth, with

|h|+
∣∣D(λ,ε)h

∣∣ ≤ Ce−β/ε,∣∣∣M̃f

∣∣∣+
∣∣∣M̃b −Mb

∣∣∣ ≤ C(|λ|+ ξ0ε+ ξ0e
−ηξ0),∣∣∣D(λ,ε̃)M̃f

∣∣∣+
∣∣∣D(λ,ε̃)M̃b

∣∣∣ ≤ C,

(5.59)

for some constants C > 0 and β > 0, in which ε̃ = ε/ξ0. Continuity in ε and the argument principle
show that for every sufficiently small δλ > 0, we may find δε̃ > 0 such that (5.58) admits precisely
two roots λ that have |λ| < δλ for all 0 < εξ0 < δε̃.

A priori we know that one of these roots must be zero. Let us therefore treat the bifurcation
equation as a second-degree polynomial in λ and look for the second root λ2. Writing

z = λ2 + εMb, (5.60)

we find that z must solve the fixed point equation

z = F(ξ0, ε, z − εMb) (5.61)

in which

F(ξ0, ε, λ) = −1
2
ε(M̃f + M̃b −Mb) +

1
2
ε
(Mb − M̃2)(Mb + M̃2) + M̃f (2M̃b − M̃f ) + 4ε−2h

Mb +
√

(M̃1 − M̃2)2 − 4ε−2h

. (5.62)

There exists C > 0 such that for all λ with |λ| ≤ 2εMb, we have for all ξ0 ≥ ξ∗,

|F(ξ0, ε, λ)| ≤ Cε(ξ0ε+ ξ0e
−ηξ0). (5.63)

Choosing e−ηξ0 = ε, we may hence use a fixed point argument to find a unique solution to (5.61) in
the set |z| ≤ 2Cεξ0e−ηξ0 .

Region R2

We pick δ0 > 0 to be smaller than the values mentioned in Lemma 3.3 and Proposition 5.2 and fix
this constant throughout the rest of this section. We will show that no eigenvalues can exist in R2,
which is a consequence of the splitting

C([−1, 1],C) = Qf,λ ⊕ Pf,λ = Qb,λ ⊕Qb,λ (5.64)

that was described in Lemma 3.3. Indeed, this splitting eliminates the freedom we had in region
R1 that allowed us to freely specify the value of the projections ΠBf ev0 and ΠBbevT applied to
the potential eigenfunctions. Since we no longer expect eigenvalues to exist, the estimates that we
require are not as detailed as those used in our analysis of R1. This allows us to look directly at
(5.37).
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Proposition 5.9 (See §6.3). Consider any λ0 ∈ C \ {2πic∗Z} that has Reλ0 ≥ −δ0. Then there
exist large constants ξ∗ > 0 and MT > 0 together with small constants δsl > 0 and δλ > 0 such that
the differential equation (5.37) with |λ− λ0| < δλ and ω ∈ Ω(ξ∗, δsl,MT ) has no nontrivial solutions
(u,w) ∈ BC0(R,C2).

Corollary 5.10. For any δ1 > 0 and any M > 0, there exist large constants ξ∗ > 0, MT > 0
and a small constant δsl > 0 such that (5.37) admits no non-trivial solutions for all ω ∈ Ω and
λ ∈ R2(δ0, δ1,M).

Proof. This follows directly from the compactness of R2.

Region R3

If Reλ is sufficiently large, the nonlocal terms in (5.21) can be treated as small perturbations to the
ODE

c(ε)(D + 2η)(u,w) = −λ(u,w). (5.65)

We can hence use ODE techniques to obtain the following result.

Lemma 5.11. There exist constants M > 0 and δε > 0 such that the differential equation (5.21)
with 0 < ε < δε and λ ∈ R3(M) has no non-trivial solutions (u,w) ∈ BC0(R,C2).

Proof. Introducing the new variable τ = c(ε)−1[Reλ]ξ, (5.21) can be written as

(uτ , wτ ) = −(u,w) + [Reλ]−1B(λ, ε)(u,w) (5.66)

The linear operator

B(λ, ε) ∈ L(BC0(R,C2)) (5.67)

can be bounded uniformly for ε ∈ (0, δε] and λ ∈ R with Reλ ≥ 0. It is not hard to see that for any
h ∈ BC0(R,C2), the ODE

(uτ , wτ ) = −(u,w) + h (5.68)

has a unique solution in BC0(R,C2) that we will denote by (u,w) = L∗h. Solving (5.21) is now
equivalent to solving

(u,w) = L∗[Reλ]−1B(λ, ε)(u,w), (5.69)

which cannot have a non-trivial solution if Reλ is sufficiently large.

Proof of Proposition 5.1. Observe that the constant δ0 appearing in (S1) may depend on ε > 0. This
allows us to establish (S1) by combining Proposition 5.2, Corollaries 5.8 and 5.10 and Lemma 5.11.
Properties (S2) and (S3) follow from Corollary 5.7.

6 Proof of Propositions 5.5, 5.6 and 5.9

In this section we provide the proofs of Propositions 5.5, 5.6 and 5.9. The techniques we use are very
similar to those employed in [21, §5-6] and we in fact refer to those sections for many of the details.
This is possible because the exponential shift e2η that we applied in (5.21) does not change the
structure of the spaces Pf,λ, Qf,λ, P̂f and Q̂f discussed in §3 that are related to the first component
of (5.21). Indeed, the corresponding characteristic equations (3.8) do not have roots in the strip
|Re z| ≤ 4η.
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6.1 Region R1: Quasi-fronts and Quasi-backs

We set out to prove Proposition 5.5. We recall the constants ξ∗ and δε̃ appearing in Proposition 4.2,
and pick p = (ξ0, ε) ∈ Dp(ξ∗, δε̃). For the front, we split the real line into the three intervals (−∞, 0],
[0, ξ0] and [ξ0,∞) that we each consider separately. To aid us in this scheme, we introduce the
families of function spaces

BC	qf,β = {(v, θ) ∈ C((−∞, 1],C)× C((−∞, 0],C) for which
‖(v, θ)‖BC	qf,β

:= supξ≤1 e−β|ξ| |v(ξ)|+ supξ≤0 e−β|ξ| |θ(ξ)| <∞},

BC�qf = {(v, θ) ∈ C([−1, ξ0 + 1],C)× C([0, ξ0],C) for which
‖(v, θ)‖BC�qf

:= sup−1≤ξ≤ξ0+1 |v(ξ)|+ sup0≤ξ≤ξ0 |θ(ξ)| <∞},

BC⊕qf,β = {(v, θ) ∈ C([ξ0 − 1,∞),C)× C([ξ0,∞),C) for which
‖(v, θ)‖BC⊕qf,β

:= supξ≥ξ0−1 e−β|ξ−ξ0| |v(ξ)|+ supξ≥ξ0 e
−β|ξ−ξ0| |θ(ξ)| <∞},

(6.1)

parametrized by β > 0, together with the families

BC−qf,β = {(g1, g2) ∈ C((−∞, 0],C)× C((−∞, 0],C) for which
‖(g1, g2)‖BC−qf,β

:= supξ≤0 e−β|ξ|
(
|g1(ξ)|+ |g2(ξ)|

)
<∞},

BC�qf = {(g1, g2) ∈ C([0, ξ0],C)× C([0, ξ0],C) for which
‖(g1, g2)‖BC�qf

:= sup0≤ξ≤ξ0 |g1(ξ)|+ |g2(ξ)| <∞},

BC+
qf,β = {(g1, g2) ∈ C([ξ0,∞),C)× C([ξ0,∞),C) for which

‖(g1, g2)‖BC+
qf,β

:= supξ≥ξ0 e−β|ξ−ξ0|
(
|g1(ξ)|+ |g2(ξ)|

)
<∞}.

(6.2)

Notice that in contrast to the definition [21, Eq. (5.49)] for BC�qf , there is no factor ξ0 in front of
the term |g2(ξ)|. For the backs, we use the spaces

BC	qb,β = {(v, θ) ∈ C((−∞,−ξ0 + 1],C)× C((−∞,−ξ0],C) for which
‖(v, θ)‖BC	qf,β

:= supξ≤−ξ0+1 e−β|ξ+ξ0| |v(ξ)|+ supξ≤−ξ0 e
−β|ξ+ξ0| |θ(ξ)| <∞},

BC�−qb = {(v, θ) ∈ C([−ξ0 − 1, 1],C)× C([−ξ0, 0],C) for which
‖(v, θ)‖BC�−qf

:= sup−ξ0−1≤ξ≤1 |v(ξ)|+ sup−ξ0≤ξ≤0 |θ(ξ)| <∞},

BC�+
qb = {(v, θ) ∈ C([−1, ξ0 + 1],C)× C([0, ξ0],C) for which

‖(v, θ)‖BC�+
qf

:= sup−1≤ξ≤ξ0+1 |v(ξ)|+ sup0≤ξ≤ξ0 |θ(ξ)| <∞},

BC⊕qb,β = {(v, θ) ∈ C([ξ0 − 1,∞),C)× C([ξ0,∞),C) for which
‖(v, θ)‖BC⊕qf,β

:= supξ≥ξ0−1 e−β|ξ−ξ0| |v(ξ)|+ supξ≥ξ0 e
−β|ξ−ξ0| |θ(ξ)| <∞},

(6.3)

parametrized by β > 0, together with the family

BC−qb,β = {(g1, g2) ∈ C((−∞,−ξ0],C)× C((−∞,−ξ0],C) for which
‖(g1, g2)‖BC−qb,β

:= supξ≤0 e−β|ξ+ξ0|
(
|g1(ξ)|+ |g2(ξ)|

)
<∞},

BC�−qb = {(g1, g2) ∈ C([−ξ0, 0],C)× C([−ξ0, 0],C) for which
‖(g1, g2)‖BC�−qb

:= sup−ξ0≤ξ≤0 |g1(ξ)|+ |g2(ξ)| <∞},

BC�+qb = {(g1, g2) ∈ C([0, ξ0],C)× C([0, ξ0],C) for which
‖(g1, g2)‖BC�+qb

:= sup0≤ξ≤ξ0 |g1(ξ)|+ |g2(ξ)| <∞},

BC+
qb,β = {(g1, g2) ∈ C([ξ0,∞),C)× C([ξ0,∞),C) for which

‖(g1, g2)‖BC+
qb,β

:= supξ≥ξ0 e−β|ξ−ξ0|
(
|g1(ξ)|+ |g2(ξ)|

)
<∞}.

(6.4)
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We recall the constant η > 0 from Proposition 5.2 and introduce the combined spaces

H◦qf,ζ = BC	qf,−η ×BC
�
qf ×BC

⊕
qf,−η+ζ ,

H◦qb,ζ = BC	qb,−η+ζ ×BC
�−
qb ×BC

�+
qb ×BC

⊕
qb,−η+ζ ,

(6.5)

parametrized by ζ ≥ 0, together with

Hqf = BC−qf,−η ×BC�qf ×BC
+
qf,−η+ζ ,

Hqb = BC−−η+ζ ×BC�− ×BC�+ ×BC
+
−η+ζ ,

(6.6)

We employ the shorthands H◦qf = H◦qf,0 and H◦qb = H◦qb,0.
Our goal is to find sets

hqf =
(
v−qf , θ

−
qf , v

�
qf , θ

�
qf , v

+
qf , θ

+
qf

)
∈ H◦qf ,

hqb =
(
v−qb, θ

−
qb, v

�−
qb , θ

�−
qb , v

�+
qb , θ

�+
qb , v

+
qb, θ

+
qb

)
∈ H◦qb,

(6.7)

such that the choices

wqf(ξ) =


θ−qf(ξ) for ξ ≤ 0,
θ�qf(ξ) for 0 ≤ ξ ≤ ξ0,
θ+

qf(ξ) for ξ ≥ ξ0,
wqb(ξ) =


θ−qb(ξ) for ξ ≤ −ξ0,
θ�−qb (ξ) for − ξ0 ≤ ξ ≤ 0,
θ�+qb (ξ) for 0 ≤ ξ ≤ ξ0,
θ+

qb(ξ) for ξ ≥ ξ0,

(6.8)

in combination with

u−qf(ξ) = v−qf(ξ) u−qb(ξ) =
{
v�−qb (ξ) for ξ ≤ −ξ0,
v�+qb (ξ) for ξ0 ≤ ξ ≤ 1,

u+
qf(ξ) =

{
v�qf(ξ) for − 1 ≤ ξ ≤ ξ0,
v+

qf(ξ) for ξ ≥ ξ0,
u+

qb(ξ) =
{
v�+qb (ξ) for − 1 ≤ ξ ≤ ξ0,
v+

qb(ξ) for ξ ≥ ξ0,
(6.9)

satisfy the conditions of Proposition 5.5.
Inserting the above Ansatz for (u±qf , wqf) into (5.24), we find that we must solve the linear

equations

Λ#
qf(p)(v

#
qf , θ

#
qf) :=

(
Λ#

qf,1(p)v#
qf , c(ε)(D + 2η)θ#

qf

)
=
(
− θ#

qf , 0
)

+B#
qf(p, λ)

(
v#

qf , θ
#
qf

)
(6.10)

for # = −, �,+. Here the differential operators are given by

Λ#
qf,1(p)v = c∗(D + 2η)v − L2η(qf )v, for # = −, �,

Λ+
qf,1(p)v = c(ε)(D + 2η)v − L2η

(
sR(w̄qf(p), ε)

)
v,

(6.11)

while the inhomogeneities can be written as

B#
qf,1(p, λ)(v, θ) = −λv + [g′

(
ūqf(p)

)
− g′(qf )]v

+ c∗−c(ε)
c(ε)

[
L2η(ūqf(p))v − θ − λv

]
, for # = −, �,

B+
qf,1(p, λ)(v, θ) = −λv +

[
g′
(
ūqf(p)

)
− g′

(
sR(w̄qf(p), ε)

)]
v

B#
qf,2(p, λ)(v, θ) = ε(v − γθ)− λθ, for # = −, �,+.

(6.12)

Similarly, we represent the linear system that arises by inserting the Ansatz (6.8) - (6.9) for (u±qb, wqb)
into (5.26) as

Λ#
qb(p)(v#

qb, θ
#
qb) :=

(
Λ#

qb,1(p)v#
qb, c(ε)(D + 2η)θ#

qb

)
=
(
− θ#

qb, 0
)

+B#
qb(p, λ)

(
v#

qb, θ
#
qb

)
, (6.13)
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for # = −, �−, �+,+. The differential operators are now given by

Λ−qb,1(p)v = c(ε)(D + 2η)v − L2η

(
sR(w̄qb(p), ε)

)
v

Λ#
qb,1(p)v = c∗(D + 2η)v − L2η(qb)v, for # = �−, �+

Λ+
qb,1(p)v = c(ε)(D + 2η)v − L2η

(
sL(w̄qb(p), ε)

)
v,

(6.14)

while the inhomogeneities can be written as

B−qb,1(p, λ)(v, θ) = −λv + [g′
(
ūqb(p)

)
− g′

(
sR(w̄qb(p), ε)

)
]v

B#
qb,1(p, λ)(v, θ) = −λv + [g′

(
ūqb(p)

)
− g′(qb)]v

+ c∗−c(ε)
c(ε)

[
L2η(ūqb(p))v − θ − λv

]
, for # = �−, �+

B+
qf,1(p, λ)(v, θ) = −λv + [g′

(
ūqb(p))− g′

(
sL(w̄qb(p), ε)

)
]v

(6.15)

together with

B#
qb,2(p, λ)(v, θ) = ε(v − γθ)− λθ for # = −, �−, �+,+ (6.16)

Proposition 4.2 implies that for some constant C > 0 we have the estimate

‖Bqf(ξ0, ε, λ)‖L(H◦qf ,Hqf )
+ ‖Bqb(ξ0, ε, λ)‖L(H◦qb,Hqb) ≤ C[εξ0 + |λ|+ e−η∗ξ0 ], (6.17)

which holds for all ξ0 ≥ ξ∗.

Lemma 6.1. Fix any sufficiently large constant ξ∗ and sufficiently small δeε > 0. Choose any ξ0 ≥ ξ∗.
Then for any p = (ξ0, ε) ∈ Dp(ξ∗, δε̃), there exist bounded linear operators

Lqf(p) : Hqf × C→ H◦qf ,

Lqb(p) : Hqb × C→ H◦qb,
(6.18)

such that for any gqf = (g−qf , g
�
qf , g

+
qf) ∈ Hqf , gqb = (g−qf , g

�−
qf , g

�+
qf , g

+
qf) ∈ Hqb and κ̃f , κ̃b ∈ C, the sets

of functions

hqf = Lqf(p)(gqf , κ̃f ) ∈ H◦qf , hqb = Lqb(p)(gqb, κ̃b) ∈ H◦qb, (6.19)

written as (6.7), are the unique sets that satisfy the following properties.

(i) The linear systems

Λ#
qf(p)(v

#
qf , θ

#
qf) = (−θ#

qf , 0) + g#
qf , # = −, �,+,

Λ#
qb(p)(v#

qb, θ
#
qb) = (−θ#

qb, 0) + g#
qb, # = −, �−, �+,+

(6.20)

are all satisfied.

(ii) The continuity conditions θ−qf(0) = θ�qf(0), θ�qf(ξ0) = θ+
qf(ξ0), θ−qb(−ξ0) = θ�−qb (−ξ0), θ�−qb (0) =

θ�+qb (0) and θ�+qb (ξ0) = θ+
qb(ξ0) all hold.

(iii) The continuity conditions

evξ0v
�
qf = evξ0v

+
qf , ev−ξ0v

−
qb = ev−ξ0v

�−
qb , evξ0v

�+
qb = evξ0v

+
qb (6.21)

all hold.

(iv) We have the jump conditions

ev0[e2ηv
−
qf − e2ηv

�
qf ] ∈ Γf , ev0[e2ηv

�−
qb − e2ηv

�+
qb ] ∈ Γb. (6.22)
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(v) We have the boundary conditions

ΠBf ev0 e2η v
−
qf = ΠBf ev0 e2η v

�
qf = κ̃fev0 q

′
f ,

ΠBbev0 e2η v
�−
qb = ΠBbev0 e2η v

�+
qb = κ̃bev0 q

′
b.

(6.23)

In addition, there exists a constant N1 > 0 such that for any ζ > δε̃N1, the maps

ε 7→
{
Lqf(ξ0, ε) ∈ L

(
Hqf × C,H◦qf,2ζ

)
Lqb(ξ0, ε) ∈ L

(
Hqb × C,H◦qb,2ζ

) (6.24)

are C2-smooth. For some constant C > 0 we have the estimates

‖Lqf(ξ0, ε)‖L(Hqf×C,H◦qf )
+ ‖Lqb(ξ0, ε)‖L(Hqb×C,H◦qb) ≤ C,

‖DεLqf(ξ0, ε)‖L(Hqf×C,H◦qf,ζ) + ‖DεLqb(ξ0, ε)‖L(Hqb×C,H◦qb,ζ) ≤ Cξ0,∥∥D2
εLqf(ξ0, ε)

∥∥
L(Hqf×C,H◦qf,2ζ)

+
∥∥D2

εLqb(ξ0, ε)
∥∥
L(Hqb×C,H◦qb,2ζ)

≤ Cξ2
0 ,

(6.25)

which hold for all (ξ0, ε) ∈ Dp. Finally, consider any df ∈ K∗f and db ∈ K∗b . Then the following
identities hold for the gaps at zero,

〈ev0 df , ev0 e2η [v−qf − v�qf ]〉 =
∫ 0

−∞ df (ξ′)∗e2ηξ′g−qf,1(ξ′) dξ′ +
∫ ξ0

0
df (ξ′)∗e2ηξ′g�qf,1(ξ′) dξ′

− 1
c(ε)

∫ 0

−∞ df (ξ′)∗
∫ ξ′
−∞ e2ηξ′′g−qf,2(ξ′′) dξ′′ dξ′

− 1
c(ε)

∫ ξ0
0
df (ξ′)∗[

∫ 0

−∞ e2ηξ′′g−qf,2(ξ′′) dξ′′ +
∫ ξ′

0
e2ηξ′′g�qf,2(ξ′′) dξ′′] dξ′

−〈evξ0df , evξ0e2ηv
�
qf〉,

〈ev0 db, ev0 e2η [v�−qb − v
�+
qb ]〉 =

∫ 0

−ξ0 db(ξ
′)∗e2ηξ′g�−qb,1(ξ′) dξ′ +

∫ ξ0
0
db(ξ′)∗e2ηξ′g�+qb,1(ξ′) dξ′

− 1
c(ε)

∫ 0

−ξ0 db(ξ
′)∗
∫ ξ′
−ξ0 e

2ηξ′′g�−qb,2(ξ′′) dξ′′ dξ′

− 1
c(ε)

∫ ξ0
0
db(ξ′)∗[

∫ 0

−ξ0 e
2ηξ′′g�−qb,2(ξ′′) dξ′′ +

∫ ξ′
0
e2ηξ′′g�+qb,2(ξ′′) dξ′′] dξ′

−〈evξ0db, evξ0e2ηv
�+
qb 〉+ 〈ev−ξ0db, ev−ξ0e2ηv

�−
qb 〉.

(6.26)

Proof. We will only discuss the operators Lqf here, noting that the statements concerning Lqb can
be obtained in a similar fashion. The arguments are very similar to those used in the proof of [21,
Lem. 5.10]. Indeed, we may use [21, Lem. 5.3] to define an operator

[Λ+
1 (p)]−1 : BC−η([ξ0,∞),C)→ BC−η([ξ0 − 1,∞),C) (6.27)

and [21, Lem. 5.7] to define

[Λ−qf,1]−1 : BC−η((−∞, 0],C)→ BC−η((−∞, 1],C),
[Λ�qf,1]−1 : BC0([0, ξ0],C)→ BC0([−1, ξ0 + 1],C),

(6.28)

such that the choice h0 = (v−qf,0, θ
−
qf , v

�
qf,0, θ

�
qf , v

+
qf,0, θ

+
qf) with

θ−qf(ξ) = 1
c(ε)e

−2ηξ
∫ ξ
−∞ e2ηξ′g−qf,2(ξ′) dξ′, v−qf,0 = [Λ−qf,1]−1[g−qf,1 − θ

−
qf ],

θ�qf(ξ) = θ−qf(0)e−2ηξ + 1
c(ε)e

−2ηξ
∫ ξ

0
e2ηξ′g�qf,2(ξ′) dξ′, v�qf,0 = [Λ�qf,1]−1[g�qf,1 − θ�qf ],

θ+
qf(ξ) = θ�qf(ξ0)e−2η(ξ−ξ0) + 1

c(ε)e
−2ηξ

∫ ξ
ξ0
e2ηξ′g+

qf,2(ξ′) dξ′, v+
qf,0 = [Λ+

qf,1(p)]−1[g+
qf,1 − θ

+
qf ],

(6.29)

satisfies items (i) and (ii). We recall that the exponents −1 in (6.27) - (6.28) are used suggestively,
since the relevant homogeneous equations have non-zero solutions. This freedom can be used to
ensure that the remaining properties (iii)-(v) are also satisfied. In particular, we will modify v−qf,0,
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v�qf,0 and v+
qf,0 by choosing ψB� ∈ Bf , ψB− ∈ Bf , ψ bP− ∈ P̂f , ψ bQ� ∈ Q̂f , ψS� ∈ P fb

R,0 and ψQ+ ∈ Qfb
R,0

and writing

v−qf = v−qf,0 + e−2ηE
P−(ψB− + ψ

bP−),
v�qf = v�qf,0 + e−2ηE

Q�(ψB� + ψ
bQ�) + e−2ηE

S�(p)ψS�,
v+

qf = v+
qf,0 + e−2ηE

Q+(p)ψQ+,

(6.30)

in which the extension operators EP−, EQ� and ES� are relabelled versions of those defined in [21,
Lem. 5.9] for the unweighted linearizations (3.15). In addition, EQ+ is constructed from the operator
Efb
R,0 appearing in [21, Lem. 5.5], again for the unweighted linearization (3.15).

In terms of these new variables, the continuity condition (iii) can be written as

φP = ψS� + ΠP fb
R,0

evξ0E
Q�(ψB� + ψ

bQ�)−ΠP fb
R,0

evξ0E
Q+(p)ψQ+,

φQ = ψQ+ −ΠQfb
R,0

evξ0E
Q�(ψB� + ψ

bQ�) + ΠQfb
R,0

evξ0E
S�ψS�,

(6.31)

in which

φP = −ΠP fb
R,0

evξ0e2ηv
�
qf,0 + ΠP fb

R,0
evξ0e2ηv

+
qf,0,

φQ = +ΠQfb
R,0

evξ0e2ηv
�
qf,0 −ΠQfb

R,0
evξ0e2ηv

+
qf,0.

(6.32)

Conditions (iv) and (v) are equivalent to the system

−ΠBf ev0 e2η v
−
qf,0 + κ̃fev0 q

′
f = ψB−,

−ΠBf ev0 e2η v
�
qf,0 + κ̃fev0 q

′
f = ψB� + ΠBf ev0E

S�ψS�,

−Π bPf ev0e2η

(
v−qf,0 − v�qf,0

)
= ψ

bP− −Π bPf ev0E
S�ψS�,

Π bQf ev0 e2η

(
v−qf,0 − v�qf,0

)
= ψ

bQ� + Π bQf ev0E
S�ψS�.

(6.33)

Inspection of the system (6.31)-(6.33) readily shows that for sufficiently large ξ∗ and sufficiently small
δε̃, the right hand side is close to the identity matrix, allowing the system to be solved. To complete
the proof, observe that the integral expressions (6.26) follow from (3.36), while the smoothness of
the maps (6.24) follows from [21, Lem. 5.3 and 5.5].

In order to construct the functions (u±qf , wqf) featuring in Proposition 5.5, it now suffices to solve
the fixed point problem

hqf = Lqf(p)(B−qf(p, λ)hqf , B
�
qf(p, λ)hqf , B

+
qf(p, λ)hqf , 0

)
+ L1(ξ0, ε)(0, 1), (6.34)

for (ξ0, ε) ∈ Dp(ξ∗, δε̃) and |λ| < δλ. In view of the bound (6.17), the constants ξ∗, δε̃ and δλ can be
chosen in such a way that this problem has a unique solution which we will denote by h∗qf(ξ0, ε, λ).
The triplet (u−qf , u

+
qf , wqf) can subsequently be constructed from h∗qf using (6.8) - (6.9). Of course, a

similar construction can be used to obtain the corresponding functions h∗qb and (u−qb, u
+
qb, wqb).

It remains to establish the Melnikov identities (5.5). To this end, notice that h∗qf(ξ0, 0, 0) =
e−2ηq

′
f . An easy computation now shows that the identities

[DλB
#
qf,1(ξ0, 0, 0)]h∗qf(ξ0, 0, 0) = −e−2ηq

′
f , [DλB

#
qf,2(ξ0, 0, 0)]h∗qf(ξ0, 0, 0) = 0 (6.35)

hold for # = −, �. The Melnikov identity in (5.35) for Mf,λ now follows easily from (6.26). Turning
to Mf,ε, we observe that

[DεB
#
qf,1(ξ0, 0, 0)]h∗qf(ξ0, 0, 0) = e−2η[g′′(qf )Dεūqf(ξ0, 0)q′f − c−1

∗ Dεc(0)L(qf )q′f ],
= e−2η[g′′(qf )Dεūqf(ξ0, 0)q′f −Dεc(0)q′′f ],

[DεB
#
qf,2(ξ0, 0, 0)]h∗qf(ξ0, 0, 0) = e−2ηq

′
f ,

(6.36)
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for both # = −, �. By definition, we also have

c(ε)ū′′qf(ξ0, ε) = L(ūqf(ξ0, ε))ū′qf(ξ0, ε)− w̄′qf(ξ0, ε),
c(ε)w̄′qf(ξ0, ε) = ε

(
ūqf(ξ0, ε)− γw̄qf(ξ0, ε)

)
.

(6.37)

Differentiating these identities with respect to ε and evaluating them at ε = 0, we find

c∗Dεw̄
′
qf(ξ0, 0) = qf (6.38)

and also

ΛfDεū
′
qf(ξ0, 0) = g′′(qf )Dεūqf(ξ0, 0)q′f −Dεc(0)q′′f − c−1

∗ qf (6.39)

Using (6.26) we now compute

Mf,ε =
∫∞
−∞ df (ξ)∗

[
g′′
(
qf (ξ)

)
Dεūqf(ξ0, 0)(ξ)q′f (ξ)−Dεc(0)q′′f (ξ)− c−1

∗ qf (ξ)
]
dξ

= 0,
(6.40)

in which the second identity follows from the fact that df ∈ K∗f .
The Melnikov identity in (5.35) for Mb,λ follows from the computation

[DλB
#
qb,1(ξ0, 0, 0)]h∗qb(ξ0, 0, 0) = −e−2ηq

′
b, [DλB

#
qb,2(ξ0, 0, 0)]h∗qb(ξ0, 0, 0) = 0 (6.41)

which holds for # = �−, �+. To compute Mb,ε, note that

[DεB
#
qb,1(ξ0, 0, 0)]h∗qb(ξ0, 0, 0) = e−2η[g′′(qb)Dεūqb(ξ0, 0)q′b − c−1

∗ Dεc(0)L(qb)q′b]
= e−2η[g′′(qb)Dεūqb(ξ0, 0)q′b −Dεc(0)L(qb)q′′b ],

[DεB
#
qb,2(ξ0, 0, 0)]h∗qb(ξ0, 0, 0) = e−2ηq

′
b,

(6.42)

again for # = �−, �+. As above, we recall the definitions

c(ε)ū′′qb(ξ0, ε) = L(ūqb(ξ0, ε))ū′qb(ξ0, ε)− w̄′qb(ξ0, ε)
c(ε)w̄′qb(ξ0, ε) = ε

(
ūqb(ξ0, ε)− γw̄qb(ξ0, ε)

) (6.43)

and differentiate with respect to ε. Evaluating the result at ε = 0, we find

c∗Dεw̄
′
qb(ξ0, 0) = qb − γw∗ (6.44)

and also

ΛbDεū
′
qb(ξ0, 0) = g′′(qb)Dεūqb(ξ0, 0)q′b −Dεc(0)q′′b − c−1

∗ [qb − γw∗], (6.45)

which allows us to compute

Mb,ε =
∫∞
−∞ db(ξ)∗

[
g′′
(
qb(ξ)

)
Dεūqb(ξ0, 0)(ξ)q′b(ξ)−Dεc(0)q′′b (ξ)− c−1

∗ [qb(ξ)− s̃R(w∗)]
]
dξ

= 1
c∗

∫∞
−∞ db(ξ)∗[s̃R(w∗)− γw∗]dξ.

(6.46)

With these calculations the proof of Proposition 5.5 is complete.
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6.2 Region R1: Exchange Lemma

In this part we set out to prove Proposition 5.6. We will reuse many of the function spaces from the
previous section, but we will also need the families

BC⊕qsf,β = {(v, θ) ∈ C([ξ0 − 1, 1
2T + 1],C)× C([ξ0, 1

2T ],C) for which
‖(v, θ)‖BC⊕qsf,β

:= supξ0−1≤ξ≤ 1
2T+1 e−β|ξ−ξ0| |v(ξ)|

+ supξ0≤ξ≤ 1
2T

e−β|ξ−ξ0| |θ(ξ)| <∞},
BC	qsb,β = {(v, θ) ∈ C([− 1

2T − 1,−ξ0 + 1],C)× C([− 1
2T,−ξ0],C) for which

‖(v, θ)‖BC	qsb,β
:= sup− 1

2T−1≤ξ≤−ξ0+1 e−β|ξ+ξ0| |v(ξ)|
+ sup− 1

2T≤ξ≤−ξ0
e−β|ξ+ξ0| |θ(ξ)| <∞},

(6.47)

together with

BC+
qsf,β = {(v, θ) ∈ C([ξ0, 1

2T ],C)× C([ξ0, 1
2T ],C) for which

‖(v, θ)‖BC+
qsf,β

:= supξ0≤ξ≤ 1
2T

e−β|ξ−ξ0|(|v(ξ)|+ |θ(ξ)|) <∞},
BC−qsb,β = {(v, θ) ∈ C([− 1

2T,−ξ0],C)× C([− 1
2T,−ξ0],C) for which

‖(v, θ)‖BC−qsb,β
:= sup− 1

2T≤ξ≤−ξ0
e−β|ξ+ξ0|(|v(ξ)|+ |θ(ξ)|) <∞},

(6.48)

that are both parametrized by β ∈ R.
We also introduce the family of composite function spaces

H◦qs,ζ = BC	qf,−η ×BC
�
qf ×BC

⊕
qsf,η ×BC

	
qsb,η ×BC

�−
qb ×BC

�+
qb ×BC

⊕
qb,−η+ζ , (6.49)

parametrized by ζ ≥ 0, together with

Hqs = BC−qf,−η ×BC
�
qf ×BC+

qsf,η ×BC
−
qsb,η ×BC

�−
qb ×BC

�+
qb ×BC

+
qb,−η, (6.50)

It is important to note that we are using positive weights in the function spaces that describe the
passage near MR. This will allow us to establish the exponential estimates in (5.43).

Our goal is to find

hqs =
(
v−f , θ

−
f , v

�
f , θ
�
f , v

+
f , θ

+
f , v

−
b , θ

−
b , v

�−
b , θ�−b , v�+b , θ�+b , v+

b , θ
+
b

)
∈ H◦qs, (6.51)

such that the choices

wqs(ξ) =



wqf(ξ0, T sl/T, λ)(ξ) + θ−f (ξ) for ξ ≤ 0,
wqf(ξ0, T sl/T, λ)(ξ) + θ�f (ξ) for 0 ≤ ξ ≤ ξ0,
wqf(ξ0, T sl/T, λ)(ξ) + θ+

f (ξ) for ξ0 ≤ ξ ≤ 1
2T,

wqb(ξ0, T sl/T, λ)(ξ − T ) + θ−b (ξ − T ) for 1
2T ≤ ξ ≤ T − ξ0,

wqb(ξ0, T sl/T, λ)(ξ − T ) + θ�−b (ξ − T ) for T − ξ0 ≤ ξ ≤ T,
wqb(ξ0, T sl/T, λ)(ξ − T ) + θ�+b (ξ − T ) for T ≤ ξ ≤ T + ξ0,
wqb(ξ0, T sl/T, λ)(ξ − T ) + θ+

b (ξ − T ) for ξ ≥ T + ξ0,

(6.52)

in combination with uqsf = u−qf(ξ0, T
sl/T, λ) + v−f and

uqsb(ξ) =
{
u+

qb(ξ0, T sl/T, λ)(ξ − T ) + v�+b (ξ − T ) for T − 1 ≤ ξ ≤ T + ξ0,

u+
qb(ξ0, T sl/T, λ)(ξ − T ) + v+

b (ξ − T ) for ξ ≥ T + ξ0,

uqsx(ξ) =


u+

qf(ξ0, T
sl/T, λ)(ξ) + v�f (ξ) for − 1 ≤ ξ ≤ ξ0,

u+
qf(ξ0, T

sl/T, λ)(ξ) + v+
f (ξ) for ξ0 ≤ ξ ≤ 1

2T,

u−qb(ξ0, T sl/T, λ)(ξ − T ) + v−b (ξ − T ) for 1
2T ≤ ξ ≤ T − ξ0,

u−qb(ξ0, T sl/T, λ)(ξ − T ) + v�−b (ξ − T ) for T − ξ0 ≤ ξ ≤ T

(6.53)
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satisfies the conditions of Proposition 5.6.
Plugging this Ansatz into (5.37), we find that we must solve the equations

Λ#
qsf(ω)(v#

f , θ
#
f ) := (Λ#

qsf,1(ω)v#
f , c(ω)(D + 2η)θ#

f )
= (−θ#

f , 0) +B#
qsf(ω, λ)(v#

f , θ
#
f )− λ(v#

f , θ
#
f ) +M#

qsf(ω, λ)κ̃f
(6.54)

for # = −, �,+, together with

Λ#
qsb(ω)(v#

b , θ
#
b ) :=

(
Λ#

qsb,1(ω)v#
b , c(ω)(D + 2η)θ#

b

)
= (−θ#

b , 0) +B#
qsb(ω, λ)(v#

b , θ
#
b )− λ(v#

b , θ
#
b ) +M#

qsb(ω, λ)κ̃b
(6.55)

for # = −, �−, �+,+. Here we have

Λ#
qsf,1(ω)v = c∗(D + 2η)v − L

(
qf
)
v, for # = −, �,

Λ+
qsf,1(ω)v = c(ω)(D + 2η)v − L

(
sR(w̄qs(ω), ε)

)
v

Λ−qsb,1(ω)v = c(ω)(D + 2η)v − L
(
sR(w̄qs(ω), ε)

)
v

Λ#
qsb,1(ω)v = c∗(D + 2η)v − L

(
qb
)
v, for # = �−, �+

Λ+
qsb,1(ω)v = c(ω)(D + 2η)v − L

(
sL(w̄qs(ω), ε)

)
v.

(6.56)

The inhomogeneities are given by

B−qsf,1(ω, λ)(v, θ) = [g′
(
ūqsf(ω)

)
− g′(qf )]v

+ c∗−c(ε)
c(ε)

[
L
(
ūqsf(ω)

)
− θ − λv

]
B�qsf,1(ω, λ)(v, θ) = [g′

(
ūqsx(ω)

)
− g′(qf )]v

+ c∗−c(ε)
c(ε)

[
L
(
ūqsx(ω)

)
− θ − λv

]
B+

qsf,1(ω, λ)(v, θ) = [g′(ūqsx(ω))− g′
(
sR(w̄qs(ω), ε)

)
]v

B−qsb,1(ω, λ)(v, θ) = [g′(ūqsx(ω))− g′
(
sR(w̄qs(ω), ε)

)
]v

B�−qsb,1(ω, λ)(v, θ) = [g′
(
ūqsx(ω)

)
− g′(qb)]v

+ c∗−c(ε)
c(ε)

[
L
(
ūqsx(ω)

)
− θ − λ

]
B�+qsb,1(ω, λ)(v, θ) = [g′

(
ūqsb(ω)

)
− g′(qb)]v

+ c∗−c(ε)
c(ε)

[
L
(
ūqsb(ω)

)
− θ − λ

]
B+

qsb,1(ω, λ)(v, θ) = [g′
(
ūqsb(ω)

)
− g′

(
sL(w̄qs(ω), ε)

)
]v

(6.57)

together with

B#
qsf,2(ω, λ)(v, θ) = ε(v − γθ) for # = −, �,+

B#
qsb,2(ω, λ)(v, θ) = ε(v − γθ) for # = −, �−, �+,+

(6.58)

The reason that we do not include the terms λ(v#
f , θ

#
f ) in the inhomogeneity B#

qsf is to ease our
notation in the next section. We combine these inhomogeneities into the single entity

Bqs =
(
B−qsf , B

�
qsf , B

+
qsf , B

−
qsb, B

�−
qsb, B

�+
qsb, B

+
qsb

)
∈ L(H◦qs,Hqs), (6.59)

Using Propositions 4.2 and 4.3, we obtain the bound

‖Bqs(ω, λ)‖L(H◦qs,Hqs)
≤ C[εξ0 + e−η∗ξ0 + e−

1
2ηT ]. (6.60)

The inhomogeneous terms in (6.54)-(6.55) are given by

M−qsf,1(ω, λ) = [g′
(
ūqsf(ω)

)
− g′(ūqf(ξ0, ε))]uqf(ξ0, ε, λ),

M#
qsf,1(ω, λ) = [g′

(
ūqsx(ω)

)
− g′(ūqf(ξ0, ε))]uqf(ξ0, ε, λ), for # = �,+,

M#
qsb,1(ω, λ) = [g′

(
ūqsx(ω)

)
− g′(ūqb(ξ0, ε))]uqb(ξ0, ε, λ), for # = −, �−,

M#
qsb,1(ω, λ) = [g′

(
ūqsb(ω)

)
− g′(ūqb(ξ0, ε))]uqb(ξ0, ε, λ), for # = �+,+,

(6.61)
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with vanishing second components. Combining these into a single entity

Mqs =
(
M−qsf ,M

�
qsf ,M+

qsf ,M
−
qsb,M

�−
qsb,M

�+
qsb,M

+
qsb

)
∈ Hqs, (6.62)

we may invoke Proposition 4.3 to obtain the estimate

‖Mqs(ω, λ)‖Hqs
+ ‖DT slMqs(ω, λ)‖Hqs

≤ Ce−ηT (6.63)

for some C > 0.

Lemma 6.2. Fix sufficiently large constants ξ∗ and MT and a sufficiently small constant δsl > 0.
Then for any ω = (ξ0, T sl, T ) ∈ Ω = Ω(ξ∗, δsl,MT ), there exists a bounded linear map

Lqs(ω) : Hqs × C([−1, 1],C)× C→ H◦qs (6.64)

such that for any set

gqs = (g−f , g
�
f , g

+
f , g

−
b , g

�−
b , g�+b , g+

b ) ∈ Hqs (6.65)

and any pair of boundary values (φhw, ϑhw) ∈ C([−1, 1],C)× C, the set of functions

hqs = Lqs(ω)(gqs, φhw, ϑhw) ∈ H◦qs, (6.66)

written as (6.51), is the unique set that satisfies the following properties.

(i) The linear system

Λ#
qsf(ω)(v#

f , θ
#
f ) = (−θ#

f , 0) + g#
f (6.67)

is satisfied for # = −, �,+. In addition, the linear system

Λ#
qsb(ω)(v#

b , θ
#
b ) = (−θ#

b , 0) + g#
b (6.68)

is satisfied for # = −, �−, �+,+.

(ii) The continuity conditions θ�f (0) = θ−f (0), θ+
f (ξ0) = θ�f (ξ0), together with θ�−b (−ξ0) = θ−b (−ξ0),

θ�+b (0) = θ�−b (0) and θ+
b (ξ0) = θ�+b (ξ0) all hold.

(iii) The continuity conditions

evξ0v
�
f = evξ0v

+
f , ev−ξ0v

−
b = ev−ξ0v

�−
b and evξ0v

�+
b = evξ0v

+
b . (6.69)

all hold.

(iv) We have the inclusions

ev0 e2η v
−
f , ev0 e2η v

�
f ∈ Γf ⊕ P̂f ⊕ Q̂f ,

ev0 e2η v
�−
b , ev0 e2η v

�+
b ∈ Γb ⊕ P̂b ⊕ Q̂b.

(6.70)

(v) We have the jump conditions

ev0[e2ηv
−
f − e2ηv

�
f ] ∈ Γf ,

ev0[e2ηv
�−
b − e2ηv

�+
f ] ∈ Γb.

(6.71)

(vi) We have the boundary conditions

ev 1
2T
v+
f − ev− 1

2T
v−b = φhw,

θ+
f ( 1

2T )− θ−b (− 1
2T ) = ϑhw.

(6.72)
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Furthermore, there exist a constant ν > 0 of order ν = O((ξ∗MT )−1) such that the map

T sl 7→ Lqs(ξ0, T sl, T ) ∈ L
(
Hqs × C([−1, 1],C)× C,H◦qs,ν

)
(6.73)

is C1-smooth for any (ξ0, T sl, T ) ∈ Ω. In addition, for some C > 0, we have the uniform estimates

‖Lqs(ω)(gqs, φhw, ϑhw)‖H◦qs
≤ C

[
‖g‖H + e−

1
2ηT ‖φhw‖+ e−

1
2ηT |ϑhw|

]
,

‖DT slLqs(ω)(gqs, φhw, ϑhw)‖H◦qs,ν
≤ CeνT

[
‖g‖H + e−

1
2ηT ‖φhw‖+ e−

1
2ηT |ϑhw|

]
,

(6.74)

which hold for all ω ∈ Ω.

Proof. Solving the linear systems in (i) for the θ-variables under the continuity conditions in (ii) and
the boundary condition in (vi), we obtain

θ−f (ξ) = e−2ηξ 1
c(ε)

∫ ξ
−∞ e2ηξ′g−f,2(ξ′) dξ′,

θ�f (ξ) = θ−f (0)e−2ηξ + 1
c(ε)e

−2ηξ
∫ ξ

0
e2ηξ′g�f,2(ξ′) dξ′,

θ+
f (ξ) = θ�f (ξ0)e−2η(ξ−ξ0) + 1

c(ε)e
−2ηξ

∫ ξ
ξ0
e2ηξ′g+

f,2(ξ′) dξ′,

θ−b (ξ) = [ϑhw + θ+
f (ξ0 + T )]e−2η(ξ+ξ0+T ) + 1

c(ε)e
−2ηξ

∫ ξ
−ξ0 e

2ηξ′g−b,2(ξ′) dξ′,

θ�−b (ξ) = θ−b (−ξ0)e−2η(ξ+ξ0) + 1
c(ε)e

−2ηξ
∫ ξ

0
e2ηξ′g�−b,2 (ξ′) dξ′,

θ�+b (ξ) = θ�−b (0)e−2ηξ + 1
c(ε)e

−2ηξ
∫ ξ
ξ0
e2ηξ′g�+b,2 (ξ′) dξ′,

θ+
b (ξ) = θ�+b (ξ0)e−2η(ξ−ξ0) + 1

c(ε)e
−2ηξ

∫ ξ
−∞ e2ηξ′g+

b,2(ξ′) dξ′.

(6.75)

To obtain the accompanying functions (v−f , v
�
f , v

+
f , v

−
b , v

�−
b , v�+b , v+

b ) and complete the proof, we may
now proceed precisely as in the proof of [21, Lem. 6.1].

In order to find the quadruplet (uqsf , uqsx, uqsb, wqs) described in Proposition 5.6, we need to
solve the fixed point problem

hqs = Lqs(ω)
(
− λhqs +Bqs(ω, λ)hqs, 0, 0

)
+Lqs(ω)

(
Mqs(ω, λ)(κ̃f , κ̃b),Φhw(ω, λ)(κ̃f , κ̃b),Θhw(ω, λ)(κ̃f , κ̃b)

)
,

(6.76)

in which we have

Φhw(ω, λ)(κ̃f , κ̃b) = κ̃bev− 1
2T
uqb(ω, λ)− κ̃fev 1

2T
uqf(ω, λ),

Θhw(ω, λ)(κ̃f , κ̃b) = κ̃bwqb(ω, λ)(− 1
2T )− κ̃fwqf(ω, λ)( 1

2T ).
(6.77)

Proposition 5.5 implies that we have the estimates

‖Φhw(ω, λ)(κ̃f , κ̃b)‖+ |Θhw(ω, λ)(κ̃f , κ̃b)| ≤ Ce−
1
2ηT (|κ̃f |+ |κ̃b|),∥∥D(T sl,T,λ)Φhw(ω, λ)(κ̃f , κ̃b)

∥∥+
∣∣D(T sl,T,λ)Θhw(ω, λ)(κ̃f , κ̃b)

∣∣ ≤ Ce−
1
2ηT (|κ̃f |+ |κ̃b|),

(6.78)

for some C > 0. In view of the bound (6.60), the fixed point problem (6.76) can be solved to yield
a map

h∗qs(ω, λ) ∈ L(C2,H◦qs). (6.79)

Using (6.63) and (6.78) we find the estimate∥∥h∗qs(ω, λ)(κ̃f , κ̃b)
∥∥
H◦qs

≤ Ce−ηT (|κ̃f |+ |κ̃b|),∥∥D(T sl,λ)h
∗
qs(ω, λ)(κ̃f , κ̃b)

∥∥
H◦qs,ν

≤ CeνT e−ηT (|κ̃f |+ |κ̃b|).
(6.80)

The differentiability of the functions χ̃f and χ̃b defined in (5.42) with respect to the remaining
variable T can be obtained similarly as in [21, §6]. This completes the proof of Proposition 5.6.
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6.3 Region R2

We now set out to establish Proposition 5.9. In contrast to our approach for R1, we will attempt
to construct potential eigenfunctions in a direct fashion. In particular, we reuse the function spaces
Hqs and H◦qs and set out to characterize sets hqs ∈ H◦qs, that yield solutions to (5.37) by joining the
different segments together.

This means that we must solve the linear system

[Λ#
qsf(ω) + λ](v#

f , θ
#
f ) = (−θ#

f , 0) +B#
qsf(ω, λ)(v#

f , θ
#
f ) (6.81)

for # = −, �,+, together with

[Λ#
qsb(ω) + λ](v#

b , θ
#
b ) = (−θ#

b , 0) +B#
qsb(ω, λ)(v#

b , θ
#
b ) (6.82)

for # = −, �−, �+,+, in which all the operators are the same as in §6.2. We obtain the following
result.

Lemma 6.3. Pick δ0 > 0 to be sufficiently small and consider any λ0 /∈ 2πic∗Z that has Reλ ≥ −δ0.
Then there exist large constants ξ∗ > 0, MT > 0 and a small constant δsl > 0 such that the following
holds true. For any ω = (ξ0, T sl, T ) ∈ Ω(ξ∗, δsl,MT ) there exists a linear map

Lqs,λ0(ω) : Hqs → H◦qs (6.83)

such that for any gqs ∈ Hqs, the set of functions

hqs = Lqs,λ0(ω)(gqs) ∈ H◦qs, (6.84)

written as (6.51), is the unique set that satisfies the following properties.

(i) The linear system

[Λ#
qsf(ω) + λ0](v#

f , θ
#
f ) = (−θ#

f , 0) + g#
f (6.85)

is satisfied for # = −, �,+. In addition, the linear system

[Λ#
qsb(ω) + λ0](v#

b , θ
#
b ) = (−θ#

b , 0) + g#
b (6.86)

is satisfied for # = −, �−, �+,+.

(ii) The following continuity conditions all hold,

ev0v
−
f = ev0v

�
f , θ−f (0) = θ�f (0),

evξ0v
�
f = evξ0v

+
f , θ�f (ξ0) = θ+

f (ξ0),
ev 1

2T
v+
f = ev− 1

2T
v−b , θ+

f ( 1
2T ) = θ−b (− 1

2T ),
ev−ξ0v

−
b = ev−ξ0v

�−
b , θ−b (−ξ0) = θ�−b (−ξ0),

ev0v
�−
b = ev0v

�+
b , θ�−b (0) = θ�+b (0),

evξ0v
�+
b = evξ0v

+
b , θ�+b (ξ0) = θ+

b (ξ0).

(6.87)

This map Lqs,λ0(ω) can be bounded uniformly for ω ∈ Ω.

Proof. We may proceed as in the proof of Lemma 6.2. The only difference is that now

C([−1, 1],C) = Pf,λ ⊕Qf,λ, (6.88)

which means that we can solve the linear systems in (i) with the additional continuity conditions
ev0v

−
f = ev0v

�
f and ev0v

�−
b = ev0v

�+
b .
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Proof of Proposition 5.9. Let us first take λ = λ0. The differential equation (5.37) admits a non-
trivial solution if and only if

hqs = Lqs,λ0(ω)B(ω, λ0)hqs (6.89)

admits a non-trivial solution. In view of the estimate (6.60), this can be prevented by choosing ξ∗,
MT and δsl appropriately. After taking δλ > 0 to be sufficiently small, the same argument works for
all λ ∈ C that have |λ− λ0| < δλ.

7 Discussion

In this paper, we considered the discrete FitzHugh–Nagumo equation

u̇j(t) = α[uj+1(t)− 2uj(t) + uj−1(t)] + g
(
uj(t)

)
− wj(t),

ẇj(t) = ε
(
uj(t)− γwj(t)

)
,

(7.1)

posed on the one-dimensional lattice j ∈ Z with the cubic g(u) = g(u ; a) = u(1 − u)(u − a). We
established that for all sufficiently small ε > 0, the travelling pulse

(uj , wj)(t) =
(
ū(ε), w̄(ε)

)(
j + c(ε)t

)
(7.2)

that was constructed in our previous paper [21] is nonlinearly stable with an asymptotic phase. To
prove this result, we considered the eigenvalue system

c(ε)u′(ξ) = α[u(ξ − 1) + u(ξ + 1)− 2u(ξ)] + g′
(
ū(ε)(ξ)

)
u(ξ)− w(ξ)− λu(ξ),

c(ε)w′(ξ) = ε
(
u(ξ)− γw(ξ)

)
− λw(ξ). (7.3)

For an appropriate fixed choice of 0 < η � 1, we proved that (7.3) has, for each λ near zero and each
0 < ε � 1, a unique (up to normalization) solution of the form (u,w)(ξ) = e2ηξ(ũ(ξ), w̃(ξ)) such
that (ũ, w̃) is bounded and piecewise differentiable with at most two jump discontinuities. These
potential eigenfunctions (u,w)(ξ) always decay to zero as ξ → −∞, and they also decay as ξ →∞
provided λ is to the right of the essential spectrum associated with the pulse; if λ lies to the left
of the essential spectrum, the solutions (u,w)(ξ) will, in general, grow exponentially as ξ → ∞.
Equations (5.44) and (5.45) show that the two jumps of (u,w) vanish, so that (u,w) is a solution of
(7.3) on R, if and only if the linear system(

λMf,λ +O(λ2 + ε(|ε|+ |λ|)| ln ε|) e−2ηTO(e−β/ε)
e2ηTO(e−β/ε) λMb,λ + εMb,ε +O(λ2 + ε(|ε|+ |λ|)| ln ε|)

)(
κf
κb

)
= 0 (7.4)

has a nontrivial solution (κf , κb), where Mf,λ < 0 and Mb,λ,Mb,ε > 0 are the constants defined in
(5.35), β, η > 0, and T ≥ δ/ε is the width of the pulse profile. Clearly, the determinant of (7.4)
will vanish for precisely two values of λ near zero: one of these root is λ = 0, which we know is an
eigenvalue due to translational invariance of the travelling-wave equation or, alternatively, from the
fact that travelling waves are relative periodic orbits of the lattice system (7.1). The second root is
given by

λ2(ε) = −εMb,ε(1 + o(1))
Mb,λ

, (7.5)

which lies in the open left half-plane. Since the rightmost part of the essential spectrum associated
with the linearization about the travelling pulse, which is given in (5.7) by

λess(ν, ε) = −iνc− ε
(
γ +

1
a+ 2α(1− cos ν)

)
+O(ε2), ν ∈ R, (7.6)
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Fig. 12: Plot of the speeds at which λ2 and the essential spectrum move to the left at ε = 0. In both graphs,
we used α = 0.1. In the left graph, we chose γ = 2(a − 1)−2, while γ = 3.999(a − 1)−2 in the right graph.
The functions q′b and db appearing in (5.35) were computed using the numerical procedure described in [22].
The labels (i), (ii) and (iii) correspond to the different cases shown in Figure 2.

also lies in the open left half-plane when ε > 0, the pulse is spectrally stable, and therefore nonlinearly
stable on account of the results reviewed in §2. Due to the decay properties of the solutions (u,w)
associated with λ2 that we discussed above, we refer to λ2 as an eigenvalue or a resonance pole
depending on whether its lies respectively to the right or left of the essential spectrum.

We now comment on the interpretation of these results for the dynamics of the discrete FitzHugh–
Nagumo equation (7.1) near the travelling pulse. Nonlinear stability implies that small perturbations
of the initial pulse profile will decay to zero exponentially as t → ∞, though the final profile may
experience a small phase shift. One interesting question is whether we can say more about how small
perturbations decay to zero. This question is linked to the spectrum of the pulse that we discussed
above, since the leading-order decay of perturbations should be governed by the spectral element
closest to the imaginary axis. Thus, we first discuss whether λ2 lies to right or left of the curve λess

of essential spectrum, and we refer to Figure 2 for the possible cases that may occur. Using (7.5)
and (7.6), we see that λ2(ε) and λess(ν, ε) satisfy

−∂ελ2(0) = M−1
b,λMb,ε,

−∂ελess(0, 0) = γ + 1
a ,

−∂ελess(π, 0) = γ + 1
a+4α .

(7.7)

The location of λ2 is therefore determined by the Melnikov integrals Mb,ε and Mb,λ given in (5.35)
that require knowledge of the Nagumo front and back. The latter are not known explicitly, and
we therefore used the numerical method described in [22] to calculate them. The results are shown
in Figure 12. In particular, we find that all three scenarios depicted in Figure 2 can be realized
depending on the values of (a, γ). However, the situation in which λ2 is a resonant pole seems to be
prevalent.

If λ2 lies to the right of the essential spectrum, our results tie in well with the intuition that the
fast pulse could be considered as a bound state of the Nagumo front qf and the back qb. Indeed, our
analysis in Proposition 5.6 and the paragraphs following it shows that the eigenfunction associated
with λ2 is found by gluing together κfq′f and κbq

′
b, where the amplitudes (κf , κb) satisfy (7.4) with

λ = λ2. In particular, it is easy to see that

(κf , κb) =
(

1
ε
e−2ηTO(e−β/ε), 1

)
,
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so that the eigenfunction associated with λ2 is centered on the back: if a perturbation excites only
this eigenfunction, that is, if the perturbation changes the position of the back only, then the back
will move back to its original position, with exponential rate λ2, without interacting with the front.
Other perturbations will lead to both a translation of the pulse profile and a movement of the back
relative to the front.

If λ2 does not lie to the right of the essential spectrum, the situation is less clear. On the linear
level, the essential spectrum corresponds to modes that, relative to the pulse profile, transport
localized perturbations of the background state (u,w) = 0 to the right towards j = ∞. Thus, if
λ2 is an eigenvalue, and not a resonance pole, we might expect that its effect will still be felt as it
affects the relative position of the front and the back that make up the pulse profile. We do not have
much intuition into what happens when λ2 is a resonance pole. Perhaps the best way to approach
either of these two remaining cases is to consider them for the FitzHugh–Nagumo PDE (1.11) using
pointwise estimates via Green’s functions. On the level of the Green’s function, the effects of point
and essential spectrum can be separated, and the question is then whether a similar analysis can be
carried on the nonlinear level for sufficiently localized perturbations.
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