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Signal Propagation through Nerves

Nerve fibres carry signals over large distances (meter range).
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• Fiber has myeline coating with periodic gaps called nodes of Ranvier .
• Fast propagation in coated regions, but signal loses strength rapidly (mm-range)
• Slow propagation in gaps, but signal chemically reinforced.
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Signal Propagation: The Model

One is interested in the potential Uj at the node sites.

Axon

U0U-1 U1

Signals appear to ”hop” from one node to the next [Lillie, 1925].

Ionic current has sodium and potassium component.

Electro-chemical analysis leads to the two component LDE [Keener and Sneyd,

1998]

U̇j(t) = Uj+1(t) + Uj−1(t)− 2Uj(t) + g(Uj(t); a)−Wj(t),

Ẇj(t) = ε[Uj(t)− γWj(t)],

posed on a 1-dimension lattice, i.e. j ∈ Z.

Potassium recovery encoded in second equation. Slow recovery → small ε > 0.
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Signal Propagation: Nonlinearity

Recall the dynamics:

U̇j(t) = Uj+1(t) + Uj−1(t)− 2Uj(t) + g(Uj(t); a)−Wj(t),

Ẇj(t) = ε[Uj(t)− γWj(t)].
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w = g(u;a)

u =    w  γ 
Bistable nonlinearity g given by

g(u; a) = u(a− u)(u− 1).

Parameter γ > 0 small so

w 6= g(γw; a)

for w 6= 0.
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Discrete FitzHugh-Nagumo LDE

Recall dynamics:

U̇j(t) = Uj+1(t) + Uj−1(t)− 2Uj(t) + g(Uj(t); a)−Wj(t),

Ẇj(t) = ε[Uj(t)− γWj(t)].

Travelling wave Ansatz (Uj,Wj)(t) = (u,w)(j + ct) leads to

cu′(ξ) = u(ξ + 1) + u(ξ − 1)− 2u(ξ) + g(u(ξ); a)− w(ξ),
cw′(ξ) = ε[u(ξ)− γw(ξ)].

This is a singularly perturbed functional differential equation of mixed type
(MFDE).

Interested in pulses: limξ→±∞(u,w)(ξ) = (0, 0).

Previous work by [Tonnelier], [Elmer and Van Vleck]; [Carpio et al]; lot of insight;
rigorous results for special cases.
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Signal Propagation: FitzHugh-Nagumo LDE

Reduction 1: Choose ε = 0, which gives:

cu′(ξ) = u(ξ + 1) + u(ξ − 1)− 2u(ξ) + g(u(ξ); a)− w(ξ),
cw′(ξ) = 0,

admitting an equilibria-manifold M = (u, g(u; a)).

Fast dynamics: u varies; w fixed.

Slow dynamics: u slaved to w by g(u; a) = w; movement only along M.

Choose ML and MR as:
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Signal Propagation: FitzHugh-Nagumo LDE

Reduction 2: Choose ε = 0 and W = 0, which gives Nagumo LDE

U̇j(t) = Uj+1(t) + Uj−1(t)− 2Uj(t) + g(Uj(t); a).

Want: travelling fronts Uj(t) = qf(j + ct), which must solve MFDE

cq′f(ξ) = qf(ξ + 1) + qf(ξ − 1)− 2qf(ξ) + g(qf(ξ); a),

limξ→−∞ qf(ξ) = 0, limξ→∞ qf(ξ) = 1.

Compare to Nagumo PDE

∂tu = ∂xxu+ g(u, a),

with traveling front ODE:

cq′f(ξ) = q′′f (ξ) + g
(
qf(ξ); a

)
limξ→−∞ qf(ξ) = 0, limξ→∞ qf(ξ) = 1.
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Signal Propagation: Comparison

PDE

∂tu = ∂xxu+ g(u, a)

Travelling front u = qf(x+ ct) satisfies:

cq′f(ξ) = q′′f (ξ) + g
(
qf(ξ); a

)
0

Travelling fronts connecting 0 to 1:

LDE

U̇j = Uj+1 + Uj−1 − 2Uj + g(Uj; a)

Travelling front Uj = qf(j+ ct) satisfies:

cq′f(ξ) = qf(ξ + 1) + qf(ξ − 1)− 2qf(ξ)
+g
(
qf(ξ); a

)
Travelling waves connecting 0 to 1:
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Discrete FitzHugh-Nagumo LDE - Propagation failure

Travelling fronts for the discrete Nagumo equation connecting 0→ 1.
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Signal Propagation: FitzHugh-Nagumo LDE

Fix 0 < a < a∗; there exists wave speed c∗ > 0 and front qf :

We now need to go back from MR to ML.

Cubic is symmetric around inflection point −→ mirror qf to find back qb.
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Signal Propagation: FitzHugh-Nagumo LDE

Connecting the pieces we find a singular homoclinic orbit Γ0.
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Discrete FitzHugh-Nagumo LDE - Main Result

Main Result [H., Sandstede]: Choose 0 < a < a∗ to ensure that the discrete
Nagumo equation supports front with c > 0. For sufficiently small ε > 0, there is
a [locally unique] stable travelling pulse solution Γ(ε) to the discrete
FitzHugh–Nagumo LDE that bifurcates off Γ0 and winds around Γ0 once.
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Signal Propagation: FitzHugh-Nagumo PDE

• Result generalizes classic existence + stability theorem for FitzHugh-Nagumo
PDE [Carpenter], [Hastings], [Yanagida] (’70s and ’80s)

Ut = Uxx + g(U ; a)−W,
Wt = ε[U − γW ].

• ‘Modern’ existence proof [Jones et al] uses Exchange Lemma to show
transverse intersection of manifolds Wu(0) and Ws(ML).
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The program

Main goal: lift geometric singular perturbation theory to MFDEs.

• Ill-posedness: care must be taken to define unstable / stable manifolds.

• Track intersections of ∞-dim stable / unstable manifolds.

• Exchange Lemma: Fenichel coordinates unavailable in infinite dimensions.

• Evans function: Not available for MFDEs.

Main ingredients:

• Suitable finite dimensional subspaces of C([−1, 1],R).

• Analytical underpinning for geometrical constructions.

• Direct construction of potential eigenfunctions.

14



Existence: Step 1 - Breaking the front

Varying ε and c breaks orbit qf into quasi-front solution: two parts (u−, w) and
(u+, w).

Want to contain jump in some finite-dimensional Γf ⊂ C([−1, 1],R).
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Existence: Step 1 - Breaking the front

Construction based upon exponential dichotomies on R for linearization

cv′(ξ) = v(ξ + 1) + v(ξ − 1)− 2v(ξ) + g′
(
qf(ξ)

)
v(ξ).

Thm. [Mallet-Paret and Verduyn Lunel, 2001]:

C([−1, 1],R) = P̂← ⊕ Q̂→ ⊕ {q′f} ⊕ Γf .
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Existence: Step 2 - Breaking the back

Similarly, can construct quasi-back solutions.

Extra degree of freedom w0 ≈ w∗, lifts back up and down.

17



Existence: Step 3 - Exchange Lemma

Half-way along MR, quasi-front and quasi-back miss each other by O(e−1/ε).
Slight perturbation yields quasi-solutions:
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Existence: Step 3 - Exchange Lemma

Construction uses seven distinct intervals.
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Existence: Step 4 - Bifurcation equations

The jumps in Γf and Γb can be split into two parts:

• Construction of quasi-fronts and quasi-backs

– Contribution of O(ε+ |c− c∗|+ |w0 − w∗|).

• Modification due to Exchange Lemma

– Contribution + derivatives are O(e−1/ε).

System to solve is hence to leading order

M1(c− c∗) = M2ε

M3(c− c∗) = M4(w0 − w∗) +M5ε

The sign of M1-M5 can be read off from Melnikov integrals.

Three unknowns; two equations −→ curve of solutions
(
ε, c(ε)

)
.
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Stability

We have hence constructed travelling wave solutions

(Uj,Wj)(t) =
(
ū(ε), w̄(ε)

)(
j + c(ε)t

)
.

Waves are shift-periodic with respect to the lattice

(Uj,Wj)
(
t+ 1/c(ε)

)
= (Uj+1,Wj+1)(t).

Possible to use shift-periodic Floquet theory to study stability [Chow,
Mallet-Paret, Shen].

However, we ’pretend’ that j ∈ Z is continuous and study the eigenvalue MFDE

c(ε)u′(ξ) = u(ξ − 1) + u(ξ + 1)− 2u(ξ) + g′
(
ū(ε)(ξ)

)
u(ξ)− w(ξ)− λu(ξ),

c(ε)w′(ξ) = ε
(
u(ξ)− γw(ξ)

)
− λw(ξ),

in comoving frame ξ = j + ct. Write as

L(ε)(u,w) = λ(u,w).
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Stability - Relation between points of view

Rewrite LDE as (U̇ , Ẇ )(t) = F
(
U(t),W (t)

)
posed on `∞.

Green’s function Gjj0(t, t0, ε) is unique solution to linearized LDE

(U̇ , Ẇ )(t) = DF
(

(ū(ε), w̄(ε))(·+ c(ε)t)
)(
U,W

)
(t)

(Uj,Wj)(t0) = δjj0.

Resolvent kernel Gλ(ξ, ξ0, ε) is unique solution to linearized MFDE

(L(ε)− λ)Gλ(·, ξ0, ε) = δ(ξ − ξ0).

Lattice does not see modulations e2πiξ. In particular,

Gλ+2πic(ε)(ξ, ξ0, ε) = e2πi(ξ0−ξ)Gλ(ξ, ξ0, ε).

Thm. [Benzoni-Gavage, Huot, Rousset] For γ � 1 and t > 0,

Gjj0(t, t0, ε) =
−1
2πi

∫ γ+iπc(ε)

γ−iπc(ε)
eλ(t−t0)Gλ(j + ct, j0 + ct0, ε)dλ.
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Stability

Goal is to shift contour of integration in

Gjj0(t, t0, ε) =
−1
2πi

∫ γ+iπc(ε)

γ−iπc(ε)
eλ(t−t0)Gλ(j + ct, j0 + ct0, ε)dλ

to the line γ = −δ0. Need to extend resolvent kernel Gλ meromorphically through
imaginary axis.

Will show: Spectrum of L(ε) admits gap.

Translational eigenvalues at 2πic(ε)Z
contribute simple poles to resolvent kernel
Gλ(ξ, ξ0, ε).
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Stability

Goal is to characterize eigenvalues for L(ε) in three regions R1, R2 and R3

simultaneously for all small ε > 0 by direct construction.

Essential spectrum is O(ε) to left of imaginary axis.

Push out of the way by using exponential weights, i.e., choose small η > 0 and
look for solutions Λ(ε)(u,w) = λ(u,w) that behave as (u,w)(ξ) = O(eηξ) as
ξ → ±∞.

24



Stability - Resonance pole or eigenvalue

Translational eigenvalue at λ = 0.

The pulse (ū, w̄)(ε) can be thought of as bound state of front qf and back qb.

Expect second potential eigenvalue λ2 = O(ε), with eigenfunction centered on the
back qb.

Whether λ2 is an eigenvalue or resonance pole depends on location with respect to
imaginary axis.

Our direct construction of eigenfunctions yields explicit expression for the speeds
with which λ2 and the essential spectrum move to the left.
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Stability - Resonance pole or eigenvalue

All three scenario’s can occur.
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Stability - Interpretation

Situation (i): λ2 is an eigenvalue to the right of essential spectrum.
Perturbations that change only the position of the back will decay without
interacting with the front.

Other perturbations lead to a translation of the pulse profile and a movement of
the back relative to the front.

Situation (ii): λ2 is eigenvalue. Effect should still be felt for localized
perturbations, affects relative position of front and back. Essential spectrum
transports perturbations of background state (u,w) = 0 to j =∞.

Situation (iii): λ2 is resonance pole. Unclear. More detailed analysis of resolvent
kernel may lead to insight.
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Summary / Outlook

• Travelling pulses for discrete FHN constructed using ∞-d Exchange Lemma.

• Stability established by direct construction of potential eigenfunctions.

Number of issues to explore:

• Multi-pulses, homoclinic blow-up etc in other singularly perturbed lattice
problems.

• What happens to pulses as propagation failure region is encountered?
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FitzHugh-Nagumo PDE: Slow Pulses

Recall the travelling wave ODE

u′ = v,
v′ = cv − g(u; a) + w,
w′ = ε

c(u− γw).

In the singular limit c→ 0 and ε
c → 0, one finds an additional slow-singular orbit

Γsl
0 .
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FitzHugh-Nagumo PDE: Status

Conjecture [Yanagida]: fast and slow branches are connected.
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