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Signal Propagation through Nerves

Nerve fibres carry signals over large distances (meter range).

Signal propagation
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e Fiber has myeline coating with periodic gaps called nodes of Ranvier .
e Fast propagation in coated regions, but signal loses strength rapidly (mm-range)
e Slow propagation in gaps, but signal chemically reinforced.



Signal Propagation: The Model

One is interested in the potential U; at the node sites.

Y, Uy U,

Signals appear to "hop” from one node to the next [Lillie, 1925].
lonic current has sodium and potassium component.

Electro-chemical analysis leads to the two component LDE [Keener and Sneyd,
1998]

Ui(t) = Ujra(t) + Uj_a(t) — 205(t) + g(Uj(t); a) — Wi(t),
Wi(t) = €e[U;(t) — yW;(t)],

posed on a 1-dimension lattice, i.e. j € Z.

Potassium recovery encoded in second equation.



Signal Propagation: Nonlinearity

Recall the dynamics:

Uj(t) = Ujra(t) + Uj_a1(t) = 205(t) + g(Uj(t); a) — Wy(t),
Wi(t) = €e[U;(t) — yW;(t)].

U= yw
Bistable nonlinearity g given by

g(u;a) = ula —u)(u—1).
[\
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W = g(u;a) for w # 0.




Signal Propagation: FitzHugh-Nagumo PDE

The discrete FitzHugh-Nagumo system arises by discretizing the FH-N PDE

Ut — Ua:a: + g(U; CL) — Wa
Wt = E[U —"}/W]

e Many authors have studied this equation.
e Starting point: travelling wave Ansatz

(U,W)(x,t) = (u,w)(x + ct).

This Ansatz yields the ODE

u o= v,
v = v —g(uja) + w,
w' = f(u—yw).

This slow-fast system has served as a prototype for development of geometric
singular perturbation theory.



Signal Propagation: FitzHugh-Nagumo PDE

Choosing € = 0, we find

u o= v,
/ _ .

v = o —g(u;a) + w,

w = 0,

admitting an equilibria-manifold M = (u, 0, g(u; a)).

Write po = (0,0,0) and p; = (1,0,0) and choose pg € M C M and
p1 € Mgr C M; avoiding knees of the cubic.




Signal Propagation: FitzHugh-Nagumo PDE

Heteroclinics pg — p1 must solve

/

U v,
/

v = cw—yg(usa),

and satisfy u(—o00) = 0 and u(+00) = 1.

These correspond to travelling pulses of the Nagumo PDE

Ut — Uxx + g(U; (I).

A

1
a= =
2 Existence of such pulses is well-known:
explicit calculations are possible for the
C cubic g.
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Signal Propagation: FitzHugh-Nagumo PDE

Fix 0 <a < %; there exists wave speed c, and front g;:

W
U

ML\ = _\ ,
Po P1

We now need to go back from Mgz to M7y,

Cubic is mirror symmetric around inflection point — there exists w, and profile
g connecting Mg to M, for same wave speed c = c,.



Signal Propagation: FitzHugh-Nagumo PDE

Connecting the pieces we find a fast [c, > 0] singular homoclinic orbit I'Z.

Ffs

MLMR

Classic Theorem: For sufficiently small € > 0, there is a [locally unique]| travelling
pulse solution to FH-N PDE that winds around I’BS once, with wavespeed ¢ < c,.



Signal Propagation: FitzHugh-Nagumo PDE

e First proofs given by Carpenter and Hastings [1976].
e ‘Modern’ proof developed by Jones and coworkers based on transverse
intersection of manifolds W*(0) and W#%(Mp).

dy

M,

=
TN

Main difficulty: track W¥(0) as it spends time O(e near Mp.
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FitzHugh-Nagumo PDE: Exchange Lemma

Exchange Lemma is key tool to track W*(0) near M.

Fenichel coordinates:

= —A%(x,y,2)x
y = A%z,y,2)y
2 = el + Blz,y, 2)zyl,

with A%, A% > n > 0; A®°, A%, B smooth
and bounded.

e Fix small A > 0.
e Pick zp € R, T large and € > 0 small
e Find solution with

z(0)=A4A,  2(0)=2, yT)=A
e Exchange Lemma: unique solution exists, bounds:

[y(0)] + |2(T)| + |2(T) — 20 — €T| = O(e™™)
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FitzHugh-Nagumo PDE: Exchange Lemma

The problem can now be decomposed into two parts:

Wwr0)N {z=A} .

e Intersection W*(0) N {x = A} can be studied separately from intersection
WS (Mp) N{y = A}

e Melnikov identities yield signs of D W"(0) etc.

e Exchange Lemma used to link pieces together.
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FitzHugh-Nagumo PDE: Slow Pulses

Recall the travelling wave ODE

u/

U?
v = cv—g(u;a) +w,

w’ S(u —yw).

In the singular limit ¢ — 0 and £ — 0, one finds an additional slow-singular orbit

sl
T,
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FitzHugh-Nagumo PDE: Status

Conjecture [Yanagida]: fast and slow branches are connected.

E stability
exchange
- - ‘ oy ~000 .
¥ 4 NG
e . . & Cx
¢ inclination L N
U4 flip \ S

FSl €N Ff C

e Sandstede, Krupa, Szmolyan (1997): for a ~ % conjecture is true.
Inclination-flip somewhere along connecting curve.

e Jones, Yanagida (1984): fast waves are asymptotically stable for full PDE.

e Flores (1991): slow waves are unstable.

e Sandstede: stability change at maximum of curve.
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Discrete FitzHugh-Nagumo LDE

We return to the discrete FitzHugh-Nagumo system

Uj(t) = Ujra(t) + Uj_a(t) — 205(t) + g(Uj(t); a) — Wy(t),
Wi(t) = €e[U;(t) — yW;(t)].

Travelling wave Ansatz (U;, W;)(t) = (u,w)(j + ct) leads to

cu'(§) = u(@+1)+ul@—1)—=2u(l) +g(u(§);a) —w(E),
cw'(§) = efu(§) —yw(§)].

This is a singularly perturbed functional differential equation of mixed type
(MFDE).
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Discrete FitzHugh-Nagumo - Previous work

Two main directions for previous work on discrete FitzHugh-Nagumo LDE

Ui(t) = Ujra(t) + Uj—1(t) — 205(t) + g(U;(); @) — W (2),
Wi(t) = €lUs(t) —yW;(t)].

e Rigorous results for specially prepared nonlinearities

— Chen + Hastings: nonlinearity vanishes identically on critical regions of U

and W.
— Tonnelier; Elmer and Van Vleck: explicit calculations with Fourier series for

McKean sawtooth caricature:

A

>
0 a 1\

e Carpio and coworkers: formal results using asymptotic techniques.
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Discrete FitzHugh-Nagumo LDE

For ¢ = 0 and w = 0, we obtain the discrete Nagumo LDE
Uj(t) = a[Uj1(t) + U1 (t) — 2U;(8)] + g(Uj(t); a),

with travelling pulse MFDE

e (€) = afu(€ + 1) + u(€ — 1) — 2u(€)] + g(u(&); a).

a

e This problem becomes singular in the
¢ — 0 limit, In contrast with the
Nagumo PDE case.

DO | —

e Keener (1987) + Mallet-Paret (1999):
pick « > 0 small; ¢ = 0 for a in

C nonempty interval [a., 1].
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Discrete FitzHugh-Nagumo LDE - Propagation failure

Travelling waves for the discrete Nagumo equation

[« = 0.1] connecting 0 — 1.

1.0 - 1.0 -
o\
0\
0.8 0.8
0\
°

0.6 0.6

\~

—~ o~ - ®

MS (& :

Nt %

=3 ©
0.4 - 0.4
\.\
0\
0.2 0.2 -
.\
°
0.0 0.0
1 T T T T " T T T T T T T T 1 e s e
12 -10 8 6 -4 -2 0 2 4 6 -0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20

C

e Note that ¢ = 0 for all a € [0.46,0.54]. Propagation failure!
e Observe the discontinuities in the wave profiles in this region.
e Gaps cause "energy barrier’ that signal must overcome.
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Discrete FitzHugh-Nagumo LDE - Fast Pulses

e Focus on fast-solutions to discrete FHN bifurcating from I'Z,

cu'(§) = ul@+1)+ul€—1)=2u(§) + g(u(§); a) —w(§),
cw'(§) = efu(§) —yw(g)].

e Unclear how to treat slow-solutions in propagation failure regime.

eveu € C([—1,1], R)
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Mixed Type Functional Differential Equations (MFDEs)

Let us first study the Nagumo travelling wave MFDE

W(€) = u(E + 1)+ u(€ — 1) — 2u(€) + g (u(€); a).
Theory for MFDEs started developing ~ 10 years ago.
MFDEs generalize delay equations, e.g.
u'(§) = u(€ — 1) + g(u(§)),
which have been used for more than half a century.
Time lags naturally in many modelling applications.

Delay equations: functional-analytic setup developed in past three decades.

20



MFDEs

Recall our prototype MFDE

0 (€) = u(€ + 1) +ul€ — 1) — 2u(€) + g (u(e); a).

Such equations differ from ODEs and delay equations in a fundamental way.

M

-1

1

Problem |: Statespace is infinite dimensional: need to specify an initial function on

~1,1].

21



Problem Il: lll-posedness

Consider the homogeneous MFDE

initial state
*
+1:
- M _’1"'_|.+1 """"""" _|f'3 """"""""""" )
_1%

(Example due to Rustichini )
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Problem Il: lll-posedness

Consider the homogeneous MFDE

v'(§) =v(€—1) +u(+1).

V(&) =0,v(&1)=1 => v(&+1) =-1
Initial state  °.

/"
\

+1i
-------------- g

e Continuity lost = ill-defined as an initial value problem.

23



lll-posedness: What is going on?

[ ° NE o [
e = e
\ o i o /
° ‘ °
: Substitution of e?¢ into
° E °
o P e o(€) = v(€ — 1) + v(é + 1),
"""""""""""" ;"""""""""""T:E'enz yields the characteristic
o o equation
° ; ° Alz)  =z—e *—e*=0.
o) : o
° : °
° : °

e The problem is infinite dimensional (as for delay equations).
e There is no exponential bound possible for solutions, at both +o0o (unlike delay
equations)!
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Exponential Dichotomies

Exponential dichotomies are the method of choice for ill-posed problems. Consider
the linearization around some function g,

V(€) =v(€+1) (€ —1) —20(§) + g'(a(§))v(E).

A

0 g
H. + Verduyn Lunel (2008): For £ > 0, we have C(|—1,1],R) = Q(&) & S(&).

Exponential decay for forward-solutions and backward-solutions.
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Exponential Dichotomies - Inhomogeneous system

Consider the inhomogeneous system

V(€) =v(§+1) +u(§ = 1) —2v(8) + ¢'(a(§))v(&) + f(£).

Recall the splitting C([—1,1],R) = Q(&) ® S(&).

Usually, exponential dichotomies can be used to construct a variation-of-constants
formula

; ;
’UN/ T(fS,ﬁ’)HQ<£f)f(£')d€'+/ T(&, &N s e f(£)dE,
0

©.@)
where T" should be seen as an evolution operator.

However, since f : R — C™ does not map into the state space C'([—1, 1))
complications arise.

e Delay equations: sun-star calculus based upon semigroup properties
e Mixed type equations: unclear how to mimic this construction for C'(|—1, 1]).
Possibilities on space L?([—1,1]), but technical complications.
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Inhomogeneous systems

Mallet-Paret (1998) considered operator A : BC1(R,R) — BC(R,R),

[Av)(€) = v'(€) — (€ + 1) +v(§ — 1) — 20(§)] — ¢’ (a(§))v (&)

e A is a Fredholm operator:

— Kernel is finite dimensional
— Range is closed and has finite dimensional codimension

e Range R(A) can be explicitly characterized:
()—{fEBCRR|/ f(&)dE =0 for all d € KL(A™)},

with adjoint given by

[A™0](§) = v'(§) + [v(€+1) +v(§ — 1) — 20(§)] + ¢'(a(£)) v(§).
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Inhomogeneous systems - ||

In general R(A) # BC(R,R), with again

[Av)(€) = v'(€) — (€ + 1) +v(§ — 1) — 20(§)] — ¢’ (a(§))v (&)

Important property Any solution to A*v = 0 with evgv = 0 for some &, has
v = 0 everywhere.

f
L,/\./\/\
modified f -
0

For any f, solve Av = f on [0, 0), by modifying f on R_.
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The program

Recall the singularly perturbed MFDE

cu'(§) = u(@+1)+u(€—1)—2u(l) +g(u(f); a) —w(f),
cw'(§) = efu(§) —yw(§)].

Main goal: lift geometric singular perturbation theory to MFDEs.

e Persistence of slow manifold Mg for € > 0O relies on Fenichel's first thm.

e Almost every proof relies on geometric Hadamard-graph transform.

e Exchange Lemma: Fenichel coordinates unavailable in infinite dimensions.

e Unstable / stable manifolds will be infinite dimensional. How to track
intersections?

Main ingredients:

e Isolate suitable finite dimensional subspaces of C'(|—1, 1], R).
e Provide firm analytical underpinning for geometrical constructions.
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The program

Recall the singularly perturbed MFDE

cu'(§) w(€+ 1) +u(§ —1) = 2u(§) + g(u(&); a) — w(f),
cw'(§) = eu(§) —yw(f)].

e Step 1: Persistence of M, and My for € > 0.
e Step 2: How do g¢ and g break as e 2 0 and c = ¢,?
e Step 3: Connect broken front and back solutions as they pass near M pg(c,¢€).

e Step 4: Set up and solve two-dimensional nonlinear bifurcation equations to
repair front and backs and find c(e).
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The program: Step 1 - Persistence of Slow Manifolds

Introduce function sg such that g(sg(w)) = w.

We have Mg = {(Sg(w),w)} for w € [Wmin, Wmax]-

Goal: find functions sgr(w, ¢, €) so that the manifold
Mpg(c,€) = {(sr(w,c,€),w)} is invariant.

31



The program: Step 1 - Persistence of Slow Manifolds

ldea based upon Sakomoto (1990): find solution (u,w) with w(0) = wqy and

u(§) = sr(w(§)) +v(8),

with small v and write sp(wo, ¢, €) = u(0). Need to solve

() = SR(w(f)))eVg’U-FRnl(’U w, ¢, €)(§),
cw'(§) = [SR(w(f)) — yw(§)]

with nonlinear Ry and linear operator L(u) : C([—1,1],R) — R given by
L(u)evev = v( + 1) +v(§ — 1) = 20(&) + g'(n)v(§).
Note that w’ = O(e), so linear part varies slowly.

e Equation for w with w(0) = wg can be solved — W (v, ¢, €, wy).
e Suppose that operator C(w, ¢) solves linear v-problem — fixed point problem

v=K(W(v,ec, e, wgy), c)Ru(v, W(v,c, e, wg), c,€)

32



The program: Step 1 - Persistence of Slow Manifolds

Key ingredient is the construction of solution operator KC(w, ¢) for linear systems

cw'(€) = L(3r(w(©))ever + f(€).

Use the fact that for each fixed wg € [Win, Wmax|, the system

cv'(§) = L(gR(wO))eVEU_I_f(g)a

can be solved; v = K¢ (wo, ¢) f [Mallet-Paret 1998]. Can now define approximate
solution operator

K (10, 6) f1(€) = /E Kee(w(C), ) f1(€)dC.

If w’ is small, the error is small and can be corrected; Kypx — K.
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The program: Step 2 - Breaking the front

Varying € and ¢ breaks orbit g¢ into two parts (v, w) and (u™,w).
w

Hyperplane H transverse to orbit gf at £ =0, i.e.,
C([-1,1,R) =evoqs + H & Span{evoq}}.

e Perturbation u™ from gy is large as £ — oc.
e Hyperplane H is infinite dimensional

34



The program: Step 2 - Breaking the front

To control size of perturbation, split up real line into three separate parts.

-

u™ (€)= /(&) + v () | wt(€) = 4s(6) + °(€) |
=0 L

§ §
e The functions v—, v° and W|(—oo,¢,] are small.

&x
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The program: Step 2 - Breaking the front

We need to study the remaining gap in H. Call this gap £5°(c, €).

L'y

(finite dim)

(wip syuyu) {

Main Goal: Reduce problem to finite dimensions.
To do this, we will need to split H =evoqs+Y @I, with I'f finite dimensional.

In addition, need to make sure that the "gaps” {7°(c,€) are all in T".
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The program: Step 2 - Breaking the front

Construction based upon exponential dichotomies on R for

V(€) =v(€+1) +v(§ — 1) —20(&) + g (ar(8))v(8)-

| _c1, 1)

finite dim —= [ =T~

L~

/ﬁf\

'

\ 0 /<—finitedim

Mallet-Paret + Verduyn Lunel (2001): C([-1,1],R)=P_ ® Q_ ® B®T.

We have evgq’ € B. Canuse Y = P_ @ Q\_>. The space I' can be explicitly
characterized using special integral inner product (Hale inn. pr.).
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The program: Step 2 - Breaking the front
P_ Q

_/H \»}\

u‘<£>=qf<£>+v-<e> | £) = 4;(6) +27(6) |

Can use remaining freedom to ensure that gap is in I', since

C([~1,1],R) = evoqs + P— @ Q_, ® {evoq;} & T
At ¢ = 0 and ¢ = 0, we have Melnikov identities such as

Ex
D.(evod, € rate = — /_ A(E) g, (€)de + O™,

for d that solves adjoint —cd'(§) = a[d({+1) +d(§ — 1) —2d(&)] + 9'(qr(&))v(€).

38



The program: Step 2 - Breaking the front

Now need to study part near Mp.

e The functions v, 6T are small.

e The parameter ¥ selects the fibre of Mg to which (u™, w) converges as
& — 00.

e The function ©% (97, ¢, €) is unique solution of ODE
0'(§) = e[sr(0(8), c,e) =7O(E)],  ©(0) =97,

which describes flow along Mg(c, €) in terms of fast time scale.
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The program: Step 2 - Breaking the front

Must understand linearization near slow manifold Mg(c, ¢€).

First fix wg € [Wmin, Wmax] and consider constant coefficient linearization

V(€) =v(€+1) + (€ —1) —20(§) + ¢'(5r(wo))v(§)

| e, 1)
be<_(w0) /

Mallet-Paret + Verduyn Lunel (2001): C([—1,1],R) = P}%j(_(wo) ® Q%ﬁ(wo).
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The program: Step 2 - Breaking the front

Now consider w € C*(R, [Wmin, Wmax]) that has very small |jw'||__ and w(0) = wy.

Consider linearization

v'(§) = v(§ +1) + v(§ — 1) = 20(&) + ¢/ (Sr(w(&)) )u(&). (1)

Main idea:

e Forany ¢ € Q%,_)(wo), there exists v € C(|—1,0),R) that solves (1) with
HQfRP (wo)eVOU — ¢

e Any bounded solution to (1) can be written in this form.
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The program: Step 2 - Breaking the front

P Q th
_/H
\»}\ = Op z9+,c,e )(§) +67(¢)
u™ (&) = qr(§) + ‘(€) I = q7(§) +v°(¢) I = sp(w(§), c,e) +v™ (§)
£=0 £=¢

Gap at Mz can be completely closed, since

S (&) ~ P_(0)

and

C([-1,1],R) =P}’ _(0) & Q

b
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The program: Step 2 - Breaking the front

In summary, we have constructed quasi-front solutions to the travelling wave
equation for ¢ = 0 and ¢ = c¢..
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The program: Step 2 - Breaking the back

Similarly, can construct quasi-back solutions to the travelling wave equation for
e ~ 0, c =~ c, and extra degree of freedom wy ~ w.

This extra d.o.f. used to specify w(0) = wq (lift quasi-back up and down).

OF (1) (6) O M
- ./\/lL
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The program: Step 3 - Exchange Lemma

The quasi-fronts and quasi-backs need to be tied together near Mpg(c,¢€).
Primary parameter: time 7' that solution spends near Mg(c, ¢€).

Note that ¢ = 0 is not a useful parameter, since quasi-fronts and quasi-backs do
not connect when ¢ = 0.

Write ©35 (1, c, €) for unique solution of ODE

0'(C) = [sr(O(¢),c,€) =71O(C)],  ©(0) =7,

which describes flow along M pz(c,€) in terms of slow time scale.

Slow time T%' uniquely defined by

@%(07 Cxs O) (Tfl) — W«

We will need €T ~ T%! : introduce new variable T5! = ¢T".

3 Y

Independent parameters are now (¢, 75!, T') taken near (c,, T%', c0).
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The program: Step 3 - Exchange Lemma

Recall the fibre 19}“((:, €) that was selected by the quasifront.

Recall also the fibre 9, (wo, ¢, €) selected by the quasiback.

Want to make sure fibres match.

9y (wg®, e, T/ T)

& MR(C, TSI/T) e Define wi®(c, T, T) by the following identity:

9, (we®, ¢, T¥/T) = OR(9F (¢, T%/T), ¢, T /T)(T*)
~~~~~ for (¢, TS, T) = (c4, TS, 00).

dF (¢, T%/T)

Consequence: at "half-way” point, quasi-front and quasi-back miss each other by
O(e_%"*T)!
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The program: Step 3 - Exchange Lemma

Match the quasi-front and quasi-back at halfway-point along M. Split into
seven distinct intervals.

=3¢+ T 5—2§*+T E=&+T

< 1%—U®+%% E Uxe = ®+Wb e
726 /\/lR, %Z ~
TS
QL,—>(w*> Qfg,—><uhw)

matching g-front and g-back —>»

Qf,—> Sf,H(€*>

Pfa<— Ffl > : Mp fRP,H (O)
_//B’ Q\ u+{ 4 U‘J\;

o

uf :u(;f —I—’UfT I Uge = u;;f—l—?}; F W<
§= § =&
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The program: Step 3 - Exchange Lemma

Quasi-front and quasi-back can be matched up to two one-dimensional jumps.

w

(ubv w)




The program: Step 4 - Bifurcation equations

The independent parameters are (c, 75", T) taken near (c,, T%', c0).

The jumps in I'y and I'y can be split into two parts:

e Construction of quasi-fronts and quasi-backs
e Modification due to Exchange Lemma

The Exchange Lemma contribution + derivatives are of order O(e~"1).

System to solve is hence, to first order,

Mf(c—c,) = —-M/TYT
Mb(c—c.) = —MY(T™ —T) — MITSYT

The sign of the M-constants can be read off from Melnikov integrals.

Three unknowns; two equations — curve of solutions (e, c(e)).
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Outlook

Recall FHN-LDE:

Uj(t) = alUja(t) + Uja(t) = 20;()] + g(U;(t); @) = Wy (1),
W;t) = €lU;(t) —W;(#)].

Number of issues open to explore:

e Stability of the fast pulses: same singular perturbation setup should yield
results.

e What happens to fast pulses as propagation failure region is encountered?

1

e For a = 35, can one Taylor expand in the Exchange Lemma and connect slow

and fast pulses [as in Krupa, Sandstede, Szmolyan (1997) |?

e Multi-pulses, homoclinic blow-up etc in other singularly perturbed lattice
problems.
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