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Lattice Differential Equations

Lattice differential equations (LDEs) are ODEs indexed on a spatial lattice, e.g.
’ij(t) = Oé(u]'_l(t) + ’LLj_H(t) — QUj(t)) + f(Uj(t)), j € 7.

U_g4 U_3 U_9 _
Picking a = h=2 > 1, LDE can be seen as discretization with distance h of PDE

pu(t, ) = Oppu(t, z) + f(u(t,z)), r € R.

e Discrete Laplacian: w;_1 + uj11 — 2uy

e Many physical models have a discrete spatial structure — LDEs.

e Main theme: qualitative differences between PDEs and LDEs.



Lattice Differential Equations

Recall LDE
’llj(t) = Oé(u]'_l(t) + Uj_|_1(t) — QUj(t>) + f(u]'(t)), ] e 4.

e o > 1 - semi-discretization of PDE. Useful discretizations should not introduce
new behaviour.

e o ~ 1 - spatial gaps as energy barriers.

e o < 0 - anti-diffusion.
® 0 0060600 0 0O
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Can be restated as periodic system with positive diffusion. [Van Vleck, Vainchtein]

No clear PDE analogue.



Signal Propagation through Nerves

Nerve fibres carry signals over large distances (meter range).

Signal propagation
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Nodes
Myeline coat

e Fiber has myeline coating with periodic gaps called nodes of Ranvier .
e Fast propagation in coated regions, but signal loses strength rapidly (mm-range)
e Slow propagation in gaps, but signal chemically reinforced.



Signal Propagation: The Model

One is interested in the potential U; at the node sites.

U-1 U U,

Signals appear to "hop” from one node to the next [Lillie, 1925].
lgnoring recovery, one arrives at the LDE [Keener and Sneyd, 1998]

LU () = Upma(t) + Uj—a(t) = 205(t) + g(U(t);a),  jEZ.
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Signal Propagation: PDE

In continuum limit: Nagumo LDE becomes Nagumo PDE

O = Oppu + u(a — u)(u —1).

Starting step [Fife, MclLeod]: travelling waves.

Travelling wave u(z,t) = ¢(x + ct) satisfies:

cd' (&) = ¢"(&)+ o(€)(a—(8))(p(€) —1).

Interested in front solutions connecting 0 to 1, i.e.

lim ¢(¢6) =0,  lim ¢(€)=1.

o0 ¢ +o0



Signal Propagation: PDE

Recall travelling wave ODE

e (€) = ¢"() + ¢(&)(a— (&) (¢(8) — 1).
limg 4100 9(§) = 1.




Signal Propagation: LDE

Recall the Nagumo LDE

LUt) = [Ujsa(t) + Uja(t) — 20;(0)] + 9(Uj(t);a),  jEZ.

Travelling wave profile U;(t) = ¢(j + ct) must satisfy:

c¢'(€) = [p(€+ 1)+ (€~ 1) = 26(8] + g(8(£); a)
lime_ o0 p(€) = L.

e Notice that wave speed c enters in singular fashion.
e When ¢ # 0, this is a functional differential equation of mixed type (MFDE).

e When ¢ = 0, this is a difference equation.



Discrete Nagumo LDE - Propagation failure

Travelling waves for the discrete Nagumo LDE connecting 0 — 1.
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Propagation

Typical wave speed c versus a plot for discrete reaction-diffusion systems:
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In principle, can have a, = 5 or a, <

1
5-

In case a, < % then we say that LDE suffers from propagation failure.

Propagation failure common for LDEs and widely studied; pioneed by [Keener].
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Signal Propagation: Comparison

PDE
Ou = Oppu + g(u, a)
Travelling wave u = ¢(x + ct) satisfies:

cd'(§) = ¢"(§) +9(o(&);a)

Travelling waves connecting 0 to 1:

AC
czgﬁ

N — Q

LDE

d

Travelling wave U; = ¢(j + ct) satisfies:

c'(§) = o(€+1)+o(§—1)—2¢()

+9(0(8);a)
Travelling waves connecting 0 to 1:

‘e

a

1
2

a4

1

Propagation failure if a, < 5.

11



Lattice equations

Continuous media (PDE) Discrete media (LDE)

e In 2d even more differences between PDE and LDE appear.
e Lattice looks different from different directions!
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Ising Models

e Each lattice site occupied by block of particles that each have 2 possible states.
e Non-local interactions between lattice sites.
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Lattice equations: Geometry

Dynamics for fractional occupancy u; ; of first state satisfies [Bates, 1999]

Ui j(t) = [ATu(t)i; + g(ui;(t);a).
e Nonlinearity g governs local fluctuations.

e The operator AT mixes the lattice sites. Typical choice:

O—0[A Uiy = wir1y + wio1j + Ui g1 + tij—1 — dus ;.

AT can be seen as discrete version of Laplacian.

14



2d LDE: Nonlinearity

Recall the dynamics:

U, (1) = [ATu)]i; + g(ui;(t);a).
0.08
0.0% - Bistable nonlinearity g given by
0.04

0.02 g(u;a) = ula —u)(u—1).
A

04-02 | 12 14 Two stable equilibria u = 0
—0.02 and u = 1.
—0.04 - One unstable equilibrium
0.06
—0.08 -

u = Q.
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Lattice equations: Travelling Waves

Recall the dynamics:

wij(t) = [ATu)]i; + g(ui;(t);a).

The nonlinearity g 'pulls’ u towards either u = 0 or u = 1 [competition].
The discrete diffusion 'smooths’ out any wrinkles in w.

Travelling waves: compromise between these two forces.

Travelling waves with profile ® and speed c
connecting © = 0 to w = 1 in direction

k = (cosf,sinf).

u; j(t) = ®((cosb,sinb) - (¢,5) + ct), d(—o0) =0, O(+o0) =

16



Lattice equations: Travelling Waves

Recall the dynamics:

wii(t) = [ATu)]i; + g(ui;(t);a).

e Travelling waves connecting u = 0 to v = 1 must satisfy

c®' (&) = D(E+cosh)+ P(E—cosh) + P(E+sinh) + P(£ —sinb) — 4P(E)
+9(2(£); a)
: This is a mixed type functional differential equation
® ® : 0 ®
3 (MFDE).
®

Direction 6 explicitly appears in wave equation.

[Mallet-Paret|: waves exist for all directions.

17



Lattice equations: Spatial anisotropy

Wavespeed ¢ depends on the angle of propagation 6.
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Lattice equations: Spatial anisotropy

Wavespeed ¢ depends on the angle of propagation 6.

will be varied -] a = middle zero
034 >

G—a=o.4o

wave
direction

-0.3
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Lattice equations: Spatial anisotropy - |l

Wavespeed ¢ depends on the angle of propagation 6.
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Lattice equations: Spatial anisotropy - Il

Behaviour as a — 0.5 is interesting.

—e—3a =048
0075 —e—a =049
' —a—a =0.495

| |
-0.075 0.075

-0.075
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Lattice equations: Spatial anisotropy - 1V

Behaviour as a — 0.5 is interesting.

0.01 - —m— g = 0.4975
—e— a = 0.49875
| ! ! |
-0.01 0.01
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Lattice equations: Spatial anisotropy - V

Behaviour as a — 0.5 is interesting.

0.002 - —m— g = 0.4995
—eo— a = 0.49975
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Lattice equations: Spatial anisotropy - VII

0.001 - —eo— g = 0.49975

| ' ' |
-0.001 , : 0.001

-0.001 -
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Lattice equations: Spatial anisotropy - VI

Conjecture: Pinning is stronger in rational directions than irrational directions.

Conjecture: The more 'aligned’ with lattice, the stronger the pinning is.
Partial results: [Cahn, Van Vleck, Mallet Paret, Hoffman, H.]

In this talk: we fix (a,f) and assume that ¢ # 0.

Goal: understand stability of the travelling wave.

Direction dependence?
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PDE

Consider 2d PDE

Up = Ugz + Uyy + g(u)
with travelling wave solution

u(x,y,t) = ®(x + ct).

For simplicity here: assume ¢ = 0.

Wave profile satisfies:
0=9"(z) + g(P(x))
and we have stationary PDE solution:

u(x,y,t) = ®(x).

26



PDE

|Kapitula]: Study perturbations using Ansatz

u(t,z,y) =®(x+0(t,y)) +v(t,x,y).

. wave

—

:.. .
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PDE

|Kapitula]: Study perturbations using Ansatz

u(t,z,y) =®(x+0(t,y)) +v(t,x,y).

In order to separate out 6 and v evolutions; need normalization:

/ ®'(z)v(t, x,y)dx = 0, for all y € R and t > 0.

— OO

Interpretation: v is orthogonal to perturbations caused by shift of profile.

wave
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PDE

Normalization decouples v and 6 evolutions at linear level.

Vi = Uy + Uyy + Dg(P(z))v + Ny(v, 0)

0 = 0,4+ No(v,0),
with nonlinearities [Notice: no 62]:

N, =O0W? + 05 + 0v + 66,,), x = 0,0

Write solution as [Duhamel]

(o ) = (75" aut ) (00 )
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PDE

Recall Duhamel expression:

Here G, (t)vg solution to
Ut(ta Ly y) — ’Uxx(t, L, y) + Uyy(ta £, y) + Dg(q)(ﬁlﬁ))’l](t, L, y)a U(Ov L, y) — ’U()(CC, y)
while Ggy(t)6y solution to

0i(t,y) = Oyy(t,y),  0(0,y) = 0o(y).
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PDE

Recall G,,(t)vg solution to

Vi(t, x,y) = Uee(t, 2, y) + vyy(t, x,y) + Dg(P(x))v(t, z,y), v(0,x,y) = vo(x,y).

Fourier transform in y-direction:

O (t, r,w) = Oz 0(t, z,w) + Dg(P(x))v(t, z,w) :wzﬁ(t, T,w)

Linearization around 1d wave Nice rigid shift in spectrum

Normalization condition ensures vy(x,w) in exp decaying subspace for all
frequencies w.

|Gow(E)voll ~ €™ [Jvg]| -

[Norm deliberately suppressed - think L?-summability in y-direction.]
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PDE

Recall Ggo(t)0y solution to

0:(t,y) = 0yy(t,y),  0(0,y) = Oo(y).

Heat equation; so

|Goo ()00l 2 ~ t =% (1601

Derivatives get more decay:

10yGoo(t)00ll 2~ t73/4 160l 11
||8yy909<t)90”L2 ~ t_5/4H90||L1
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PDE

Nonlinear terms
Ni(v,t) = O(v? + 95 + 0v + 60,,)

Slowest expected decay comes from 95 and 60, terms, both giving
t=3/44=3/4 = ¢=3/2 and ¢t~ 1/475/4 = t=3/2 decay.

Recall Duhamel expression:

(ot )~ (0 ) (i)

t 6—77(75—3) O 8_3/2
—I—fszo ( 0 (t — S)—1/4 > ( ¢—3/2 ds.

Self consistent since

t
/ (t —s) 45732 ds ~ t7 14
s=1
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2d Lattice Differential Equation

Back to the 2d LDE

wii(t) = [ATu)]i; + g(ui;(t);a).

0.0

o.ozi /\

04-02
0.02

-0.04
-0.06
—0.08




2d Lattice Differential Equation

Back to the 2d LDE (fix a from now on)

i (t) = [ATu(t)]i; + g(ui;(t)).

Assumption: we have a wave solution (c, ®) travelling (¢ # 0) in rational
direction (01, 09) € Z~.

New coordinates:

n = 101+ jo9 parallel

[ = 1i09—joq transverse.

Old coordinates:

i = [0?+ 03] noy + log]

j = o+ 03] noy —loi]
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Stability - Coordinate System

In new coordinates, LDE becomes

it (£) = [ ()]t + g (wni(1)):

The discrete operator A* now acts as

All geometrical information encoded in A*.

Travelling wave becomes: u,;(t) = ®(n + ct)

Special cases (01,02) = (1,0) or (0,1) (horizontal or vertical waves): A* = AT,

36



Stability - Refined Ansatz

Refined perturbation Ansatz

Uni(t) = @ (n+ ct 4+ 6,(t)) + vn(?).

Here 6;(t) measures deformation of wave profile (expect slow decay).

Remainder included in v(t) (expect faster decay).
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Stability - Linear System

Focus on linear LDE posed on Z2:

Oni(t) = [A%0(8)]u + Dg(CI)(n + Ct))vnl(t)-

As before: transverse coordinate [ does not appear in coefficients.
|deal for Fourier transform in transverse direction.

System is decoupled into

(1) = B (@), O] + Dg(®(n + ct))Ba(w, 1),

with

N _ twwoo —lwo —1W0o9 1Wwoq
A" (w)v], =€ Unto, T € Untoqy T € Un—oq + €“ 05, — 4Up.

In other words, for each frequency w we have an LDE posed on a 1d lattice (in
parallel coordinate n).

Frequency dependence is horrible!
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LDE - Duhamel

Duhamel formula now becomes

(29) = (& g0y (o)

Now with:
Ni(v,0) = O(6v + 06°) + h.o.t.

where [0°]; ~ 0,11 — 0; denotes a discrete spatial derivative. Think:

Guo(t) Gusl(t) t—5/4 4-3/4 »
(gev(t) QeZu))”(t—sm t_1/4), N (v(t),0(t)) ~ 7.

We lose everything that is nice!

t
/ (t —s) V4 Lds ~ In(t)t~1/*
1
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Stability in 2d

Recall Ansatz

uni(t) = (n 4 ct + 0,(t)) + v (t).

Thm. [H., Hoffman, Van Vleck, 2012] Travelling wave (¢ # 0) in any rational
direction is nonlinearly stable under small perturbations

Zlezwl(O)‘ < 1
SuPneZ[Zlez‘vnl(O)H < L

Note: perturbations need to be summable in transverse direction.
We have 6;(t) — 0 and v,;(t) — 0 as t — 0.
In other words, deformations of interface diffuse in transverse direction.

It does NOT lead to a shift in the wave.
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Stability in 2d

Recall Ansatz

uni(t) = @(n + ct + 6i(t)) + vn(t).

Algebraic decay rates depend on direction of propagation!

Horizontal waves [Norm is /> parallel to wave, £? transverse to wave]

O(t) ~t=H4  w(t) ~ 732

Diagonal waves

O(t) ~t=H4  w(t) ~ 7

Other rational directions: (very slow decay - delicate nonlinear analysis needed)

O(t) ~t=1%,  w(t) ~ 734

41



Sketch of Proof

The actual Ansatz that we use is:
Uni(t) = ®(n + ct + 0,(t)) + (G141 (t) — Ou1(t) ) p(n + ct) + wni(t),

with p : R — R a function related to
[0 ®Puw=0,

where w — P, is the branch of eigenfunctions

L, P, = Py; P =D, Aw=0 = 0,
with
[Auw](€) = —cw'(§) + 2w (€ £ 01) + T Tw(E £ 03) — 4w(€) + ¢'(B()w(E),

I.e. the linearization related to Fourier frequency w.
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Sketch of Proof

Recall actual Ansatz:

Uni(t) = @(n+ ct + 60;(t)) + (0141 (¢) — 0,(¢))p(n + ct) + wp ().

Explicitly need to understand dangerous nonlinear terms

01(8) (O11(t) — 0u(t)) ~ 1.

Key trick: 95(954.1 — 95) = %(gl%l-l — Qi—ﬁequ — 95)3)

~
t_1/2 t_3/2

This is discrete version of conservation law trick:

fOt(1 +t—to) TV +to) " dto ~ In(1 ) (1 + )1

BAD

GOOD.
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Obstacles

e Philosophy: choosing lattice directions breaks isotropy R2.

e Now break resulting discrete symmetry [remove set K].

AN=7*\K

"y "y
n‘ . n‘ .
. L) [ ]
*us? LR
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Obstacles

Punctured discrete Laplacian [think Neumann boundary conditions]

[Axulij = Y (wiry — w1l nea

. .’| |. ./|
[i—d'|+]j—37"|=1
na
o .“
5 o
b J
* o
«Fa pe
£ 0 £
P P
L 3 9 3
ke - - o
i K |
X 4 "y
.‘ . .‘ .
. L} . L}
a a
o
. . . . . . .“ . .
= ]
% J
* 4
L ad
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Obstacles

Now consider LDE for (,j) € A:

wg(t) = [AFul)]ig + gluiy(t);a)

0.0
0.04

0.02
i/\ S
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Obstacles

Recall LDE

ﬂi’j(t) = [AX'UJ(t)]z,j + g(ui,j(t); CL),

Main questions:

e How are planar fronts affected?
e Will u =1 still invade the domain?

e Geometry of obstacle K7

(7,7) € A.
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Obstacles

On the horizon, wave will propagate 'as normal’. Sufficient to pull level curves
through obstacle?
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Obstacles

What if propagation is blocked in vertical and horizontal directions [but not in
diagonal]? Potential scenario:
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Obstacles

Recall LDE

i i(t) = [Afu(®)]i; +g(uii(t)ia),  (i,4) €A

Thm. [H., Hoffman, Van Vleck, 2013]

e Suppose obstacle K is finite and 'convex’ [E.g. K single point]
e Suppose ¢(f) > 0 for all 4 € |0,27] [All directions: no pinning]

Consider any rational direction (01, 02) € Z* and write (®, ¢) for wave in this
direction.

Then there is a unique entire solution u with

lim sup |u;;(t) — P(ioy + joa + ct)] = 0.
|t| — o0 (i,5)EA

[Distortions due to obstacle die out]
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Admitted Obstacles

Covered by Thm:

"y
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Admitted Obstacles

Not covered by Thm:
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Admitted Obstacles

Not covered by Thm:

.
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Ingredients - 1

On unobstructed lattice, large blobs where u ~ 1 will expand.

Prop. Suppose c¢(0) > 0 for all 6 €
0,27]. Then for € > 0 there is R > 1

‘(Cmin (I)gzo) such that

AN

1—e<uij(0)§1, i2—|—j2<R2,

(Cmin ) CI)HZW/AL)
together with

0 < uy;(0) <1, (i,7) € Z*

\\ implies

| 1—e<uij(t)§1

/

whenever i? + j2 < (R + 1cmint)?>.
[Mechanism for waves to 'flow around’ obstacle.]
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Ingredients - 2

Must construct subsolutions to deal with large distortions post-obstacle.

PDE case: [Berestycki, Hamel, Matano (2009)]

u(z,y,t) = ®(x +ct — 0(y,t) — Z(t)) — 2(1),

with
2
O(y.t) = Bt exp[-L], B>1, ~>1, 0O<a<l
z(t) = eV, O<rl
Z(t) = Ky fstzoz(s) ds, Kz > 1.

To control large distortions: pick 3 > 1 as large as you need.
Tails [y — oo] controlled by z(t).

Main intuition: speed up the spreading out part of diffusion [v]; slow down the
decay part [a].
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Ingredients - 2

Recall phase evolution:

2
O(y,t) = [t "exp[-%], B>1, y>1, O0<a<l

Solution Subsolution

(linear level) A
| "
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PDE vs LDE

PDE: Explicit subsolution
U_(ZIZ, y7t) — (I)(:U +ct — 9(y7t> o Z(t)) o Z(t)v
works because all important linear terms multiply

®'(x + ct — O(y, 1))

LDE case: if you try

u () =@ (n+ct —0,(t) — Z(t)) — (1),

nl

important linear terms will multiply one of
D' (n+ ct — 0,(t) — Z(t)), ' (n + ct — 0,(t) — Z(t)+o;).

You get an n-dependent system for §; [BAD].
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LDE : subsolution

Introduce o = (01, 09, —071, —02). Ansatz for LDE subsolution:

u(t) = D(n+ct—0,(t)— Z(t)) — 2(t)
+ 31O, (8) — O()]pi (n + ct — 0,(t) — Z(2))
Y S i[O, () — Ol (1) — Ory (£) + 01(2)]
xqij(n+ct — 0,(t) — Z(¢))
3 S [0, (1) — 01(8)][Brsm, (1) — 04(E)]
xrij(n+ct — 0,(t) — Z(t))

[38 terms!] where the functions p;, ¢;; and r;; are all related to the eigenvalue
system

L, P, =A,P,.

Function 6;(t) is now a convecting (modified) Gaussian.
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Ingredients - 2

Actual phase evolution:

2
o(t) = ptoexp[-HAL] 81 4»1, O<a<l
Solution Subsolution
(linear level) A
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Summary

e Obtained stability in 2d for rational directions

e Only spectral conditions imposed on wave.

e Works even in absence of comparison principles.
e For obstacle problems: use comparison principles.

e Waves persist if no direction is pinned and obstacle is nice.
Outlook:

e What about irrational directions 7
e What about standing waves (¢ = 0) ?

e What about pinning + obstacles ?
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