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Lattice Differential Equations

Lattice differential equations (LDEs) are ODEs indexed on a spatial lattice, e.g.
’ij(t) = Oé(u]'_l(t) + ’LLj_H(t) — QUj(t)) + f(Uj(t)), j € 7.

U_g4 U_3 U_9 _
Picking a = h=2 > 1, LDE can be seen as discretization with distance h of PDE

pu(t, ) = Oppu(t, z) + f(u(t,z)), r € R.

e Discrete Laplacian: w;_1 + uj11 — 2uy

e Many physical models have a discrete spatial structure — LDEs.

e Main theme: qualitative differences between PDEs and LDEs.



Lattice Differential Equations

Recall LDE
’llj(t) = Oé(’UJj_l(t) + Uj_|_1(t) — QUj(t)) + f(u]'(t)), ] e 4.

e o > 1 - semi-discretization of PDE. Useful discretizations should not introduce
new behaviour.

e o ~ 1 - spatial gaps as energy barriers.

e o < 0 - anti-diffusion.

PDE ill-posed.
LDE still well-posed.

Motivation: Phase transition models [Van Vleck, Vainchtein, 2009]



Phase Transition Model
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Force between NN depends
on &,y1 — &, (viscous) and
E'(rn41 — xy) (elastic).

Negative diffusion comes from
viscous terms in overdamped
limit.



Phase Transition Model
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Writing u,, = £,,41 — T, in overdamped limit we get system

Un () = —d[tn41(8) + un—1(t) — 2u, (8)] + E' (un (1)), d > 0.



Phase Transition Model

Recall dynamics

Un(t) = —d[tn41(8) + un—1(t) — 2un(t)] + E' (un(t)), d > 0.

Note that E’ is cartoon of cubic.
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Negative diffusion 'encourages’ interactions near phase boundary instead of
smoothing them all out.



Negative Diffusion

Main interest here: 2d lattices

w;i () = —d[Ayu(t)]ij + g(uij(t); a), d > 0.
Plus-shaped discrete Laplacian:

Al = w1y + Ui g1+ Uim1y + ug i1 — dug;
Bistable nonlinearity g given by

g(u;a) =ula —u)(u —1).




Negative Diffusion

Recall negative diffusion equation

Uij(t) = —d[Aju]i;(t) + g(ugy(t); a), d>0.

Looking for travelling wave w;;(t) = \IJ((COS 0,sinf) - (i,7) — ct) will not get you
very far.

Main idea: split lattice into even and odd sites.



Negative Diffusion

Writing wu;,(t) for odd sites and v;;(t) for even sites, system rewrites as

d .
d .

Equilibria (@, v) must satisfy
4d(6 o ﬂ) — g(ﬂ7 a)a
dd(u —v) = g(v;a).

Besides three 'constant’ equilibria (0,0), (a,a) and (1, 1), also 'periodic’ equilibria
u # v. In particular, eliminating u gives

—g(v;a) = g(@—l— (4d) " tg(T; a); a).

Since g was a cubic; we get a ninth-degree polynomial expression in .



Negative Diffusion

Recall ninth-order system
~9(50) = g7+ (4d) 'g(T;a);a).

Studied in detail by [Brucal, Van Vleck]. For appropriate choices of parameters,
exists equilibrium (., v,) with @, v, < 0 (opposite sign).

ldea: look for waves that connect (0,0) to (Us, V).

|dea: rescale u and v so connection is from (0,0) — (1,1).

d .

Now we have d, > 0 and d. > 0; typically different. Also g, and g, typically
different.
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Travelling Wave

Recall lattice system

d .
d .

Travelling wave Ansatz
wii(t) = \Ifu((cosﬁ, sind) - (i, 5) — ct), vi;(t) = \va((cosﬁ, sind) - (4, 1) — ct),
leads to system with both advances and delays:

—cW,(€)

do|V, (& £ cosh) + W, (€ £sinf) — 4V, (&)]
+90(Vu(§); a),

—cV! (&) = de|Vy(€§ £ cosl) + V(€ £sinf) — 4V, ()]

+9¢(V,(£);a)

Notation: W (& 4 cos) means V(£ + cos ) + U(& — cos ).
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Setting

Notice that any solution to

—cV (&) = do|Vy(€£cosb)+ W, (& £sinfh) — 4V, (&)]
+90(Vu(§); a),
—cV (&) = d [V, (&£ cosh)+ U, (£sinh) — 4V, (E)]

T e (\Ijv(g)a a,)

is in fact ALSO a travelling wave solution to the non-local system

Owu(zx,t) = dolv(x £cosh,t)+ v(xr +sind) — du(x,t)]
+90(u(z,t);a),
ow(x,t) = delu(x +cosb,t) + u(x +sinb, t) — dv(x,t)]

+7e (U(ZE, t); a).

Notice: x € R so this system now has only one spatial variable.
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Main System

Our focus is on travelling wave solutions to the system
N
u(x,t) = Yuge(x,t) + Z Ajlu(z +rj,t) —u(z)] + g(u(z,t) ;a).
j=0
e Non-scalar system: u(x,t) € R™ for some n > 2.
e Matrices A; > 0 € R"*"™.

e Matrix A := Z;'V:o A; is irreducible; i.e. all components of u are mixed.

e Off-diagonal derivatives non-zero:

Ou;9i(u; a) > Aij, L7 J.

e Extra smoothing term v > 0.



Main System

Requirements on zeroes of g(-; a) for fixed parameter a:

u(x,t) = Yuzz(x,t) + Z Ajlu(z +rj,t) —u(z)] + g(u(z,t) ;a).
(1,1)
-
O
O
O
O
(0,0)

@stable @unstable

Stability refers to ODE u' = g(u;a).



Main Results

Chiefly interested in transition v | O:

u(x,t) = Yupe(x,t) + Z Ajlu(z + 1j,t) — u(@)] + g(u(z, ) ;a). (1)

j=0

Thm. [H., Van Vleck| For each v > 0, (1) has unique travelling wave solution
u = ¥(x — ct) connecting 0 to 1, which depends smoothly on parameter a.

Thm. [H., Van Vleck| Consider sequence % | 0 and corresponding waves
ur = Wi(x — cxt). After passing to a subsequence, we have

V() — Uy (x), Cl, — Cx
and (W,, c¢,) is travelling wave at v = 0 that connects 0 and 1.

These results generalize earlier scalar equation results [H., Verduyn-Lunel, 2004].
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Main Results: v =0

When ~+ = 0, we recover nonlocal system

=" Ajlulz +rj,t) — u(@)] + g(ulx,t) ;a). (2)

7=0

Thm. [...] Unique wave speed ¢ for which (2) has travelling waves that connect 0

to 1. If ¢ # 0, then profile is unique and (¥, ¢) depend smoothly on a. If ¢ =0,
profiles exist but no longer unique.

This generalizes scalar (u(x,t) € R) equation results [Mallet-Paret, 1998].

Existence of travelling waves for (2) with rationally related r; can be found as a
byproduct in [Chen, Guo, Wu, 2008], where periodic 1d-lattices were considered.
Lattice-based approach; cannot easily consider v > 0.

Our focus is on dependence on a and ~; closely follow [Mallet-Paret| ideas.
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Mallet-Paret: Fredholm theory

Focus in [Mallet-Paret, 1998 and [H., Verduyn Lunel] is on scalar mixed type
equation

(&) — eW(€) = 3 A W(E +75) — W(w)] + g (W(E); ).

1M

that wave profiles must satisfy.

e Continuation of waves: Relies on studying Fredholm operator

L:®—y®"(&) +c®'(&) + ) Aj[P(E +75) — (O] + Dg(W(€); a) (&)

i=0

related to linearization around wave W. Important for stability, gluing waves
together, singular perturbations. Natural to generalize to systems.

e Existence of waves: Relies on embedding system into a normal family, with
very specific rules on how ¢(-;a) depends on a. Homotopy to reference system.
Unclear how to lift to systems.
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Continuation of Waves: Fredholm theory

Main task: understand Fredholm properties of
L:® 7@ (€) +c@'(¢ +ZA (& +75) = D(E)] + Dg(T(€); a)@(€)

related to linearization around wave W.

Need to show: kernel L is one-dimensional (@/ > 0) and same for adjoint L*.
Krein-Rutman type result.

Main issue: matrices A; not necessarily invertible; in contrast with scalar case.
Main consequence: 2d stability of waves; see [Aaron’s talk].

Secondary consequence: can understand perturbations [Van Vleck, Zhang]; e.g.
(1d)

in(t) = —dunpr(t) + 1 () — 2un(8)] + g (un(t);a)
e pen (D) tnsn(t).
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Existence of Waves

Second task is focus on existence of travelling waves with v > 0 for

N

u(x,t) = Yuzr(x,t) + Z Ajlu(z + 1j,t) — u(@)] + g(u(z, ) ; a).

Degenerate situation v = 0 handled afterwards by limit v | 0.

If A; =0 for all 0 < 5 < n, then can use standard theory [Volpert, Volpert,
Volpert]| (see also [Crooks, Toland] for convective terms). Methods rely on
topological arguments (index theory; homotopies).

In [Chen, 1991] scalar non-local PDEs are considered. Waves constructed using
only comparison principles. Basis for our approach.
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Main System

Focus on spatially invariant solutions, which satisfy ODE
u'(t) = g(u(t);a).
(1,1)

Separatrix W,  splits
basins of attraction.

(O’O) @stable @unstable
Based on [Hirsch, 1982] (cooperative systems): no points on W, related by <.
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Existence of travelling wave

Pick smooth non-decreasing initial condition u(x,0) = ug(x) and evolve
N

ur(x,t) = YUz (x,t) + Z Ajlu(z +rj,t) —u(z)] + g(u(z,t) ;a).

N
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Existence of travelling wave

Note that u(-,t) must always intersect W, once; say at z = &£,(1).

N

u(x,t) = YUz (x,t) + Z Ajlu(z +rj,t) —u(z)] + g(u(z,t) ;a).

Main goal: show that u(x — &.(t),t) — U(x) as t — oo in some sense.
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Existence of travelling wave

Pick two squares & and &, near (0,0) and (1,1)

u(-,t) intersects squares at x = &;(t), x = &.(t).

Must show: &,.(t) — &(t) bounded for convergence u(z — &.(t),t) — U(x) to be
useful.
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Existence of travelling wave

Build a tube around separatrix: build 7. and 7; by shifting W, left and right.

Intersections with 7;, 7,. at © = £.(t), © = £5-(1).

Idea: bound &4-(t) — &(t), E5-(t) — €4 (t) and &,(t) — €5(t) separately.
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Existence of travelling wave

Step |: Bound for £L-(t) — &(¢).

Write ®(¢; q) for solution to ODE initial value problem:

For any ¢ € 7;, note that under flow ® q is transferred through &;.

Transfer time can be uniformly bounded in g.
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Existence of travelling wave: Step I: Bound for £.-(t) — &(¢)

Construct supersolution u™ by picking C' > 1 and connecting ®(¢; ¢) with
(1,1) + 0v,, where v, > 0 is eigenvector for D f(1,1).

+ .
O u(1) (1,1) + ov,

r — (Ot

Remember: super solutions satisfy

N
Opu™ — YOgzu™ ZAJ (-+7j) —u"()] = g(u") > 0.
7=0

Our choice ensures &(t + T) — £ is bounded from below; where T' was maximal
transfer time.
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Existence of travelling wave

Step Il: Bound for &4-(t) — £L-(t).

W,

ldea: decompose crossings vectors as (1,1) + v, and (—1, —1) + 1/, where 1; and
Y, lie in tangent bundle of W,.
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Existence of travelling wave

Step II: Bound for &5-(t) — &L-(t).

i—s0+an ¢ ut(-,0)

Shorthand: g = u(&.(t),t) € W, intersection with separatrix.

Construct super solution u* and subsolution ©~ that are step functions at ¢t = 0
and solve system for t > 0.

Use: (1,1) direction will grow faster than parallel directions v,. and ;.
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Existence of travelling wave

Step Il: Bound for £7-(t) — &5-(%).

Similar to heat-flow; solutions spread out. (1,1) direction expands. Can push both

u

+

out of tube 7 at same x-value after 1" time steps.
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Spatially Periodic Diffusion - Anisotropy

Wavespeed ¢ depends on the angle of propagation 6.
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Spatially Periodic Diffusion - Anisotropy

Wavespeed plot for system

d,, ..
at g

i = Lluggon +uggon +wim g+ i — 4vg] + vi5(vi — a)(1 = viy).

= 0.9[i 1+ vij-1+ Vi1 + Vg1 — dugg] + uig(uig — a) (1 — wgy),

0.08 -
—m—a =0.52

o, - N\—®a=0.51

I!.‘..---._...."...-.. :- ..,.-l"'._..} L. )




Spatially Periodic Diffusion - Anisotropy

*027 —=—a=0505
—e—a=0.5025
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Spatially Periodic Diffusion - Anisotropy

0003 —m—a=0.,50125
| ' ' |
-0,004 — o 0,004
-0,004 -

Crystallographic pinning: 1-component [Hoffman, Mallet-Paret], [Cahn, V.Vleck,
Mallet-Paret].
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