
Amsterdam - June 5th 2013

Travelling around Obstacles in

Planar Anistropic

Spatial Systems

Hermen Jan Hupkes

Leiden University

( Joint work with E. van Vleck and A. Hoffman )

1



Lattice Differential Equations

Lattice differential equations (LDEs) are ODEs indexed on a spatial lattice, e.g.

u̇j(t) = α
(
uj−1(t) + uj+1(t)− 2uj(t)

)
+ f

(
uj(t)

)
, j ∈ Z.

Picking α = h−2 � 1, LDE can be seen as discretization with distance h of PDE

∂tu(t, x) = ∂xxu(t, x) + f
(
u(t, x)

)
, x ∈ R.

• Discrete Laplacian: uj−1 + uj+1 − 2uj

• Many physical models have a discrete spatial structure → LDEs.

• Main theme: qualitative differences between PDEs and LDEs.
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Lattice Differential Equations

Recall LDE

u̇j(t) = α
(
uj−1(t) + uj+1(t)− 2uj(t)

)
+ f

(
uj(t)

)
, j ∈ Z.

• α� 1 - semi-discretization of PDE. Useful discretizations should not introduce
new behaviour.

• α ∼ 1 - spatial gaps as energy barriers.

• α < 0 - anti-diffusion.

Can be restated as periodic system with positive diffusion. [Van Vleck, Vainchtein]

No clear PDE analogue.
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Signal Propagation through Nerves

Nerve fibres carry signals over large distances (meter range).
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• Fiber has myeline coating with periodic gaps called nodes of Ranvier .
• Fast propagation in coated regions, but signal loses strength rapidly (mm-range)
• Slow propagation in gaps, but signal chemically reinforced.
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Signal Propagation: The Model

One is interested in the potential Uj at the node sites.

Axon

U0U-1 U1

Signals appear to ”hop” from one node to the next [Lillie, 1925].
Ignoring recovery, one arrives at the LDE [Keener and Sneyd, 1998]

d
dtUj(t) = Uj+1(t) + Uj−1(t)− 2Uj(t) + g(Uj(t); a), j ∈ Z.
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Bistable nonlinearity g given by

g(u; a) = u(a− u)(u− 1).
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Signal Propagation: PDE

In continuum limit: Nagumo LDE becomes Nagumo PDE

∂tu = ∂xxu+ u(a− u)(u− 1).

Starting step [Fife, McLeod]: travelling waves.

Travelling wave u(x, t) = φ(x+ ct) satisfies:

cφ′(ξ) = φ′′(ξ) + φ(ξ)
(
a− φ(ξ)

)(
φ(ξ)− 1

)
.

Interested in front solutions connecting 0 to 1, i.e.

lim
ξ→−∞

φ(ξ) = 0, lim
ξ→+∞

φ(ξ) = 1.
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Signal Propagation: PDE

Recall travelling wave ODE

cφ′(ξ) = φ′′(ξ) + φ(ξ)
(
a− φ(ξ)

)(
φ(ξ)− 1

)
.

limξ→−∞ φ(ξ) = 0,

limξ→+∞ φ(ξ) = 1.

Explicit solutions available:

φ(ξ) = 1
2 + 1

2 tanh
(

1
4

√
2 ξ
)
,

c(a) = 1√
2
(1− 2a).
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Signal Propagation: LDE

Recall the Nagumo LDE

d
dtUj(t) = [Uj+1(t) + Uj−1(t)− 2Uj(t)] + g(Uj(t); a), j ∈ Z.

Travelling wave profile Uj(t) = φ(j + ct) must satisfy:

cφ′(ξ) = [φ(ξ + 1) + φ(ξ − 1)− 2φ(ξ)] + g
(
φ(ξ); a

)
limξ→−∞ φ(ξ) = 0,

limξ→+∞ φ(ξ) = 1.

• Notice that wave speed c enters in singular fashion.

• When c 6= 0, this is a functional differential equation of mixed type (MFDE).

• When c = 0, this is a difference equation.
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Discrete Nagumo LDE - Propagation failure

Travelling waves for the discrete Nagumo LDE connecting 0→ 1.
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Propagation

Typical wave speed c versus a plot for discrete reaction-diffusion systems:

In principle, can have a∗ = 1
2 or a∗ <

1
2.

In case a∗ <
1
2, then we say that LDE suffers from propagation failure.

Propagation failure common for LDEs and widely studied; pioneed by [Keener].
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Signal Propagation: Comparison

PDE

∂tu = ∂xxu+ g(u, a)

Travelling wave u = φ(x+ ct) satisfies:

cφ′(ξ) = φ′′(ξ) + g
(
φ(ξ); a

)
0

Travelling waves connecting 0 to 1:

LDE

d

dt
Uj = Uj+1 + Uj−1 − 2Uj + g(Uj; a)

Travelling wave Uj = φ(j + ct) satisfies:

cφ′(ξ) = φ(ξ + 1) + φ(ξ − 1)− 2φ(ξ)
+g
(
φ(ξ); a

)
Travelling waves connecting 0 to 1:

Propagation failure if a∗ <
1
2.
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Lattice equations

Continuous media (PDE)

θ

Discrete media (LDE)

• In 2d even more differences between PDE and LDE appear.
• Lattice looks different from different directions!
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Ising Models

• Each lattice site occupied by block of particles that each have 2 possible states.
• Non-local interactions between lattice sites.
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Lattice equations: Geometry

Dynamics for fractional occupancy ui,j of first state satisfies [Bates, 1999]

u̇i,j(t) = [∆+ u(t)]i,j + g(ui,j(t); a).

• Nonlinearity g governs local fluctuations.

• The operator ∆+ mixes the lattice sites. Typical choice:

[∆+u]i,j = ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4ui,j.

∆+ can be seen as discrete version of Laplacian.
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2d LDE: Nonlinearity

Recall the dynamics:

u̇i,j(t) = [∆+u(t)]i,j + g(ui,j(t); a).
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Bistable nonlinearity g given by

g(u; a) = u(a− u)(u− 1).

Two stable equilibria u = 0
and u = 1.

One unstable equilibrium

u = a.
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Lattice equations: Travelling Waves

Recall the dynamics:

u̇i,j(t) = [∆+u(t)]i,j + g(ui,j(t); a).

The nonlinearity g ’pulls’ u towards either u = 0 or u = 1 [competition].

The discrete diffusion ’smooths’ out any wrinkles in u.

Travelling waves: compromise between these two forces.

θ
Travelling waves with profile Φ and speed c
connecting u = 0 to u = 1 in direction

~k = (cos θ, sin θ).

ui,j(t) = Φ((cos θ, sin θ) · (i, j) + ct), Φ(−∞) = 0, Φ(+∞) = 1.
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Lattice equations: Travelling Waves

Recall the dynamics:

u̇i,j(t) = [∆+u(t)]i,j + g(ui,j(t); a).

• Travelling waves connecting u ≡ 0 to u ≡ 1 must satisfy

cΦ′(ξ) = Φ(ξ + cos θ) + Φ(ξ − cos θ) + Φ(ξ + sin θ) + Φ(ξ − sin θ)− 4Φ(ξ)

+g(Φ(ξ); a)

θ

This is a mixed type functional differential equation
(MFDE).

Direction θ explicitly appears in wave equation.

[Mallet-Paret]: waves exist for all directions.
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Lattice equations: Spatial anisotropy

Wavespeed c depends on the angle of propagation θ.
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Lattice equations: Spatial anisotropy

Wavespeed c depends on the angle of propagation θ.
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Lattice equations: Spatial anisotropy - II

Wavespeed c depends on the angle of propagation θ.
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Lattice equations: Spatial anisotropy - III

Behaviour as a→ 0.5 is interesting.
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Lattice equations: Spatial anisotropy - IV

Behaviour as a→ 0.5 is interesting.
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Lattice equations: Spatial anisotropy - V

Behaviour as a→ 0.5 is interesting.
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Lattice equations: Spatial anisotropy - VII

24



Lattice equations: Spatial anisotropy - VI

Conjecture: Pinning is stronger in rational directions than irrational directions.

Conjecture: The more ’aligned’ with lattice, the stronger the pinning is.

Partial results: [Cahn, Van Vleck, Mallet Paret, Hoffman, H.]

In this talk: we fix (a, θ) and assume that c 6= 0.

Goal: understand stability of the travelling wave.

Direction dependence?
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PDE

Consider 2d PDE

ut = uxx + uyy + g(u)

with travelling wave solution

u(x, y, t) = Φ(x+ ct).

For simplicity here: assume c = 0.

Wave profile satisfies:

0 = Φ′′(x) + g
(
Φ(x)

)
and we have stationary PDE solution:

u(x, y, t) = Φ(x).
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PDE

[Kapitula]: Study perturbations using Ansatz

u(t, x, y) = Φ(x+ θ(t, y)) + v(t, x, y).
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PDE

[Kapitula]: Study perturbations using Ansatz

u(t, x, y) = Φ(x+ θ(t, y)) + v(t, x, y).

In order to separate out θ and v evolutions; need normalization:∫ ∞
−∞

Φ′(x)v(t, x, y) dx = 0, for all y ∈ R and t ≥ 0.

Interpretation: v is orthogonal to perturbations caused by shift of profile.

28



PDE

Normalization decouples v and θ evolutions at linear level.

vt = vxx + vyy +Dg(Φ(x))v +Nv(v, θ)

θt = θyy +Nθ(v, θ),

with nonlinearities [Notice: no θ2]:

N∗ = O(v2 + θ2
y + θv + θθyy), ∗ = θ, v

Write solution as [Duhamel](
v(t)
θ(t)

)
=

(
Gvv(t) 0

0 Gθθ(t)

)(
v(0)
θ(0)

)
+
∫ t
s=0

(
Gvv(t− s) 0

0 Gθθ(t− s)

)(
Nv
(
v(s), θ(s)

)
Nθ
(
v(s), θ(s)

) ) ds.
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PDE

Recall Duhamel expression:(
v(t)
θ(t)

)
=

(
Gvv(t) 0

0 Gθθ(t)

)(
v(0)
θ(0)

)
+
∫ t
s=0

(
Gvv(t− s) 0

0 Gθθ(t− s)

)(
Nv
(
v(s), θ(s)

)
Nθ
(
v(s), θ(s)

) ) ds.

Here Gvv(t)v0 solution to

vt(t, x, y) = vxx(t, x, y) + vyy(t, x, y) +Dg(Φ(x))v(t, x, y), v(0, x, y) = v0(x, y)

while Gθθ(t)θ0 solution to

θt(t, y) = θyy(t, y), θ(0, y) = θ0(y).
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PDE

Recall Gvv(t)v0 solution to

vt(t, x, y) = vxx(t, x, y) + vyy(t, x, y) +Dg(Φ(x))v(t, x, y), v(0, x, y) = v0(x, y).

Fourier transform in y-direction:

∂tv̂(t, x, ω) = ∂xxv̂(t, x, ω) +Dg(Φ(x))v̂(t, x, ω)︸ ︷︷ ︸
Linearization around 1d wave

−ω2v̂(t, x, ω)︸ ︷︷ ︸
Nice rigid shift in spectrum

.

Normalization condition ensures v̂0(x, ω) in exp decaying subspace for all
frequencies ω.

‖Gvv(t)v0‖ ∼ e−ηt ‖v0‖ .

[Norm deliberately suppressed - think L2-summability in y-direction.]
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PDE

Recall Gθθ(t)θ0 solution to

θt(t, y) = θyy(t, y), θ(0, y) = θ0(y).

Heat equation; so

‖Gθθ(t)θ0‖L2 ∼ t−1/4 ‖θ0‖L1 .

Derivatives get more decay:

‖∂yGθθ(t)θ0‖L2 ∼ t−3/4 ‖θ0‖L1

‖∂yyGθθ(t)θ0‖L2 ∼ t−5/4 ‖θ0‖L1
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PDE

Nonlinear terms

N∗(v, t) = O(v2 + θ2
y + θv + θθyy)

Slowest expected decay comes from θ2
y and θθyy terms, both giving

t−3/4t−3/4 = t−3/2 and t−1/4t−5/4 = t−3/2 decay.

Recall Duhamel expression:(
v(t)
θ(t)

)
∼

(
e−ηt 0

0 t−1/4

)(
v(0)
θ(0)

)
+
∫ t
s=0

(
e−η(t−s) 0

0 (t− s)−1/4

)(
s−3/2

s−3/2

)
ds.

Self consistent since ∫ t

s=1

(t− s)−1/4s−3/2 ds ∼ t−1/4.
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2d Lattice Differential Equation

Back to the 2d LDE

u̇i,j(t) = [∆+u(t)]i,j + g(ui,j(t); a).
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2d Lattice Differential Equation

Back to the 2d LDE (fix a from now on)

u̇i,j(t) = [∆+u(t)]i,j + g(ui,j(t)).

Assumption: we have a wave solution (c,Φ) travelling (c 6= 0) in rational
direction (σ1, σ2) ∈ Z2.

New coordinates:

n = iσ1 + jσ2 parallel

l = iσ2 − jσ1 transverse.

Old coordinates:

i = [σ2
1 + σ2

2]−1[nσ1 + lσ2]

j = [σ2
1 + σ2

2]−1[nσ2 − lσ1]
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Stability - Coordinate System

In new coordinates, LDE becomes

u̇nl(t) = [∆×u(t)]nl + g
(
unl(t)

)
.

The discrete operator ∆× now acts as

[∆×u]n,l = un+σ1,l+σ2 + un+σ2,l−σ1

+un−σ1,l−σ2 + un−σ2,l+σ1

−4un,l.

All geometrical information encoded in ∆×.

Travelling wave becomes: unl(t) = Φ(n+ ct)

Special cases (σ1, σ2) = (1, 0) or (0, 1) (horizontal or vertical waves): ∆× = ∆+.
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Stability - Refined Ansatz

Refined perturbation Ansatz

unl(t) = Φ
(
n+ ct+ θl(t)

)
+ vnl(t).

Here θl(t) measures deformation of wave profile (expect slow decay).

Remainder included in v(t) (expect faster decay).
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Stability - Linear System

Focus on linear LDE posed on Z2:

v̇nl(t) = [∆×v(t)]nl +Dg
(
Φ(n+ ct)

)
vnl(t).

As before: transverse coordinate l does not appear in coefficients.

Ideal for Fourier transform in transverse direction.

System is decoupled into

d

dt
v̂n(ω, t) = [∆̂×(ω)v̂(ω, t)]n +Dg(Φ(n+ ct))v̂n(ω, t),

with

[∆̂×(ω)v]n = e+iωσ2vn+σ1 + e−iωσ1vn+σ2 + e−iωσ2vn−σ1 + eiωσ1vn−σ2 − 4vn.

In other words, for each frequency ω we have an LDE posed on a 1d lattice (in
parallel coordinate n).

Frequency dependence is horrible!
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LDE - Duhamel

Duhamel formula now becomes(
v(t)
θ(t)

)
=

(
Gvv(t) Gvθ(t)
Gθv(t) Gθθ(t)

)(
v(0)
θ(0)

)
+
∫ t
s=0

(
Gvv(t− s) Gvθ(t− s)
Gθv(t− s) Gθθ(t− s)

)(
Nv
(
v(s), θ(s)

)
Nθ
(
v(s), θ(s)

) ) ds.

Now with:

N∗(v, θ) = O(θv + θθ�) + h.o.t.

where [θ�]l ∼ θl+1 − θl denotes a discrete spatial derivative. Think:(
Gvv(t) Gvθ(t)
Gθv(t) Gθθ(t)

)
∼
(
t−5/4 t−3/4

t−3/4 t−1/4

)
, N∗(v(t), θ(t)) ∼ t−1.

We lose everything that is nice!∫ t

1

(t− s)−1/4s−1 ds ∼ ln(t)t−1/4

39



Stability in 2d

Recall Ansatz

unl(t) = Φ(n+ ct+ θl(t)) + vnl(t).

Thm. [H., Hoffman, Van Vleck, 2012] Travelling wave (c 6= 0) in any rational
direction is nonlinearly stable under small perturbations∑

l∈Z |θl(0)| � 1

supn∈Z[
∑
l∈Z |vnl(0)|] � 1.

Note: perturbations need to be summable in transverse direction.

We have θl(t)→ 0 and vnl(t)→ 0 as t→∞.

In other words, deformations of interface diffuse in transverse direction.

It does NOT lead to a shift in the wave.
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Stability in 2d

Recall Ansatz

unl(t) = Φ(n+ ct+ θl(t)) + vnl(t).

Algebraic decay rates depend on direction of propagation!

Horizontal waves [Norm is `∞ parallel to wave, `2 transverse to wave]

θ(t) ∼ t−1/4, v(t) ∼ t−3/2.

Diagonal waves

θ(t) ∼ t−1/4, v(t) ∼ t−5/4.

Other rational directions: (very slow decay - delicate nonlinear analysis needed)

θ(t) ∼ t−1/4, v(t) ∼ t−3/4.
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Sketch of Proof

The actual Ansatz that we use is:

unl(t) = Φ(n+ ct+ θl(t)) +
(
θl+1(t)− θl(t)

)
p(n+ ct) + wnl(t),

with p : R→ R a function related to

[∂ωΦω]ω=0,

where ω 7→ Φω is the branch of eigenfunctions

LωΦω = λωΦω; Φω=0 = Φ′, λω=0 = 0,

with

[Λωw](ξ) = −cw′(ξ) + e±iωσ2w(ξ ± σ1) + e∓iωσ1w(ξ ± σ2)− 4w(ξ) + g′(Φ(ξ))w(ξ),

i.e. the linearization related to Fourier frequency ω.
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Sketch of Proof

Recall actual Ansatz:

unl(t) = Φ(n+ ct+ θl(t)) +
(
θl+1(t)− θl(t)

)
p(n+ ct) + wnl(t).

Explicitly need to understand dangerous nonlinear terms

θl(t)(θl+1(t)− θl(t)) ∼ t−1.

Key trick: θl(θl+1 − θl) = 1
2

(
θ2
l+1 − θ2

l︸ ︷︷ ︸
t−1/2

− (θl+1 − θl)2︸ ︷︷ ︸
t−3/2

)
.

This is discrete version of conservation law trick:

uux =
1
2

(u2)x,

∫ t
0
(1 + t− t0)−1/4(1 + t0)−1 dt0 ∼ ln(1 + t)(1 + t)−1/4 BAD∫ t

0
(1 + t− t0)−3/4(1 + t0)−1/2 dt0 ∼ (1 + t)−1/4 GOOD.
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Obstacles

• Philosophy: choosing lattice directions breaks isotropy R2.
• Now break resulting discrete symmetry [remove set K].
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Obstacles

Punctured discrete Laplacian [think Neumann boundary conditions]

[∆+
Λu]ij =

∑
|i−i′|+|j−j′|=1

(ui′j′ − uij)1(i′,j′)∈Λ
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Obstacles

Now consider LDE for (i, j) ∈ Λ:

u̇i,j(t) = [∆+
Λu(t)]i,j + g(ui,j(t); a).
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Obstacles

Recall LDE

u̇i,j(t) = [∆+
Λu(t)]i,j + g(ui,j(t); a), (i, j) ∈ Λ.

Main questions:

• How are planar fronts affected?

• Will u = 1 still invade the domain?

• Geometry of obstacle K?
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Obstacles

On the horizon, wave will propagate ’as normal’. Sufficient to pull level curves
through obstacle?
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Obstacles

What if propagation is blocked in vertical and horizontal directions [but not in
diagonal]? Potential scenario:
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Obstacles

Recall LDE

u̇i,j(t) = [∆+
Λu(t)]i,j + g(ui,j(t); a), (i, j) ∈ Λ.

Thm. [H., Hoffman, Van Vleck, 2013]

• Suppose obstacle K is finite and ’convex’ [E.g. K single point]
• Suppose c(θ) > 0 for all θ ∈ [0, 2π] [All directions: no pinning]

Consider any rational direction (σ1, σ2) ∈ Z2 and write (Φ, c) for wave in this
direction.

Then there is a unique entire solution u with

lim
|t|→∞

sup
(i,j)∈Λ

[uij(t)− Φ(iσ1 + jσ2 + ct)] = 0.

[Distortions due to obstacle die out]
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Admitted Obstacles

Covered by Thm:
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Admitted Obstacles

Not covered by Thm:
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Admitted Obstacles

Not covered by Thm:
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Ingredients - 1

On unobstructed lattice, large blobs where u ∼ 1 will expand.

Prop. Suppose c(θ) > 0 for all θ ∈
[0, 2π]. Then for ε > 0 there is R � 1
such that

1− ε < uij(0) ≤ 1, i2 + j2 ≤ R2,

together with

0 ≤ uij(0) ≤ 1, (i, j) ∈ Z2

implies

1− ε < uij(t) ≤ 1

whenever i2 + j2 ≤ (R+ 1
2cmint)2.

[Mechanism for waves to ’flow around’ obstacle.]
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Ingredients - 2

Must construct subsolutions to deal with large distortions post-obstacle.

PDE case: [Berestycki, Hamel, Matano (2009)]

u−(x, y, t) = Φ
(
x+ ct− θ(y, t)− Z(t)

)
− z(t),

with

θ(y, t) = βt−α exp[−y
2

γt], β � 1, γ � 1, 0 < α� 1

z(t) = εe−νt, 0 < ν � 1

Z(t) = KZ

∫ t
s=0

z(s) ds, KZ � 1.

To control large distortions: pick β � 1 as large as you need.

Tails [y →∞] controlled by z(t).

Main intuition: speed up the spreading out part of diffusion [γ]; slow down the
decay part [α].
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Ingredients - 2

Recall phase evolution:

θ(y, t) = βt−α exp[−y
2

γt], β � 1, γ � 1, 0 < α� 1
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PDE vs LDE

PDE: Explicit subsolution

u−(x, y, t) = Φ(x+ ct− θ(y, t)− Z(t)
)
− z(t),

works because all important linear terms multiply

Φ′(x+ ct− θ(y, t))

LDE case: if you try

u−nl(t) = Φ
(
n+ ct− θl(t)− Z(t)

)
− z(t),

important linear terms will multiply one of

Φ′
(
n+ ct− θl(t)− Z(t)

)
, Φ′

(
n+ ct− θl(t)− Z(t)±σi

)
.

You get an n-dependent system for θl [BAD].

57



LDE : subsolution

Introduce σ =
(
σ1, σ2,−σ1,−σ2

)
. Ansatz for LDE subsolution:

u−nl(t) = Φ(n+ ct− θl(t)− Z(t)
)
− z(t)

+
∑4
i=1[θl+σi(t)− θl(t)]pi

(
n+ ct− θl(t)− Z(t)

)
+
∑4
i=1

∑4
j=1[θl+σi+σj(t)− θl+σj(t)− θl+σi(t) + θl(t)]

×qij
(
n+ ct− θl(t)− Z(t)

)
+
∑4
i=1

∑4
j=1[θl+σi(t)− θl(t)][θl+σj(t)− θl(t)]

×rij
(
n+ ct− θl(t)− Z(t)

)
[38 terms!] where the functions pi, qij and rij are all related to the eigenvalue
system

LωΦω = λωΦω.

Function θl(t) is now a convecting (modified) Gaussian.
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Ingredients - 2

Actual phase evolution:

θl(t) = βt−α exp[−(l+ν1t)
2

γt ], β � 1, γ � 1, 0 < α� 1
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Summary

• Obtained stability in 2d for rational directions

• Only spectral conditions imposed on wave.

• Works even in absence of comparison principles.

• For obstacle problems: use comparison principles.

• Waves persist if no direction is pinned and obstacle is nice.

Outlook:

• What about irrational directions ?

• What about standing waves (c = 0) ?

• What about pinning + obstacles ?
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