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Abstract

We extend Lin’s method for use in the setting of parameter-dependent nonlinear func-

tional differential equations of mixed type (MFDEs). We show that the presence of

M -homoclinic and M -periodic solutions that bifurcate from a prescribed homoclinic

connection can be detected by studying a finite dimensional bifurcation equation. As

an application, we describe the codimension two orbit-flip bifurcation in the setting of

MFDEs.
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1 Introduction

The main purpose of this paper is to provide a framework that facilitates the detection of solutions
to a parameter-dependent nonlinear functional differential equation of mixed type

x′(ξ) = G(xξ, µ), (1.1)

that bifurcate from a prescribed homoclinic or heteroclinic connection. Here x is a continuous Cn-
valued function and for any ξ ∈ R the state xξ ∈ C([rmin, rmax],Cn) is defined by xξ(θ) = x(ξ + θ).
We allow rmin ≤ 0 and rmax ≥ 0, hence the nonlinearity G may depend on advanced and retarded
arguments simultaneously. The parameter µ is taken from an open subset of Rp, for some integer
p ≥ 1.

The fact that travelling wave solutions to lattice differential equations are described by functional
differential equations of mixed type (MFDEs) forms one of the primary motivations for this paper.
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As exhibited in detail in [8], lattice differential equations have many modelling applications in a
wide range of scientific disciplines. As a consequence they are attracting a considerable amount of
interest, both from an applied as well as a theoretical perspective. One of the driving forces in these
investigations is the desire to apply the powerful tools that are currently available for ODEs to
the infinite dimensional setting of (1.1). The constructions in [10, 11] concerning finite dimensional
center manifolds, which describe the behaviour of solutions to (1.1) in the vicinity of equilibria and
periodic solutions, should be seen in this light.

In the present work we continue this approach, by studying solutions to (1.1) that remain orbitally
close to a prescribed homoclinic or heteroclinic solution q that solves (1.1) at µ = µ0. We will be
particularly interested in the construction of M -homoclinic and M -periodic orbits, which loosely
speaking wind around the principal orbit q exactly M times, before converging to an equilibrium or
repeating their pattern. More precisely, we will fix a Poincaré section that intersects the trajectory
of q at q0 in a transverse fashion and study solutions that pass through this section M times. We
will show that for µ sufficiently close to µ0, one may construct solutions that satisfy these winding
properties, up to M possible discontinuities that occur exactly at the Poincaré section. Moreover, our
construction will force these jumps to be contained in some finite dimensional subset of this section.
This crucial reduction allows us to search for M -homoclinic and M -periodic orbits by studying the
roots of M finite dimensional bifurcation equations, that effectively measure the size of the jumps.

This construction is known as Lin’s method and was originally developed by Lin [13] in order to
study systems that depend upon a single parameter. Sandstede generalized the method in such a
way that bifurcations with higher codimensions could also be incorporated [16]. Our approach here
should be seen as a subsequent generalization of this latter framework to the infinite dimensional
context of (1.1). In addition, we will show that the bifurcation equations that describe the size of the
jumps have a similar asymptotic form as those derived for the ODE version of (1.1). This provides
a bridge that will allow classical bifurcation results obtained for ODEs to be directly lifted to the
mixed type functional differential equation (1.1).

We mention here that very recently Lin’s method was used to study homoclinic solutions to a
reversible lattice differential equation, in the neighbourhood of a prescribed symmetric homoclinic
connection [3]. The approach in [3] however cannot be used to detect bifurcating periodic solutions.1

In addition, the choice to use the Hilbert space Cn × L2([rmin, rmax],Cn) as a state space for (1.1)
causes the nonlinearity to have a domain and therefore requires the use of a proper functional-analytic
setup. We prefer to avoid such complications and therefore choose to work with the traditional state
space C([rmin, rmax],Cn). This will enable us to stay very close to the finite dimensional framework
developed in [13, 16] and should considerably ease the application of our results.

Historically, the primary motivation for the work by Lin and Sandstede mentioned above, was
the classification of the bifurcations that homoclinic solutions to generic ODEs with one or two
parameters may undergo. In a sequence of papers, Shilnikov [17, 18, 19, 20, 21, 22] presented an
alternative for generic ODE versions of (1.1) with p = 1. In particular, the ODE either admits
precisely one branch of large-period periodic solution that bifurcates from the homoclinic orbit q for
µ > µ0 or µ < µ0, or else admits symbolic dynamics for all µ sufficiently close to µ0. The existence
of the unique periodic orbit was generalized to semilinear parabolic PDEs and delay equations by
Chow and Deng [1] using semigroup techniques. Sandstede lifted the result concerning the presence
of symbolic dynamics to parabolic PDEs that have a sectorial linear part [16].

According to Yanagida [23], the generic non-resonant bifurcations of codimension two that a
hyperbolic homoclinic solution to an ODE may undergo, are the inclination-flip and the orbit-flip bi-
furcations. The former of these has been analyzed by several authors [7, 12] using Lyapunov-Schmidt
techniques, that unfortunately break down when studying the orbit-flip bifurcation. However, em-
ploying the adaptation of Lin’s method discussed above, Sandstede obtained a general description of
this bifurcation for ODEs in [16]. In Section 2 we will use our bridge to lift this result and characterize
the orbit-flip bifurcation for (1.1).

1This restriction was lifted in a sequel [4] that appeared simultaneously with the present paper.
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The first obstacle that needs to be overcome in any bifurcation analysis involving MFDEs, is that
the linearized problems one encounters are ill-posed and therefore do not generate a semiflow. It is
known that exponential dichotomies form a very powerful tool when dealing with ill-posed problems,
since they split the state space into separate parts that do admit a semiflow. The existence of
such exponential splittings for parameter-independent homogeneous linear MFDEs, was established
independently and simultaneously by Verduyn Lunel and Mallet-Paret [15] on the one hand and
Härterich and coworkers [6] on the other, using very different methods.

A second obstacle is that there is no immediate way to write down a variation-of-constants
formula that solves inhomogeneous MFDEs. This is caused by the fact that the inhomogeneity will
simply be a Cn-valued function, while the projections associated to the exponential dichotomies
act on the state space C([rmin, rmax],Cn). Such a difficulty was also encountered in the study of
retarded differential equations, i.e. (1.1) with rmax = 0. It was resolved by the development of so-
called sun-star techniques [2], which allow both the system under consideration and its relevant
spectral projections to be lifted to the appropriate extended state space Cn × L∞([rmin, 0],Cn).
Unfortunately, these constructions are based on a semigroup approach and therefore break down
when rmin < 0 < rmax, due to the ill-posedness mentioned above. In view of this fact, a third obstacle
arises when one wishes to study systems that depend on a parameter, since robustness theorems for
exponential dichotomies are generally established using a variation-of-constants formula.

In previous work [9, 10, 11], the absence of a variation-of-constants formula was circumvented
by utilizing variants of the Greens function that was constructed by Mallet-Paret for autonomous
MFDEs [14]. Continuing in this spirit, we will use the Fredholm theory developed in [14] for nonau-
tonomous MFDEs to construct inverses for inhomogeneous MFDEs on half-lines. By carefully com-
bining these inverses with the exponential splittings developed in [15], we are able to construct
exponential dichotomies for parameter-dependent MFDEs without using a variation-of-constants
formula. In addition, this setup will allow us to obtain precise estimates on the speed at which the
projections associated to these dichotomies approach the limiting spectral projections at ±∞. We
will also be able to isolate the portion of the state space that corresponds to a specific eigenvalue
of one of these spectral projections. These results can be found in Sections 3 to 5 and provide the
machinery that we require to construct the bridge between ODEs and MFDEs.

In Section 2 we state our main results, which describe Lin’s method in the setting of MFDEs
and give an explicit expression for the leading order terms in the bifurcation equations. In addition,
we characterize the orbit-flip bifurcation for MFDEs. In Section 6 we construct the candidate M -
homoclinic and M -periodic orbits, that satisfy (1.1) up to M jumps. Our approach in that section
broadly follows the presentation in [16], but we avoid the smooth coordinate changes that are used
there, since these are often problematic in an infinite dimensional setting. Instead, these coordinate
changes are only applied after the problem has been reduced to a finite dimensional one. Finally, in
Sections 7 and 8 we obtain estimates on the size of the error that is made if one only considers the
leading order terms when measuring the size of the M jumps.

2 Main Results

Consider for some integer N ≥ 0 the general nonlinear functional differential equation of mixed type

x′(ξ) = G(x(ξ + r0), . . . , x(ξ + rN ), µ) = G(xξ, µ), (2.1)

in which x should be seen as a mapping from R into Cn for some n ≥ 1. The shifts rj ∈ R may
have either sign and we will assume that they are ordered as r0 < . . . < rN , with r0 ≤ 0 and
rN ≥ 0. Introducing rmin = r0 and rmax = rN , we write X = C([rmin, rmax],Cn) for the state space
associated to (2.1). The state of a function x at ξ ∈ R will be denoted by xξ ∈ X or alternatively
evξx ∈ X and is defined by xξ(θ) = x(ξ+ θ) for rmin ≤ θ ≤ rmax. The parameter µ is taken from an
open subset U ⊂ Rp for some integer p ≥ 1. For convenience, we will use both of the representations
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for G that were introduced in (2.1) interchangeably throughout the sequel, but the details should
be clear from the context.

We will need the following assumptions on the nonlinearity G. We remark that the parameter-
independence of the equilibria is not a real restriction, as this can always be achieved by means of
a change of variables.

(HG) The nonlinearity G : X × U → C
n is Ck+2 smooth for some integer k ≥ 2. In addition, it

admits D distinct equilibria q∗ ∈ Cn, which we label as q∗(1) through q∗(D). These equilibria
do not depend on the parameter µ, i.e., we have G(q∗(i), µ) = 0 for all µ ∈ U and all integers
1 ≤ i ≤ D.

It is important to understand the linearizations of (2.1) around these equilibrium solutions. To this
end, we define L(i)(µ) = D1G(q∗(i), µ) and consider the homogeneous linear MFDE

x′(ξ) = L(i)(µ)xξ =
N∑
j=0

A
(i)
j (µ)x(ξ + rj). (2.2)

Associated to this linear MFDE one has the characteristic matrix

∆(i)(z, µ) = zI − L(i)(µ)ez· = zI −
N∑
j=0

A
(i)
j (µ)ezrj . (2.3)

We will need the following assumption on the linearizations, which basically states that all equilibria
are hyperbolic.

(HL) For all integers 1 ≤ i ≤ D and all µ ∈ U , the characteristic equation det ∆(i)(z, µ) = 0
admits no roots with Re z = 0.

Now let us assume that for µ = µ0, equation (2.1) has a heteroclinic solution q that connects the
equilibria q∗− and q∗+. Inserting x(ξ) = q(ξ) + v(ξ) into (2.1), we find the variational MFDE

v′(ξ) = D1G(qξ, µ0)vξ +R(ξ, vξ, µ), (2.4)

which is no longer autonomous. Associated to the linear part of this equation we define the operator
Λ : W 1,1

loc (R,Cn)→ L1
loc(R,Cn) that is given by

[Λv](ξ) = v′(ξ)−D1G(qξ, µ0)vξ = v′(ξ)−
N∑
j=0

Aj(ξ)v(ξ + rj), (2.5)

withAj(ξ) = DjG
(
q(ξ+r0), . . . , q(ξ+rN ), µ0

)
. It is possible to define an operator Λ∗ : W 1,1

loc (R,Cn)→
L1

loc(R,Cn) that can be interpreted as an adjoint for Λ under suitable conditions. This adjoint is
given by

[Λ∗w](ξ) = w′(ξ) +
N∑
j=0

Aj(ξ − rj)∗w(ξ − rj). (2.6)

We will write Y = C([−rmax,−rmin],Cn) for the state space associated to the adjoint (2.6) and ev∗ξ
for the associated evaluation operator, which now maps into Y . The coupling between Λ and Λ∗ is
provided through the Hale inner product, which is given by

〈ψ, φ〉ξ = ψ(0)∗φ(0)−
N∑
j=0

∫ rj

0

ψ(θ − rj)∗Aj(ξ + θ − rj)φ(θ)dθ, (2.7)

for any φ ∈ X and ψ ∈ Y . The following condition on the operator Λ ensures that the Hale inner
product is nondegenerate, in the sense that if 〈ψ, φ〉ξ = 0 for all ψ ∈ Y and some φ ∈ X, then φ = 0.
A proof for this fact can be found in [15].
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(HB) The matrices A0(ξ) and AN (ξ) are nonsingular for every ξ ∈ R.

Let I ⊂ R be an interval. To state our results, we use the following family of Banach spaces,
parametrized by η ∈ R,

BCη(I,Cn) =
{
x ∈ C(I,Cn) | ‖x‖η := supξ∈I e−ηξ |x(ξ)| <∞

}
. (2.8)

We also need to consider the finite dimensional kernels

K =
{
b ∈ BC0(R,Cn) | Λb = 0

}
,

K∗ =
{
d ∈ BC0(R,Cn) | Λ∗d = 0

}
.

(2.9)

Let us write X0 = {φ ∈ X | φ = b0 for some b ∈ K} and choose X̂ in such a way that X = X̂ ⊕X0.
In addition, we write Y0 = {ψ ∈ Y | ψ = d0 for some d ∈ K∗} and define the space

X̂⊥ =
{
φ ∈ X̂ | 〈ψ, φ〉0 = 0 for all ψ ∈ Y0

}
. (2.10)

We note that X̂⊥ ⊂ X̂ is closed and of finite codimension, which allows us to fix a finite dimensional
complement Γ and write X = X0 ⊕ X̂⊥ ⊕ Γ.

Proposition 2.1. Consider the nonlinear equation (2.1) and suppose that (HG), (HL) and (HB)
are satisfied. There exists a small neighbourhood U ′ ⊂ U , with µ0 ∈ U ′, a small constant ε > 0 and
two Ck+1-smooth maps u− : U ′ → BC+ε

(
(−∞, rmax],Cn

)
and u+ : U ′ → BC−ε

(
[rmin,∞),Cn

)
,

such that the following properties are satisfied.

(i) For any µ ∈ U ′, the function x(ξ) = q(ξ) + u−(µ)(ξ) satisfies the nonlinear equation (2.1) for
all ξ ≤ 0. In addition, the function x(ξ) = q(ξ) + u+(µ)(ξ) satisfies (2.1) for all ξ ≥ 0.

(ii) For all µ ∈ U ′, we have the identities

ev0u
−(µ) ∈ X̂⊥ ⊕ Γ,

ev0u
+(µ) ∈ X̂⊥ ⊕ Γ.

(2.11)

(iii) For all µ ∈ U ′, we have ξ∞(µ) := ev0u
−(µ)− ev0u

+(µ) ∈ Γ.

(iv) For any d ∈ K∗, we have the Melnikov identity

Dµ[〈ev∗0d, ξ
∞(µ)〉0]|µ=µ0 =

∫ ∞
−∞

d(ξ′)∗D2G(qξ′ , µ0)dξ′. (2.12)

These maps are locally unique, in the sense that there exists δ > 0 such that any pair (ũ+, ũ−)
that satisfies (i) through (iii) for some µ ∈ U ′ and also has ũ+ ∈ BC0

(
[rmin,∞),Cn

)
, ũ− ∈

BC0

(
(−∞, rmax],Cn

)
and ‖ũ±‖0 < δ, must satisfy ũ+ = u+(µ) and ũ− = u−(µ).

We remark that the condition (HB) ensures that the Hale inner product is nondegenerate, which
means that the inner product appearing in (2.12) is a valid way of measuring the gap between the
local stable and unstable manifolds of (2.1). If one is merely interested in studying heteroclinic orbits
that bifurcate from a prescribed heteroclinic connection, then Proposition 2.1 already reduces this
problem to a finite dimensional one. Indeed, item (iii) implies that one has to search for the roots
of a Ck+1-smooth function defined on Γ.

For the purpose of this paper however, let us consider a family of heteroclinic connections {qj}j∈J ,
in which J ⊂ Z is a possibly infinite set of subsequent integers. We emphasize here that these
connections need not be distinct, thus any heteroclinic connection can appear in the family an
arbitrary number of times. We write J ∗ ⊂ Z+ 1

2 for the set of half-integers J ∗ = {j ± 1
2}j∈J , that
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will be related to the boundary conditions that tie the connections together. In particular, we will
assume that the family {qj}j∈J connects the equilibria {q∗` }`∈J ∗ , i.e.,

lim
ξ→±∞

qj(ξ) = q∗j± 1
2
. (2.13)

Our aim is to construct solutions x to (2.1) that subsequently intersect the Poincaré sections ev0qj+
X̂

(j)
⊥ + Γ(j) close to ev0qj at prescribed times Tj . To this end, we look for solutions to (2.1) that can

be written as

x(Tj + ξ) = qj(ξ) + u−j (µ)(ξ) + v−j (µ)(ξ), ω−j + rmin ≤ ξ ≤ rmax,

x(Tj + ξ) = qj(ξ) + u+
j (µ)(ξ) + v+

j (µ)(ξ), rmin ≤ ξ ≤ ω+
j + rmax,

(2.14)

in which we will take ω+
j = −ω−j+1 = ωj+ 1

2
, for some family {ω`}`∈J ∗ that has Tj+1 − Tj = 2ωj+ 1

2
,

wherever this is defined. If J is finite, i.e., J = {1, . . . ,M}, then we can supply boundary conditions
by requiring either limξ→−∞ x(ξ) = q∗1

2
and limξ→∞ x(ξ) = q∗

M+ 1
2

if we are looking for a heteroclinic
connection or evω−1 x = evω+

M
x if we are interested in periodic orbits.

The main result of this paper shows that if the prescribed crossing times Tj are sufficiently far
apart, the search for solutions x of the form (2.14) is equivalent to the search for roots of a smooth
function defined on the collection of finite dimensional spaces {Γ(j)}j∈J .

Theorem 2.2. Consider the nonlinear equation (2.1) and suppose that (HG), (HL) and (HB) are
satisfied. Furthermore, consider a family of heteroclinic connections {qj}j∈J that satisfies (2.13).
There exists an Ω > 0 and an open neighbourhood U ′ ⊂ U , with µ0 ∈ U ′, such that for any
family {ω`}`∈J ∗ that has ω` ≥ Ω for all ` ∈ J ∗, there exist two families of functions v−j : U ′ →
C
(
[ω−j + rmin, rmax],Cn

)
and v+

j : U ′ → C
(
[rmin, ω

+
j + rmax],Cn

)
, defined for j ∈ J , that satisfy the

following properties.

(i) For any µ ∈ U ′ and j ∈ J , the function x(ξ) = qj(ξ) + u−j (µ)(ξ) + v−j (µ)(ξ) satisfies the
nonlinear equation (2.1) for all ω−j ≤ ξ ≤ 0. In addition, the function x(ξ) = qj(ξ)+u+

j (µ)(ξ)+
v+
j (ξ) satisfies (2.1) for all 0 ≤ ξ ≤ ω+

j .

(ii) For any µ ∈ U ′ and any j ∈ J , we have ev0v
−
j (µ) ∈ X̂(j)

⊥ ⊕ Γ(j) and similarly ev0v
+
j (µ) ∈

X̂
(j)
⊥ ⊕ Γ(j).

(iii) For any µ ∈ U ′ and j ∈ J , the following boundary conditions are satisfied,

evω−j+1
v−j+1(µ)− evω+

j
v+
j (µ) = evω+

j
[qj + u+

j (µ)]− evω−j+1
[qj+1 + u−j+1(µ)]. (2.15)

If the family J is finite with M elements and −∞ < ω−1 = −ω+
M , then v−M+1 should be read

as v−1 . If however ω−1 = −∞ and ω+
M = ∞, then (2.15) holds for all 1 ≤ j < M and one has

the additional limits

limξ→−∞ v−1 (µ)(ξ) = 0, limξ→∞ v+
M (µ)(ξ) = 0. (2.16)

(iv) For any µ ∈ U ′ and any j ∈ J , we have ξj(µ) ∈ Γ(j), in which ξj(µ) denotes the gap
ev0[v−j (µ)− v+

j (µ)].

The two families {v±j }j∈J are locally unique in a sense similar to the one described in Proposition
2.1. In addition, these functions v±j depend Ck-smoothly on µ, while the gaps ξj depend Ck-smoothly
on the pair (µ, {ω`}`∈J ∗). Finally, for any d ∈ K∗ and j ∈ J , we can estimate ξj(µ) according to

〈ev∗0d, ξj(µ)〉0 = 〈ev∗
ω+
j

d, evω−j+1
[qj+1 + u−j+1(µ)− q∗

j+ 1
2
]〉ω+

j

− 〈ev∗
ω−j
d, evω+

j−1
[qj−1 + u+

j−1(µ)− q∗
j− 1

2
]〉ω−j +Rj .

(2.17)
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The error term Rj enjoys the following estimate, for some positive constants C1 and C2,

Rj ≤ ‖ev∗0d‖ [C1 |µ− µ0| e−2αω + C2e
−3αω]. (2.18)

Here we have introduced ω = min`∈J ∗{ω`}, while α > 0 is sufficiently small to ensure that the
characteristic equations det ∆(i)z = 0 have no roots with |Re z| ≤ α for all 1 ≤ i ≤ D.

We note here that sharper estimates for the remainder terms Rj can be found in Sections 7
and 8, where we also provide estimates on the derivatives of Rj with respect to µ and the family
{ω`}`∈J ∗ . In combination with these estimates, Theorem 2.2 allows bifurcation problems for the
infinite dimensional system (2.1) to be treated on a similar footing as bifurcation problems for
ODEs.

The orbit-flip bifurcation

To illustrate the application range of Theorem 2.2, we lift a result obtained by Sandstede [16] that
describes the homoclinic orbit-flip bifurcation for ODEs. We proceed by stating the assumptions on
the system (2.1) that we will need.

(OF1) The nonlinearity G is Ck+2-smooth with k ≥ 2. The parameter space U is two dimensional
and contains the origin, i.e., 0 ∈ U ⊂ R2. The nonlinear differential equation (2.1) has an
equilibrium at x = 0 for all µ ∈ U .

(OF2) There exists a homoclinic solution q to (2.1) at µ = 0 that satisfies limξ→±∞ q(ξ) = 0.
The kernel K = K(Λ) ⊂ BC0(R,Cn) associated to the linearization (2.5) of the nonlinear
equation (2.1) around this orbit q, is one dimensional and satisfies

K = span
{
q′
}
. (2.19)

We remark here that the Fredholm theory developed by Mallet-Paret [14], which is recalled here
in Section 3, now implies that the kernel K∗ = K(Λ∗) associated to the adjoint of the linearization
(2.5) is also one dimensional. In particular, for some d ∈ BC0(R,Cn) we may write

K∗ = span
{
d
}
. (2.20)

(OF3) There exist constants ηf− < 0 and ηf+ > 0, such that for every µ ∈ U , the characteristic
equation det ∆(z, µ) = 0 associated to the equilibrium of (2.1) at x = 0 has precisely two
eigenvalues z = λ±(µ) in the strip ηf− ≤ Re z ≤ ηf+. These eigenvalues are simple roots of
the characteristic equation and there exist constants ηs± such that the following inequalities
are satisfied for all µ ∈ U ,

ηf− < λ−(µ) < ηs− < 0 < ηs+ < λ+(µ) < ηf+. (2.21)

Throughout the sequel we will often use the shorthands λ± = λ±(0). The spectral splitting in (OF3)
ensures that we can decompose the state spaces X and Y as

X =Mc(µ)⊕Mλ−(µ) ⊕Mλ+(µ), Y =M∗c ⊕M∗−λ− ⊕M
∗
−λ+

, (2.22)

in whichMλ±(µ) are the one dimensional eigenspaces associated to the eigenvalues λ±(µ) andMc(µ)
is a closed complement, while the starred spaces are defined similarly. The spectral projections
ΠMλ±(µ) and ΠM∗−λ± onto these eigenspaces can be written in terms of the Hale inner product [5].
More precisely, there exist ψ±(µ) ∈ Y and φ±(µ) ∈ X such that

ΠMλ±(µ)φ = 〈ψ±(µ), φ〉∞,µφ±(µ), ΠM∗−λ±ψ = 〈ψ, φ±〉∞,µψ±, (2.23)
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again with the shorthands ψ± = ψ±(0) and φ± = φ±(0). Let us now consider the functions u±(µ)
introduced in Proposition 2.1, together with the jump ξ∞(µ). We also need to introduce the functions
Φ± : U ′ → R given by

Φ±(µ) = limξ→±∞ e−λ∓(µ)ξ〈ψ∓(µ), evξ
(
q + u±(µ)

)
〉±∞,µ. (2.24)

In a similar fashion we define the scalars

Φ∗± = limξ→±∞ eλ±ξ〈ev∗ξd, φ±〉±∞,0. (2.25)

Using arguments very similar to those given in [14, Section 7], one may show that both Φ± depend
Ck-smoothly on µ.

(OF4) We have the identities Φ+(0) = 0, Φ−(0) 6= 0 and Φ∗± 6= 0. In particular, q approaches
its limit in forward time at an exponential rate faster than ηf−, but behaves generically as
ξ → −∞, while d behaves generically at both ±∞.

(OF5) The Melnikov integral
∫∞
−∞ d(ξ′)∗D2G(qξ′ , 0)dξ′ ∈ R2 and the derivative [DΦ+](0) ∈ R2

are linearly independent.

This condition allows us to redefine the coordinates on the parameter space U to ensure that

µ1 = Φ+(µ1, µ2),
µ2 = 〈d, ξ∞(µ1, µ2)〉0.

(2.26)

In the event that λ+ > −ηf− we need to strengthen the condition (OF3) and give a more detailed
description of the negative part of the spectrum associated to the limiting equation.

(OF6) There exist constants ηff− < ηf− < 0 and ηf+ > 0 such that for all µ ∈ U , the characteristic
equation det ∆(z, µ) = 0 associated to the equilibrium of (2.1) at x = 0 has precisely three
eigenvalues z = λ±(µ) and z = λf−(µ) in the strip ηff− ≤ Re z ≤ ηf+. These eigenvalues
are simple roots of the characteristic equation and there exist constants ηs± such that the
following inequalities are satisfied for all µ ∈ U ,

ηff− < λf−(µ) < ηf− < λ−(µ) < ηs− < 0 < ηs+ < λ+(µ) < ηf+. (2.27)

Writing Φf+ and Φ∗f− for the quantities associated to this eigenvalue λf− that are analogous
to those defined for λ± in (2.24) and (2.25), we have Φf+(0) 6= 0 and Φ∗f− 6= 0.

After all these preparations, we are almost ready to apply Theorem 2.2 and describe the orbit-flip
bifurcation for functional differential equations of mixed type. It merely remains to define the type
of solutions to (2.1) in which we are interested. To this end, consider any pair of positive constants
(δ,Ω), where δ should be seen as small and Ω as large. Let us consider a solution x to (2.1) that
satisfies the limits limξ→±∞ x(ξ) = 0. Suppose that there exist exactly M distinct values {ξj}Mj=1 for
which evξjx ∈ ev0q+ X̂⊥+ Γ, with

∥∥evξjx− ev0q
∥∥ < δ. Suppose furthermore that x remains δ-close

to q, in the sense that there exists a nondecreasing function j∗ : R → {1, . . . ,M} with j∗(ξj) = j
such that

∥∥evξx− evξ−ξj∗(ξ)q
∥∥ < δ for all ξ ∈ R. Finally, suppose that for any pair 1 ≤ j1, j2 ≤ M ,

we have |ξj1 − ξj2 | > Ω. Then we will refer to x as a (δ,Ω,M)-homoclinic solution. Similarly, let us
consider a periodic solution x to (2.1) with minimal period ω. If x also satisfies the conditions above,
where the values ξj should now be interpreted modulo ω, then we will call x a (δ,Ω,M)-periodic
solution.

Theorem 2.3. Consider the nonlinear equation (2.1) and assume that the conditions (OF1) through
(OF5) and (HB) are satisfied, with λ+ 6= −λ−. In the event that λ+ ≥ −ηf−, assume furthermore
that (OF6) is satisfied and that λ+ 6= −λf−. Then upon fixing δ > 0 sufficiently small and Ω > 0
sufficiently large, one of the following three alternatives must hold.
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(A) (Homoclinic Continuation) We have λ+ < −λ−. For all sufficiently small pairs (µ1, µ2), with
µ2 > 0, equation (2.1) admits precisely one (δ,Ω, 1)-periodic solution. For all sufficiently small
|µ1|, there exists precisely one (δ,Ω, 1)-homoclinic solution to (2.1) with µ2 = 0. For all integers
M ≥ 2, there are no (δ,Ω,M)-periodic and (δ,Ω,M)-homoclinic solutions to (2.1).

(B) (Homoclinic Doubling) We have −λ− < λ+ < −ηf−. Excluding the line µ2 = 0, there are two
curves that extend from the origin in parameter space on which codimension one bifurcations
occur. More precisely, there is a branch of (δ,Ω, 2)-homoclinic solutions that passes through
the origin and a curve emanating from the origin at which a period-doubling bifurcation takes
place, turning (δ,Ω, 1)-periodic solutions into (δ,Ω, 2)-periodic solutions.

(C) (Homoclinic Cascade) We have −λf− < λ+. For every M ≥ 1 there is a branch of (δ, ω,M)-
homoclinic solutions to (2.1) that emerges from the origin in parameter space. In addition,
branches of codimension-one period-fold and period-doubling bifurcations emerge from the ori-
gin and there is an open wedge in parameter space in which (2.1) admits symbolic dynamics.

We refer to [16] for a more graphic description of these three bifurcation scenarios.

3 Preliminaries

In this section we develop some preliminary results for the linear inhomogeneous system

x′(ξ) = L(ξ)xξ + f(ξ) =
N∑
j=0

Aj(ξ)x(ξ + rj) + f(ξ), (3.1)

in which we take x ∈ W 1,∞(R,Cn) and f ∈ L∞(R,Cn). We will assume throughout this section
that the complex n×n matrix valued functions Aj are continuous and that the shifts rj are ordered
according to r0 < . . . < rN , again with r0 ≤ 0 and rN ≥ 0. Our main goal here is to develop a
method to solve (3.1) on half-lines in weighted function spaces, which will allow us to construct
exponential dichotomies for linear MFDEs in the sequel. To prepare for this, we state the Fredholm
properties for (3.1) that were obtained by Mallet-Paret [14] and show how (3.1) transforms under
exponential shifts.

The system (3.1) is said to be asymptotically hyperbolic if the limits A±j = limξ→±∞Aj(ξ) exist
for all integers 0 ≤ j ≤ N , while the characteristic equations det ∆±(z) = 0 associated to these
limiting equations do not have any roots on the imaginary axis. Here we have defined

∆±(z) = zI −
N∑
j=0

A±j e
zrj . (3.2)

We recall the linear operator Λ : W 1,∞(R,Cn)→ L∞(R,Cn) associated to (3.1) that is given by

[Λx](ξ) = x′(ξ)−
N∑
j=0

Aj(ξ)x(ξ + rj), (3.3)

together with the formal adjoint Λ∗ : W 1,∞(R,Cn)→ L∞(R,Cn) that acts as

[Λ∗y](ξ) = y′(ξ) +
N∑
j=0

Aj(ξ − rj)∗y(ξ − rj). (3.4)

The following important result, that describes the relation between the Fredholm operators Λ and
Λ∗, is due to Mallet-Paret and can be found in [14].
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Theorem 3.1. Assume that (3.1) is asymptotically hyperbolic. Then both Λ and Λ∗ are Fredholm
operators, with Fredholm indices given by

ind(Λ) = −ind(Λ∗) = dimK(Λ)− dimK(Λ∗). (3.5)

Every element in the kernels K(Λ) and K(Λ∗) decays exponentially as ξ → ±∞, while the relation
between Λ and Λ∗ is given by the following identities,

R(Λ) =
{
h ∈ L∞(R,Cn) |

∫∞
−∞ d(ξ′)∗h(ξ′)dξ′ = 0 for every d ∈ K(Λ∗)

}
,

R(Λ∗) =
{
h ∈ L∞(R,Cn) |

∫∞
−∞ b(ξ′)∗h(ξ′)dξ′ = 0 for every b ∈ K(Λ)

}
.

(3.6)

In the special case that the functions Aj(ξ) do not depend on ξ, the operator Λ is invertible and there
exists a Greens function G : R→ C

n×n such that

[Λ−1f ](ξ) =
∫ ∞
−∞

G(ξ − ξ′)f(ξ′)dξ′. (3.7)

The Fourier transform of the function G is given by Ĝ(η) = ∆−1(iη), which implies that G decays
exponentially at both ±∞.

For our purposes in this paper, we will need to study the action of Λ on function spaces with
exponentially weighted norms. We therefore introduce the notation eνf = eν·f(·) for any ν ∈ R and
f ∈ L1

loc(R,Cn). In addition, we introduce the family of exponentially weighted spaces

L∞η (R,Cn) =
{
x ∈ L1

loc(R,Cn) | e−ηx ∈ L∞(R,Cn)
}
,

W 1,∞
η (R,Cn) =

{
x ∈ L1

loc(R,Cn) | e−ηx ∈W 1,∞(R,Cn)
}
,

(3.8)

with norms given by ‖x‖L∞η = ‖e−ηx‖L∞ and similarly ‖x‖W 1,∞
η

= ‖e−ηx‖W 1,∞ .
To study how Λ behaves under the action of eη, let us define the shifted operator Λη : W 1,∞(R,Cn)→

L∞(R,Cn) that acts as

[Ληx](ξ) = x′(ξ)− ηx(ξ)−
N∑
j=0

Aj(ξ)e−ηrjx(ξ + rj). (3.9)

In addition, we write ∆±η for the characteristic equations associated to the shifted operator Λη. It is
not hard to check that

Λeηx = eηΛ−ηx,
∆±η (z) = ∆±(z − η). (3.10)

Using the definition of the adjoint Λ∗ in (3.4), one may also easily conclude that we have the identity

(Λη)∗ = (Λ∗)−η. (3.11)

In this fashion we can define the Fredholm operator Λ(η) : W 1,∞
η (R,Cn)→ L∞η (R,Cn) by means of

Λ(η) = eη ◦ Λ−η ◦ e−η. (3.12)

In a similar fashion we define Λ∗(η) : W 1,∞
η (R,Cn)→ L∞η (R,Cn) by

Λ∗(η) = eη ◦ (Λ∗)−η ◦ e−η. (3.13)

The next proposition provides the appropriate generalization of Theorem 3.1.
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Proposition 3.2. Assume that (3.1) is asymptotically autonomous and in addition that the char-
acteristic equations det ∆±(z) = 0 have no roots with Re z = η. Then both Λ(η) : W 1,∞

η (R,Cn) →
L∞η (R,Cn) and Λ∗(−η) : W 1,∞

−η (R,Cn)→ L∞−η(R,Cn) are Fredholm operators, with

ind(Λ(η)) = −ind(Λ∗(−η)) = dimK(Λ(η))− dimK(Λ∗(−η)). (3.14)

For every element b in K(Λ(η)), the function e−ηb decays exponentially at both ±∞, while for any d
in K(Λ∗(−η)) we have that eηd decays exponentially at both ±∞. The relation between Λ(η) and Λ∗(−η)

is given by the following identities,

R(Λ(η)) =
{
h ∈ L∞(R,Cn) |

∫∞
−∞ d(ξ′)∗h(ξ′) = 0 for every d ∈ K(Λ∗(−η))

}
,

R(Λ∗(−η)) =
{
h ∈ L∞(R,Cn) |

∫∞
−∞ b(ξ′)∗h(ξ′) = 0 for every b ∈ K(Λ(η))

}
.

(3.15)

Proof. The result follows using Theorem 3.1 and the identities

K(Λ(η)) = eηK(Λ−η),
K(Λ∗(−η)) = e−ηK((Λ∗)η) = e−ηK((Λ−η)∗),
R(Λ(η)) = eηR(Λ−η),
R(Λ∗(−η)) = e−ηR((Λ∗)η) = e−ηR((Λ−η)∗),

(3.16)

together with the identities ∆±−η(z) = ∆±(z + η).

We now introduce parameter dependence into our main linear equation (3.1). In particular, we
study the system

x′(ξ) = L(ξ, µ)xξ + f(ξ) =
N∑
j=0

Aj(ξ, µ)x(ξ + rj) + f(ξ), (3.17)

in which the parameter µ is taken from an open set U ⊂ R
p for some p ≥ 1. We write Λ(µ) :

W 1,∞(R,Cn)→ L∞(R,Cn) for the parameter-dependent version of (3.3). Throughout the remainder
of this section, we will assume that Λ depends Ck-smoothly on the parameter µ ∈ U for some integer
k ≥ 0.

We set out here to define a solution operator for (3.17) on half-lines that also depends smoothly
on the parameter µ, in the neighbourhood of some fixed parameter µ0 ∈ U . To this end, let us
introduce the shorthands K = K

(
Λ(µ0)

)
and R = R

(
Λ(µ0)

)
. Consider two arbitrary complements

K⊥ for K and R⊥ for R, which allow us to write

W 1,∞(R,Cn) = K ⊕K⊥, L∞(R,Cn) = R⊕R⊥. (3.18)

The projections associated to this splitting of L∞(R,Cn) will be denoted by πR and πR⊥ . Note
that for µ sufficiently close to µ0, we have that πRΛ(µ) : K⊥ → R is invertible, with a Ck-smooth
inverse µ 7→ [πRΛ(µ)]−1 ∈ L(R,K⊥). Upon choosing a sufficiently small neighbourhood U ′ ⊂ U ,
with µ0 ∈ U ′, we can hence define a Ck-smooth function h : U ′ → L(K,K⊥) via

h(µ)(b) = −[πRΛ(µ)]−1πRΛ(µ)b. (3.19)

Observe first that we have h(µ0) = 0 by construction. In addition, this definition ensures that for
µ ∈ U ′ the infinite dimensional problem to find x ∈W 1,∞(R,Cn) that solves Λ(µ)x = f , is equivalent
to the search for a solution b ∈ K of

πR⊥ [Λ(µ)](b+ h(µ)b) = πR⊥f − πR⊥Λ(µ)[πRΛ(µ)]−1πRf. (3.20)

This can be seen by substituting

x = [πRΛ(µ)]−1πRf + b+ h(µ)b. (3.21)

These considerations allow us to define a quasi-inverse for Λ that solves (3.17) in the sense of the
following result.
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Proposition 3.3. Consider the parameter-dependent inhomogeneous system (3.17) and fix a pa-
rameter µ0 ∈ U for which (3.17) is asymptotically hyperbolic. Then there exists an open subset
U ′ ⊂ U , with µ0 ∈ U ′, together with a Ck-smooth function

C : U ′ → L
(
L∞(R,Cn),R⊥

)
(3.22)

and a Ck-smooth quasi-inverse

Λqinv : U ′ → L
(
L∞(R,Cn),W 1,∞(R,Cn)

)
, (3.23)

such that the following properties hold.

(i) For all µ ∈ U ′ we have

dimK
(
Λ(µ)

)
≤ dimK

(
Λ(µ0)

)
. (3.24)

(ii) For all µ ∈ U ′ and all f ∈ L∞(R,Cn) we have the identity

Λ(µ)Λqinv(µ)f = f + C(µ)f. (3.25)

In addition, the restriction of C(µ0) to the set R vanishes identically.

Proof. Item (i) can be confirmed by noting that

dimK(Λ(µ)) = dimK − rankπR⊥Λ(µ)[I + h(µ)] ≤ dimK. (3.26)

To establish item (ii), we choose C and Λqinv according to

Λqinv(µ)f = [πRΛ(µ)]−1πRf,
C(µ)f = −πR⊥f + πR⊥Λ(µ)[πRΛ(µ)]−1πRf.

(3.27)

A simple calculation is now sufficient to conclude the proof.

In order to define a solution operator for (3.17) on half-lines, we will need to utilize the freedom
we still have to choose the complements K⊥ and R⊥ in a special fashion. To do this, we will need
to assume that condition (HB) holds, i.e., we demand that both detA0(ξ, µ0) and detAN (ξ, µ0) are
non-zero for all ξ ∈ R.

Lemma 3.4. Consider the parameter-dependent linear system (3.17) and suppose that condition
(HB) holds for this system at µ = µ0, for some µ0 ∈ U . Write nd = dimK

(
Λ∗(µ0)

)
and choose a

basis {di}ndi=1 for K
(
Λ∗(µ0)

)
. For any ξ ∈ R there exists a set of functions {ψi}ndi=1 ⊂ Y such that

for any pair of integers 1 ≤ i, j ≤ nd we have∫ −rmin

−rmax

di(ξ + θ)∗ψj(θ)dθ = δij . (3.28)

Proof. The explicit representation in (3.4) shows that the condition (HB) also holds for the linear
system associated to the adjoint Λ∗(µ0). This implies that any d ∈ K∗ that has ev∗ξd = 0, must
satisfy d = 0. The set of elements {ev∗ξd

i}ndi=d ⊂ Y is thus linearly independent. In particular, this
means that the nd × nd matrix Z with entries Zij =

(
ev∗ξd

i, ev∗ξd
j
)

is invertible, where (, ) denotes
the integral inner product

(ψ, φ) =
∫ −rmin

−rmax

ψ(θ)∗φ(θ)dθ. (3.29)
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For any integer 1 ≤ j ≤ nd we now choose

ψj =
nd∑
k=1

ev∗ξd
kZ−1

kj . (3.30)

A simple calculation shows that indeed

(ev∗ξd
i, ψj) =

nd∑
k=1

(ev∗ξd
i, ev∗ξd

k)Z−1
kj =

nd∑
k=1

ZikZ
−1
kj = δij . (3.31)

We will use Lemma 3.4 to explicitly construct a representation for πR and πR⊥ . Indeed, let us
write r = rmax − rmin and fix an arbitrary ξ0 ≤ −4r. In addition, for any integer 1 ≤ i ≤ nd we let
gi ∈ L∞(R,Cn) denote the function that has ev∗ξ0g

i = ψi, while gi(ξ′) = 0 for all ξ′ < ξ0− rmax and
ξ′ > ξ0− rmin. Here the functions {ψi}ndi=1 ⊂ Y arise from an application of Lemma 3.4 with ξ = ξ0.
Since the set {gi}ndi=1 is linearly independent, we can now explicitly define the projection

πR⊥f =
∑nd
i=1[

∫∞
−∞ di(ξ′)∗f(ξ′)dξ′]gi. (3.32)

This enables us to define an inverse for Λ(µ) on the positive half-line. Indeed, consider the operator
Λ−1

+ (µ) : L∞
(
[0,∞),Cn

)
→W 1,∞([rmin,∞),Cn

)
given by

Λ−1
+ (µ)f = Λqinv(µ)Ef, (3.33)

in which [Ef ](ξ) = 0 for all ξ < 0 and [Ef ](ξ) = f(ξ) for all ξ ≥ 0. Since gi(ξ) = 0 for all ξ ≥ 0 and
all integers 1 ≤ i ≤ nd, an application of (3.25) immediately implies that for all ξ ≥ 0 we have

[Λ(µ)Λ−1
+ (µ)f ](ξ) = f(ξ). (3.34)

In a similar fashion an inverse Λ−1
− (µ) : L∞

(
(−∞, 0],Cn

)
→ W 1,∞((−∞, rmax],Cn

)
can be con-

structed for the negative half-line. Both these inverses depend Ck-smoothly on the parameter µ ∈ U ′.

4 Exponential Dichotomies

In this section we study exponential splittings for the homogeneous counterpart of the linear system
(3.1), which we will write as

x′(ξ) = L(ξ)xξ =
N∑
j=0

Aj(ξ)x(ξ + rj). (4.1)

Throughout this entire section we will assume that the functions Aj are continuous. In addition, we
will assume that (4.1) is asymptotically hyperbolic and that the condition (HB) holds.

We start by stating the main theorem which we set out to prove in this section. We remark that
a similar result was previously obtained in a Hilbert space setting [6]. In addition, an exponential
splitting in a Banach space setting can already be found in [15]. The construction developed there
is summarized in Proposition 4.2 and provides exponential dichotomies that are defined on the full
line. However, in order to use Lin’s method we will also need to consider dichotomies that are defined
on half-lines. In addition, the results in [15] do not allow us to control the limiting behaviour of the
projections associated to the dichotomies as precisely as is needed here.

The results in this section provide these necessary extensions. The splittings obtained in this
manner will allow the freedom that remains when solving the inhomogeneous system (3.1) to be
controlled in a detailed fashion. In particular, they will facilitate the construction of stable and
unstable manifolds for the nonlinear system (2.1) in Section 6.

13



Theorem 4.1. Consider the linear system (4.1). There exist constants K > 0, αS > 0 and αQ > 0,
such that for every ξ ≥ 0 there is a splitting

X = Q(ξ)⊕ S(ξ), (4.2)

such that each φ ∈ Q(ξ) can be extended to a solution Eφ ∈ C
(
[ξ+rmin,∞),Cn

)
of the homogeneous

equation (4.1) on the interval [ξ,∞), while each ψ ∈ S(ξ) can be extended to a function Eψ ∈
C
(
(−∞, ξ+rmax],Cn

)
that satisfies the homogeneous equation (4.1) on the interval [0, ξ]. In addition,

we have the exponential estimates

|[Eφ](ξ′)| ≤ Ke−αQ|ξ
′−ξ| ‖φ‖ for every φ ∈ Q(ξ) and ξ′ ≥ ξ,

|[Eψ](ξ′)| ≤ Ke−αS|ξ
′−ξ| ‖ψ‖ for every ψ ∈ S(ξ) and 0 ≤ ξ′ ≤ ξ.

(4.3)

These spaces are invariant, in the sense that for any 0 ≤ ξ′ ≤ ξ and any ψ ∈ S(ξ), we have
evξ′Eψ ∈ S(ξ′), together with a similar identity for φ ∈ Q(ξ). Finally, the projections ΠQ(ξ) and
ΠS(ξ) depend continuously on ξ ≥ 0 and there exists a constant C such that

∥∥ΠQ(ξ)

∥∥ ≤ C and∥∥ΠS(ξ)

∥∥ ≤ C for all ξ ≥ 0.

Throughout this section, we will follow the notation employed in [15]. For any ξ ∈ R, we will
consider the space P(ξ) that consists of all bounded solutions to (4.1) on the interval (−∞, ξ],
together with the space Q(ξ) that consist of all bounded solutions to (4.1) on [ξ,∞). Notice that
any bounded function b that satisfies (4.1) on the entire line will have both b ∈ P(ξ) and b ∈ Q(ξ).
It is therefore convenient to introduce normalized spaces P̂(ξ) and Q̂(ξ) which do not contain such
kernel elements. To be more precise, let us recall the operators Λ and Λ∗ defined in (2.5) and (2.6)
that are associated to (4.1), together with their kernels K = K(Λ) and K∗ = K(Λ∗). In addition, let
us write

P(ξ) =
{
x ∈ BC0

(
(−∞, ξ + rmax],Cn

)
| x′(ξ′) = L(ξ′)xξ′ for all ξ′ ∈ (−∞, ξ]

}
,

Q(ξ) =
{
x ∈ BC0

(
[ξ + rmin,∞),Cn

)
| x′(ξ′) = L(ξ′)xξ′ for all ξ′ ∈ [ξ,∞)

}
,

P̂(ξ) =
{
x ∈ P(ξ) |

∫min(ξ+rmax,0)

−∞ b(ξ′)∗x(ξ′)dξ′ = 0 for all b ∈ K
}
,

Q̂(ξ) =
{
x ∈ Q(ξ) |

∫max(ξ+rmin,0)

+∞ b(ξ′)∗x(ξ′)dξ′ = 0 for all b ∈ K
}
.

(4.4)

As in [15], we also introduce the following spaces, that describe the initial conditions associated to
the spaces above and the kernels K and K∗.

P (ξ) =
{
φ ∈ X | φ = xξ for some x ∈ P(ξ)

}
,

Q(ξ) =
{
φ ∈ X | φ = xξ for some x ∈ Q(ξ)

}
,

P̂ (ξ) =
{
φ ∈ X | φ = xξ for some x ∈ P̂(ξ)

}
,

Q̂(ξ) =
{
φ ∈ X | φ = xξ for some x ∈ Q̂(ξ)

}
,

B(ξ) =
{
φ ∈ X | φ = bξ for some b ∈ K

}
,

B∗(ξ) =
{
φ ∈ Y | φ = dξ for some d ∈ K∗

}
.

(4.5)

The reader familiar with [15] will notice that the definitions of P̂ and Q̂ have been adapted slightly to
accomodate for the half-line setting of Theorem 4.1. In particular, the upper bounds of the defining
integrals are now constant for ξ ≥ 0 respectively ξ ≤ 0. This choice ensures that P̂ (ξ) is invariant
on the positive half-line and Q̂(ξ) is invariant on the negative half-line, but does not affect any of
the results in [15].

The following result was obtained in [15] and shows that P (ξ) and Q(ξ) together span X up to a
finite dimensional complement, that can be described explicitly in terms of the Hale inner product.

Proposition 4.2. Consider the homogeneous linear system (4.1). For any ξ ∈ R, let Z(ξ) ⊂ X be
the closed subspace of finite codimension that is given by

Z(ξ) =
{
φ ∈ X | 〈ψ, φ〉ξ = 0 for every ψ ∈ B∗(ξ)

}
. (4.6)
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Then we have the direct sum decomposition

Z(ξ) = P̂ (ξ)⊕ Q̂(ξ)⊕B(ξ). (4.7)

Our main contribution in this section is to provide an explicit complement for Z(ξ) that will
allow us to enlarge the space P̂ (ξ) and obtain a set S(ξ) that satisfies the properties in Theorem
4.1. To do this, we will employ a very useful property of the Hale inner product. In particular, fix an
interval [ξ−, ξ+] and consider an arbitrary function z ∈ W 1,1

loc ([ξ− − rmax, ξ+ − rmin]) together with
an arbitrary function x ∈ W 1,1

loc [ξ− + rmin, ξ+ + rmax]. Then for every ξ ∈ [ξ−, ξ+], we can perform
the computation

Dξ〈ev∗ξz, evξx〉ξ = Dξ

[
z(ξ)∗x(ξ)−

∑N
j=0

∫ ξ+rj
ξ

z(θ − rj)∗Aj(θ − rj)x(θ)dθ
]

= z′(ξ)∗x(ξ) + z(ξ)∗x′(ξ)−
∑N
j=0 z(ξ)

∗Aj(ξ)x(ξ + rj)
+z(ξ − rj)∗Aj(ξ − rj)x(ξ)

= z(ξ)∗[Λx](ξ) + [Λ∗z](ξ)∗x(ξ).

(4.8)

Lemma 4.3. Consider the homogeneous linear system (4.1). Let {di}ndi=1 be a basis for the kernel
K∗ and recall the constant r = rmax−rmin. Then for every ξ ≥ 0 and every integer 1 ≤ i ≤ nd, there
exists a function yi(ξ) ∈ C

(
(−∞, ξ + rmax],Cn

)
that satisfies the following properties.

(i) For every ξ ≥ 0 and every integer 1 ≤ i ≤ nd, we have [Λyi(ξ)](ξ
′) = 0 for all ξ′ ≥ −3r and all

ξ′ ≤ −5r.

(ii) For any pair 0 ≤ ξ′ ≤ ξ and any pair of integers 1 ≤ i, j ≤ nd, we have the identity

〈ev∗ξ′d
i, evξ′y

j
(ξ)〉ξ′ = δij . (4.9)

(iii) Fix an integer 1 ≤ i ≤ nd and a constant 0 ≤ ξ′. Then the function ξ 7→ evξ′yi(ξ) depends
continuously on ξ, for ξ′ ≤ ξ.

(iv) Consider any triple 0 ≤ ξ′ ≤ ξ1 ≤ ξ2. Then for any integer 1 ≤ i ≤ nd we have

evξ′ [yi(ξ1) − y
i
(ξ2)] ∈ P̂ (ξ′). (4.10)

(v) For every ξ ≥ 0 and every integer 1 ≤ i ≤ nd, we have the integral condition∫ 0

−∞
b(ξ′)∗y(ξ)(ξ′)dξ′ = 0, (4.11)

which holds for all b ∈ K(Λ).

Proof. Fix ξ0 = −4r and consider the functions {ψi}ndi=1 ⊂ Y that were constructed in Lemma
3.4 for ξ = ξ0. As in Section 3, define the functions gi ∈ L∞(R,Cn) that have ev∗ξ0g

i = ψi, while
gi = 0 elsewhere. For the remainder of this proof, fix an integer 1 ≤ i ≤ nd. Consider a sequence
ξk = k →∞ and define y(k) = Λ−1

(k)g
i, where the inverse Λ−1

(k) should be interpreted as the analogue
of Λ−1

− for the half-line (−∞, ξk]. Note that by adding an appropriate element in K to y(k) we can
ensure that the integral condition (4.11) is satisfied. For any integer 1 ≤ j ≤ nd we can use (4.8)
together with the exponential decay of dj at −∞ to compute

〈ev∗ξd
j , evξy(k)〉ξ =

∫ ξ

−∞
dj(ξ′)∗[Λy(k)](ξ′)dξ′ = (ev∗ξ0d

j , ψi) = δij . (4.12)
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Choose a continuous function χ : [0,∞)→ [0, 1] such that χ is zero near even integers and one near
odd integers. Write

y(ξ) = χ(2ξ)y(dξe) + [1− χ(2ξ)]y(dξ+ 1
2 e)
, (4.13)

in which dξe denotes the smallest integer that is larger or equal to ξ. With this definition it is easy
to see that the properties (i) through (v) all hold.

The functions defined in Lemma 4.3 are sufficient to construct the space S(ξ) appearing in Theorem
4.1. Indeed, we will use the spaces

S(ξ) = P̂(ξ)⊕ span{yi(ξ)}
nd
i=1,

S(ξ) = P̂ (ξ)⊕ span{evξyi(ξ)}
nd
i=1.

(4.14)

The following result should be seen as the appropriate generalization of Theorem 4.2 in [15] and
shows that functions in S automatically decay exponentially.

Proposition 4.4. Consider the homogeneous linear system (4.1). Let the sets S(ξ) ⊂ X for ξ ≥ 0
be defined as in (4.14). Then there exist constants K > 0 and αS > 0 such that for all ξ ≥ 0 and all
ξ′ ≤ ξ, we have

|x(ξ′)| ≤ Ke−αS(ξ−ξ′) ‖xξ‖ , (4.15)

for every x ∈ S(ξ).

Proof. As in [15] it suffices to prove the following two statements.

(i) There exists σ > −rmax such that for all ξ ≥ 0 and all y ∈ S(ξ), we have

|y(ξ′)| ≤ 1
2

sups<ξ+rmax
|y(s)| for all ξ′ ≤ ξ − σ. (4.16)

(ii) There exists K > 0 such that for all ξ ≥ 0 and all y ∈ S(ξ), we have

|y(ξ′)| ≤ K ‖evξy‖ for all ξ′ ≤ ξ + rmax. (4.17)

Assuming that (i) fails, we have sequences σj →∞, ξj ≥ 0 and yj ∈ S(ξj) such that∣∣yj(−σj + ξj)
∣∣ ≥ 1

2 , sups<ξj+rmax

∣∣yj(s)∣∣ = 1. (4.18)

Suppose first that −σj + ξj is unbounded, i.e., −σj + ξj → ±∞ after passing to a subsequence.
Writing zj(ξ′) = yj(ξ′−σj + ξj), an application of Ascoli’s theorem yields a convergent subsequence
zj → z. Notice that z(0) ≥ 1

2 , which means that z is a nontrivial bounded solution on R of one
of the limiting equations at ±∞. This situation is however precluded by the hyperbolicity of these
limiting equations.

Now suppose that, possibly after passing to a subsequence, we have −σj + ξj → β0. Using the
fact that [Λyj ](ξ′) = 0 for ξ ≥ rmin, together with the limit ξj →∞, we may apply Ascoli-Arzela to
conclude that yj → y∗ uniformly on compact subsets of [rmin,∞). Since we also have [Λy∗](ξ′) = 0
for all ξ′ ≥ 0, we conclude that ev0y∗ ∈ Q(0). However, this immediately implies that for any
ψ ∈ B∗(0) we have 〈ψ, ev0y∗〉0 = 0. In view of the identity

Λyj =
nd∑
i=1

gi〈ev∗0d
i, ev0y

j〉0, (4.19)

this however implies that Λyj → 0 uniformly on every compact subset of R. This allows us to apply
Ascoli-Arzela on the entire line, by means of which we obtain the convergence yj → y∗, which is
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again uniform on compacta. In addition, we have Λy∗ = 0, which now means that y∗ ∈ K. However,
this is precluded by the integral condition (4.11).

Let us now suppose that (ii) fails, which implies that for some sequence Kj → ∞, ξj ≥ 0 and
yj ∈ S(ξj), we have

sups<ξj+rmax

∣∣yj(s)∣∣ = Kj
∥∥evξjyj

∥∥ = 1. (4.20)

In view of (i), this means that there exists a sequence σj ∈ [−rmin, σ] such that
∣∣yj(−σj + ξj)

∣∣ = 1.
Suppose that ξj is unbounded. We find yj(ξ′ + ξj) → z(ξ′) where z : (−∞, rmax] → C

n is a
bounded solution of the limiting equation at +∞. Since the sequence σj is bounded, z does not
vanish identically. Since

∥∥evξjyj
∥∥ = 1/Kj → 0, we have ‖z0‖ = 0 and hence z can be extended

to a bounded nontrivial solution of the limiting equation at +∞ on the entire line. Again, this is
precluded by the hyperbolicity of this limiting equation.

Now assume that, possibly after passing to a subsequence, we have ξj → ξ∗ ≥ 0. Since evξjyj → 0,
we can use Ascoli-Arzela to find the convergence yj → y∗, which is now uniform on the interval
[−r + rmin, ξ

∗ + rmax]. In addition, we have [Λy∗](ξ′) = 0 for all ξ′ ∈ [−r, ξ∗]. If ξ∗ ≥ σ, this fact is
precluded by the non-degeneracy condition (HB), since we also have evξ∗y∗ = 0. In the case where
ξ∗ < σ, we can again use (4.19) to obtain the convergence yj → y∗, which this time is uniform on
compact subsets of (−∞, ξ∗+rmax]. As before, the condition (HB) now leads to a contradiction.

Notice that we have now obtained a splitting

X = S(ξ)⊕Q(ξ) (4.21)

that satisfies nearly all of the properties stated in Theorem 4.1. It remains only to consider the
statements concerning the projections ΠS(ξ) and ΠQ(ξ). We will address these issues in the remainder
of this section by establishing the continuity of these projections and studying the limiting behaviour
as ξ → ∞. In Section 5 we will show how these estimates can be improved if one has detailed
information concerning the rate at which L(ξ) approaches its limits as ξ → ±∞. For the moment
however, let us recall the splitting

X = P (∞)⊕Q(∞) (4.22)

associated to the autonomous limit of (4.1) at +∞, which was established in [15].

Lemma 4.5. Consider the linear homogeneous system (4.1). The following limit holds with respect
to the norm on L(S(ξ), X), ∥∥[I −ΠP (∞)]|S(ξ)

∥∥→ 0 as ξ →∞. (4.23)

In addition, for the norm on L(Q(ξ), X) we have the similar limit∥∥[I −ΠQ(∞)]|Q(ξ)

∥∥→ 0 as ξ →∞. (4.24)

Proof. The second limit was established in [15], so we restrict ourselves to the first limit here. Choose
an arbitrarily small ε > 0 and fix C > 0 sufficiently large to ensure that for all ξ ∈ R, the inequality

N∑
j=0

|Aj(ξ)eαSrj | ≤ C (4.25)

holds. Recalling the constants K and αS from Proposition 4.4, pick ξ0 > 0 sufficiently large to ensure
that 4(1 + C)2K exp(−αSξ0) < ε

2 and also

N∑
j=0

∣∣Aj(ξ′)−A+
j

∣∣ < ε

2K
(4.26)
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for all ξ′ ≥ ξ0. Fix any ξ ≥ 2ξ0 + rmax. Consider an arbitrary y ∈ S(ξ) and write φ = evξy ∈ S(ξ).
Notice first that φ|[rmin,0] ∈ C1([rmin, 0],Cn). We can hence approximate φ with a sequence of C1-
smooth functions φk that have φk(θ) = φ(θ) for all θ ∈ [−1, 0]. Let us extend these functions to
C1-smooth functions yk on the line, with evξyk = φk but also yk(ξ′) = y(ξ′) for all 0 ≤ ξ′ ≤ ξ.
Notice that we may construct the functions yk in such a way to ensure that the following estimate
holds for all ξ′ ≤ 0, ∣∣Dyk(ξ′)

∣∣+
∣∣yk(ξ′)

∣∣ ≤ 2[
∣∣Dyk(0)

∣∣+
∣∣yk(0)

∣∣]. (4.27)

In particular, this means that for all ξ′ ≤ ξ we have the bound∣∣Dyk(ξ′)
∣∣+
∣∣yk(ξ′)

∣∣ ≤ 2K(1 + C)[e−αSξ + e−αS(ξ−ξ′)]
∥∥φk∥∥ . (4.28)

Now, for any C1-smooth function y we have the representation

ΠQ(∞)evξy = evξΛ−1
∞ [I −Hξ]Λ∞y, (4.29)

in which we have introduced the notation [Λ∞x](ξ′) = x′(ξ′) −
∑N
j=0A

+
j x(ξ′ + rj), together with

the Heaviside function Hξ that satisfies Hξ(ξ′) = I if ξ′ ≥ ξ and zero otherwise. Observing that

[Λ∞yk](ξ′) = [Λyk](ξ′) +
N∑
j=0

[Aj(ξ′)−A+
j ]evξ′yk, (4.30)

we may compute∥∥[I −Hξ]Λ∞yk
∥∥
L∞(R,Cn)

≤ supξ′≤ξ0
∣∣Dyk(ξ′)

∣∣+ C
∥∥evξ′yk

∥∥+ supξ0≤ξ′≤ξ
ε

2K

∥∥evξ′yk
∥∥

≤ 4K(1 + C)2e−αSξ0
∥∥φk∥∥+ ε

2

∥∥φk∥∥
≤ ε

∥∥φk∥∥ .
(4.31)

This however means that for some constant C ′ > 0 we have∥∥ΠQ(∞)φ
k
∥∥ ≤ εC ′ ∥∥φk∥∥ , (4.32)

which concludes the proof due to the continuity of ΠQ(∞).

Lemma 4.6. Consider the system (4.1) and suppose that (HB) is satisfied. For ξ ≥ 0, write Γ(ξ) =
span{evξyi(ξ)}

nd
i=1 and consider the splitting

X = P̂ (ξ)⊕ Γ(ξ)⊕Q(ξ) (4.33)

with the corresponding projection operators Π bP (ξ), ΠΓ(ξ) and ΠQ(ξ). Then we have the following
limits for any ξ0 ≥ 0, ∥∥∥[I −Π bP (ξ0)]| bP (ξ)

∥∥∥ → 0 as ξ → ξ0,∥∥[I −ΠQ(ξ0)]|Q(ξ)

∥∥ → 0 as ξ → ξ0,∥∥[I −ΠΓ(ξ0)]|Γ(ξ)

∥∥ → 0 as ξ → ξ0.

(4.34)

Proof. The statements concerning P̂ (ξ) and Q(ξ) were established in [15]. The limit involving Γ(ξ)
follows easily using the finite dimensionality of Γ(ξ) and item (iii) in Lemma 4.3.

Lemma 4.7. Consider an arbitrary ξ0 ≥ 0. The projections ΠQ(ξ) can be uniformly bounded for all
ξ ≥ ξ0.
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Proof. Assuming the statement is false, let us consider a sequence ξj and φj ∈ X that has ξj ≥ ξ0
and

∥∥φj∥∥ = 1 for all integers j ≥ 1, while
∥∥ΠQ(ξj)φ

j
∥∥→∞ as j →∞. Let us first assume that ξj is

bounded, which after passing to a subsequence implies that ξj → ξ∗ for some ξ∗ ≥ ξ0. Let us write
σj = ΠΓ(ξj)φ

j , pj = Π bP (ξj)φ
j and qj = ΠQ(ξj)φ

j . Defining κj =
∥∥σj∥∥ +

∥∥pj∥∥ +
∥∥qj∥∥, let us also

introduce the bounded sequence σ̃j = κ−1
j σj and similarly defined sequences p̃j and q̃j . In addition,

we introduce σ̃j∗ = ΠΓ(ξ∗)σ̃
j and similarly p̃j∗ = Π bP (ξ∗)

p̃j and q̃j∗ = ΠQ(ξ∗)q̃
j . Using Lemma 4.6 we

obtain the following limits as j →∞,

σ̃j + p̃j + q̃j → 0,
σ̃j − σ̃j∗ → 0,
p̃j − p̃j∗ → 0,
q̃j − q̃j∗ → 0.

(4.35)

Since Γ(ξ∗) is finite dimensional, we can pass to a subsequence and obtain σ̃j∗ → σ∗ This implies the
following limit as j →∞,

σ∗ + p̃j∗ + q̃j∗ → 0. (4.36)

We now introduce the truncation operators π+ : X → C
(
[0, rmax],Cn

)
and π− : X → C

(
[rmin, 0],Cn

)
.

Using the exponential estimates on Q(ξ∗) and P̂(ξ∗), it is not hard to see that the restriction of π+

to Q(ξ∗) is compact, as is the restriction of π− to P̂ (ξ∗). After passing to a subsequence, we thus
find that π+q̃j∗ and hence also π+p̃j∗ converge uniformly on [0, rmax]. Invoking a similar argument
involving π− we conclude that as j → ∞, we must have p̃j∗ → p∗ and q̃j∗ → q∗ for some p∗ ∈ P̂ (ξ∗)
and q∗ ∈ Q(ξ∗). In view of (4.36), this leads to a contradiction, since ‖σ∗‖+ ‖p∗‖+ ‖q∗‖ = 1.

It remains to consider the case that ξj →∞. However, using the splitting X = S(ξ)⊕Q(ξ) and
the limits in Lemma 4.5, we can obtain a contradiction in the same fashion as above.

Corollary 4.8. Consider the linear homogeneous system (4.1) and recall the splittings

X = S(ξ)⊕Q(ξ), (4.37)

that hold for ξ ≥ 0. The projections ΠS(ξ) and ΠQ(ξ) depend continuously on ξ ∈ R. In addition, we
have the limits

limξ→∞
∥∥ΠQ(ξ) −ΠQ(∞)

∥∥ = 0, limξ→∞
∥∥ΠS(ξ) −ΠP (∞)

∥∥ = 0. (4.38)

Proof. The limit for ΠQ(ξ) as ξ →∞ can be seen by writing

ΠQ(ξ) −ΠQ(∞) = [I −ΠQ(∞)]ΠQ(ξ) − [I −ΠP (∞)]ΠS(ξ) (4.39)

and using the limits in Lemma 4.5, together with the uniform bounds for ΠQ(ξ) and ΠS(ξ) that follow
from Lemma 4.7. The other statements follow analogously.

Proof of Theorem 4.1. The spaces S(ξ) can be defined as in 4.14, while the spaces Q(ξ) can be
defined as in (4.5). The decay rates in (4.3) for S(ξ) follow from Proposition 4.4, while Theorem 4.2
in [15] provides the rates for Q(ξ). The continuity of the projections ΠS(ξ) and ΠQ(ξ) follow from
Corollary 4.8 and the boundedness of these projections follows from Lemma 4.7.

5 Parameter Dependent Exponential Dichotomies

In this section we show how homogeneous linear systems of the form

x′(ξ) = L(ξ, µ)xξ =
N∑
j=0

Aj(ξ, µ)x(ξ + rj), (5.1)
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which depend on a parameter µ ∈ U , can be incorporated into the framework developed in the previ-
ous section. Throughout this section, we will assume that the linear operators Λ(µ) : W 1,∞(R,Cn)→
L∞(R,Cn) associated to (5.1) by means of (3.3) depend Ck-smoothly on the parameter µ for some
integer k ≥ 0. In addition, we will assume that (HB) holds for some parameter µ0 ∈ U , that (5.1) is
asymptotically hyperbolic for µ ∈ U and that the limiting operators L± depend Ck-smoothly on µ.

The first part of this section is devoted to the proof of Theorem 5.1, which shows that the
exponential splittings in Section 4 can be constructed in such a way, that the relevant spaces and
projections depend smoothly on the parameter µ. The price we have to pay is that we lose the
invariance of S(ξ, µ), but for our purposes this will be irrelevant.

In the second part of this section we study the limiting behaviour of the projection operators
ΠQ(ξ,µ) and ΠS(ξ,µ). Theorem 5.4 improves upon the estimates in the previous section and relates
the convergence ΠQ(ξ,µ) → ΠQ(∞,µ) to the rate at which L(ξ, µ) approaches its limit as ξ → ∞.
Together, Theorems 5.1 and 5.4 should be seen as the analogue of Lemma 1.1 in [16].

Theorem 5.1. Consider the linear homogeneous system (5.1). There exists an open neighbourhood
U ′ ⊂ U , with µ0 ∈ U ′, such that for all µ ∈ U ′ and all ξ ≥ 0 we have the splitting

X = Q(ξ, µ)⊕ S(ξ, µ). (5.2)

In addition, there exist constants K > 0, αS > 0 and αQ > 0, such that each φ ∈ Q(ξ, µ) can
be extended to a solution Eφ of the homogeneous equation (5.1) on [ξ,∞), while each ψ ∈ S(ξ, µ)
can be extended to a function Eψ that is defined on the interval [rmin, ξ + rmax] and satisfies the
homogeneous equation (5.1) on [0, ξ]. The maps µ 7→ ΠQ(ξ,µ) and µ 7→ ΠS(ξ,µ) are Ck-smooth and
all derivatives can be bounded independently of ξ ≥ 0. Moreover, we have the following exponential
estimates for all integers 0 ≤ ` ≤ k,∥∥D`

µevξ′EΠQ(ξ,µ)

∥∥ ≤ Ke−αQ|ξ
′−ξ| for every ξ′ ≥ ξ,∥∥D`

µevξ′EΠS(ξ,µ)

∥∥ ≤ Ke−αS|ξ
′−ξ| for every 0 ≤ ξ′ ≤ ξ.

(5.3)

Our approach towards establishing Theorem 5.1 will be to construct the parameter-dependent
spaces Q(ξ, µ) and S(ξ, µ) separately, using the implicit function theorem to represent these spaces
as graphs over Q(ξ, µ0) and S(ξ, µ0). The exponential estimates will follow essentially from those
established in the previous section for (5.1) with µ = µ0.

Lemma 5.2. Consider the exponential splitting X = Q(ξ)⊕ S(ξ) for ξ ≥ 0, as defined in Theorem
4.1 for the system (5.1) with µ = µ0. Then there exists an open neighbourhood U ′ ⊂ U , with
µ0 ∈ U ′, together with a family of Ck-smooth functions u∗Q(ξ) : U ′ → L(Q(ξ), X), parametrized
by ξ ≥ 0, such that for all µ ∈ U ′ we have R(u∗Q(ξ)(µ)) = Q(ξ, µ), with ΠQ(ξ)u

∗
Q(ξ)(µ) = I and

[I − ΠQ(ξ)]u∗Q(ξ)(µ) → 0 as µ → µ0, uniformly for ξ ≥ 0. In addition, there exist constants K > 0
and αQ > 0 such that for all µ ∈ U ′, all pairs ξ′ ≥ ξ ≥ 0 and all integers 0 ≤ ` ≤ k, we have∥∥∥D`

µevξ′Eu∗Q(ξ)(µ)
∥∥∥
L(Q(ξ),X)

≤ Ke−αQ|ξ
′−ξ|. (5.4)

Proof. We recall the Ck-smooth operator

C : U ′ → L
(
L∞(R,Cn),R(Λ(µ0))⊥

)
(5.5)

defined in Proposition 3.3 and we choose a basis for R(Λ(µ0))⊥ in such a way that the support of
each basis function is contained in [−4r− rmax,−4r− rmin] ⊂ (−∞, 0). We also recall the constants
K > 0 and αQ > 0 obtained by an application of Theorem 4.1 to the system (5.1) at µ = µ0.

For any ξ ≥ 0, let us consider the map G : U → L
(
BC−αQ([rmin + ξ,∞),Cn)

)
that is given by

G(µ)u = Λqinv
(−αQ)(µ0)[L(µ)− L(µ0)]u− EΠQ(ξ)evξΛ

qinv
(−αQ)(µ0)[L(µ)− L(µ0)]u. (5.6)
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Here we have introduced the notation [L(µ)u](ξ) = L(ξ, µ)uξ. We first note that G is well-defined,
since the extension operator E indeed maps Q(ξ) into BC−αQ

(
[rmin + ξ,∞),Cn

)
due to the ex-

ponential estimates in Theorem 4.1. To be more precise, note that for some constant K1 > 0, the
L
(
Q(ξ), BC−αQ([rmin + ξ,∞),Cn)

)
-norm of this extension is given by

‖E‖ ≤ K1e
αQξ. (5.7)

Notice also that for some constant C1 > 0 the L
(
BC−αQ([rmin + ξ,∞),Cn), X

)
-norm of the evalu-

ation operator evξ′ is bounded by

‖evξ′‖ ≤ C1e
−αQξ′ . (5.8)

The Ck-smoothness of µ 7→ L(µ) now implies that G is Ck-smooth as a map from U into
L
(
BC−αQ([rmin + ξ,∞),Cn)

)
. By taking µ sufficiently close to µ0 we can achieve the following

bounds, simultaneously for all ξ ≥ 0 and every integer 1 ≤ ` ≤ k,

‖G(µ)‖ ≤ 1
2 ,∥∥D`

µG(µ)
∥∥ ≤ C2,

(5.9)

in which we have introduced a constant C2 > 0. The first estimate in (5.9) implies that for all µ
sufficiently close to µ0 and all ξ ≥ 0, we can define the linear maps

v∗Q(ξ)(µ) : Q(ξ)→ BC−αQ
(
[rmin + ξ,∞),Cn

)
, φ 7→ [1− G(µ)]−1Eφ, (5.10)

together with u∗Q(ξ)(µ) = evξv∗Q(ξ)(µ). The exponential estimates (5.4) follow directly from this
representation of u∗Q(ξ)(µ), together with (5.7), (5.8) and (5.9). In addition, it is immediately clear
from our choice of G that ΠQ(ξ)u

∗
Q(ξ)(µ) = I. The remainder term can be bounded using the identity

[I −ΠQ(ξ)]u∗Q(ξ)(µ) = evξ
[
[I − G(µ)]−1 − I

]
E, (5.11)

which approaches 0 as µ → µ0. Again, this limit can be obtained simultaneously for all ξ ≥ 0 by
using (5.7) and (5.8).

We now set out to prove that R
(
v∗Q(ξ)(µ)

)
= Q(ξ, µ). Suppose therefore that u = v∗Q(ξ)(µ)φ for

some φ ∈ Q(ξ). Notice that u necessarily satisfies the following identity for all ξ′ ≥ ξ,

[Λ(µ)u](ξ′) = [L(ξ′, µ0)− L(ξ′, µ)]evξ′Eφ+ [L(ξ′, µ)− L(ξ′, µ0)]evξ′u
+ [L(ξ′, µ0)− L(ξ′, µ)]evξ′Λ

qinv
(−αQ)(µ0)[L(µ)− L(µ0)]u

− [L(ξ′, µ0)− L(ξ′, µ)]evξ′EΠQ(ξ)evξΛ
qinv
(−αQ)(µ0)[L(µ)− L(µ0)]u

= [L(ξ′, µ0)− L(ξ′, µ)]evξ′u+ [L(ξ′, µ)− L(ξ′, µ0)]evξ′u = 0.

(5.12)

This means that v∗Q(ξ)(µ) indeed maps into Q(ξ, µ).
It remains to show that Q(ξ, µ) ⊂ R

(
v∗Q(ξ)(µ)

)
. Supposing this is not the case, pick q1

µ ∈ Q(ξ, µ)
with q1

µ /∈ R
(
v∗Q(ξ)(µ)

)
and write φ = ΠQ(ξ)evξq1

µ and q2
µ = v∗Q(ξ)(µ)φ. Writing qµ = q1

µ−q2
µ, we have

qµ ∈ Q(ξ, µ) with ΠQ(ξ)evξqµ = 0. Noticing that [L(µ)−L(µ0)]qµ = Λ(µ0)qµ, we find that for some
qµ0 ∈ Q(ξ) we must have

G(µ)qµ = qµ + qµ0 − EΠQ(ξ)evξ[qµ + qµ0 ]
= qµ + qµ0 − qµ0 = qµ

(5.13)

and hence qµ ∈ K
(
I − G(µ)

)
= {0}, which concludes the proof.

In the next proposition, a similar approach is used to construct S(ξ, µ). Notice however that this
construction will be treated as a definition, as there is no canonical way to define S(ξ, µ) as was
possible for Q(ξ, µ).
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Lemma 5.3. Consider the exponential splitting X = Q(ξ)⊕ S(ξ) for ξ ≥ 0 as defined in Theorem
4.1 for the system (5.1) with µ = µ0. Then there exists an open neighbourhood U ′ ⊂ U , with µ0 ∈ U ′,
together with a family of Ck-smooth functions u∗S(ξ) : U → L(S(ξ, µ0), X), parametrized by ξ ≥ 0,
such that for all µ ∈ U ′ we have ΠS(ξ)u

∗
S(ξ)(µ) = I and [I−ΠS(ξ)]u∗S(ξ)(µ)→ 0 as µ→ µ0, uniformly

for ξ ≥ 0. In addition, there exist constants K > 0 and αS > 0, such that for all µ ∈ U ′, all pairs
0 ≤ ξ′ ≤ ξ and all integers 0 ≤ ` ≤ k, we have∥∥∥D`

µevξ′Eu∗S(ξ)(µ)
∥∥∥
L(S(ξ),X)

≤ Ke−αS|ξ
′−ξ|. (5.14)

Finally, for all µ ∈ U ′ and all ξ ≥ 0, the range R
(
u∗S(ξ)(µ)

)
⊂ X is closed.

Proof. We can proceed in the same fashion as in the proof of Lemma 5.2, although we here need
to use the function space BCαS

(
[rmin, ξ + rmax],Cn

)
. To see that R

(
u∗S(ξ)(µ)

)
is closed, consider

a sequence φj ∈ S(ξ), write ψj = u∗S(ξ)(µ)φj and assume that ψj → ψ∗. Since ΠS(ξ)ψ
j = φj , we

also have φj → ΠS(ξ)ψ∗ := φ∗. Since u∗S(ξ)(µ) is bounded, we have u∗S(ξ)(µ)[φj − φ∗]→ 0 and hence
ψ∗ = u∗S(ξ)(µ)φ∗.

Proof of Theorem 5.1. We first establish the splitting X = Q(ξ, µ) ⊕ S(ξ, µ). To this end, consider
the family of maps U∗ξ : U ′ → L

(
Q(ξ)⊕ S(ξ)

)
defined by

U∗ξ (µ)(φ, ψ) =
(
ΠQ(ξ)

[
u∗Q(ξ)(µ)φ+ u∗S(ξ)(µ)ψ

]
,ΠS(ξ)

[
u∗Q(ξ)(µ)φ+ u∗S(ξ)(µ)ψ

])
. (5.15)

Since ΠQ(ξ)u
∗
S(ξ) → 0 as µ→ µ0 and similarly ΠS(ξ)u

∗
Q(ξ) → 0, uniformly for ξ ≥ 0, we find that by

choosing the neighbourhood U ′ small enough, we can ensure that U∗ξ (µ) is invertible for all µ ∈ U ′
and all ξ ≥ 0, with a bound on the inverse and the first k derivatives of this inverse with respect to
µ that is uniform for µ ∈ U ′ and ξ ≥ 0. This allows us to define the projections

ΠS(ξ,µ) = u∗S(ξ)(µ)ΠS(ξ)[U∗ξ (µ)]−1,

ΠQ(ξ,µ) = u∗Q(ξ)(µ)ΠQ(ξ)[U∗ξ (µ)]−1.
(5.16)

It is easy to see that indeed Π2
Q(ξ,µ) = ΠQ(ξ,µ) and similarly Π2

S(ξ,µ) = ΠS(ξ,µ). Also ΠQ(ξ,µ) +
ΠS(ξ,µ) = I. These functions µ 7→ ΠQ(ξ,µ) and µ 7→ ΠS(ξ,µ) are Ck-smooth as functions U ′ → L(X),
which follows from the Ck-smoothness of u∗Q(ξ), u

∗
S(ξ) and U∗ξ . In addition, since we have estimates

on the first k derivatives of these functions with respect to µ that are uniform for µ ∈ U ′ and ξ ≥ 0,
the same holds for the derivatives of the projections. The exponential estimates (5.3) now follow
from (5.4) and (5.14).

Throughout the remainder of this section we will consider the limiting behaviour of the projec-
tions ΠS(ξ,µ) and ΠQ(ξ,µ) as ξ →∞. The next result describes the speed at which these projections
approach their limiting values ΠP (∞,µ) and ΠQ(∞,µ).

Theorem 5.4. Consider the linear system (5.1) and suppose that for some α− < 0, the character-
istic equations det ∆+(z, µ) = 0 have no roots in the strip α− ≤ Re z ≤ 0 for µ ∈ U , where ∆+

is the characteristic matrix associated to the limiting system at +∞. Suppose furthermore that for
some αf− ≤ α−, all ξ ∈ R and some constant C > 0 we have the bound∥∥L(ξ, µ)− L+(µ)

∥∥
L(X,Cn)

≤ C
[
|µ− µ0| eα−ξ + eα

f
−ξ
]
, (5.17)

for µ ∈ U , in which L+(µ) denotes the linear operator (3.1) associated to the limiting system at
+∞. Then there exists a constant K > 0 and an open neighbourhood U ′ ⊂ U with µ0 ∈ U ′, such
that the following bound holds for all ξ ≥ 0 and all µ ∈ U ′,∥∥ΠQ(ξ,µ) −ΠQ(∞,µ)

∥∥ ≤ K[ |µ− µ0| eα−ξ + e(α−−αS)ξ + eα
f
−ξ
]
. (5.18)
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In addition, suppose that for some C > 0 and all integers 0 ≤ ` ≤ k, we have∥∥D`
µ[L(ξ, µ)− L+(µ)]

∥∥
L(X,Cn)

≤ C
[
|µ− µ0| eα−ξ + eα

f
−ξ
]
, (5.19)

for all µ ∈ U . Then there exists a constant K > 0, an open neighbourhood U ′ ⊂ U with µ0 ∈ U ′
such that for all ξ ≥ 0, all integers 0 ≤ ` ≤ k and all µ ∈ U ′, we have the bound∥∥D`

µ[ΠQ(ξ,µ) −ΠQ(∞,µ)]
∥∥ ≤ K[ |µ− µ0| eα−ξ + e(α−−αS)ξ + eα

f
−ξ
]
. (5.20)

Our approach towards proving these bounds will be to provide sharper versions of the results
previously established in Lemma 4.5. The next two Lemma’s will show that the quantity ΠQ(ξ,µ) −
ΠQ(∞,µ) indeed behaves as prescribed above, using an explicit Greens function representation of
ΠQ(∞,µ) and ΠP (∞,µ). The calculations in these Lemma’s can also be used to study the derivatives
D`
µ[ΠQ(ξ,µ) −ΠQ(∞,µ)], after an appropriate reformulation.

Lemma 5.5. Consider the setting of Theorem 5.4 and suppose that (5.17) holds. Then there exists
a constant K1 such that∥∥[I −ΠP (∞,µ)]|S(ξ,µ)

∥∥ ≤ K1

[
|µ− µ0| eα−ξ + eα

f
−ξ + e(α−−αS)ξ

]
, (5.21)

for all µ ∈ U ′ and ξ ≥ 0.

Proof. Consider a φ ∈ S(ξ, µ). We recall the sequences φj and yj of C1-smooth functions that were
introduced in the proof of Lemma 4.5, with φj → φ as j → ∞ and evξyj = φj . We will give a
detailed estimate of the quantity evξzj defined by

zj = Λ−1
∞ (µ)[I −Hξ]Λ∞(µ)yj . (5.22)

To this end, we recall the Greens functions G from Theorem 3.1 that satisfy G(ξ, µ) ≤ K2e
α−ξ for

ξ ≥ 0 and allow us to write

[Λ−1
∞ (µ)f ](ξ) =

∫ ∞
−∞

G(ξ − s, µ)f(s)ds. (5.23)

Using this representation, we introduce the shorthands z = zj and y = yj and calculate

|z(ξ)| =
∣∣∣∫ 0

−∞G(ξ − s, µ)[Λ∞(µ)y](s) +
∫ ξ

0
G(ξ − s)[Λ∞(µ)y](s)ds

∣∣∣
≤ K3e

−αSξ ‖φ‖
∫ 0

−∞ eα−(ξ−s)ds+
∫ ξ

0
eα−(ξ−s) ‖L(ξ, µ)− L+(µ)‖ ‖evsy‖ ds

≤ K4e
−αSξeα−ξ ‖φ‖

+K5 ‖φ‖
∫ ξ

0
eα−(ξ−s)[|µ− µ0| eα−s + eα

f
−s]e−αS(ξ−s)ds

≤ K4e
(α−−αS)ξ ‖φ‖

+K6 ‖φ‖ e(α−−αS)ξ
[
|µ− µ0| [eαSξ − 1] + [e(αS+αf−−α−)ξ − 1]

]
.

(5.24)

Similar estimates for z(ξ + θ), with rmin ≤ θ ≤ rmax, complete the proof.

Lemma 5.6. Consider the setting of Theorem 5.4 and suppose that (5.17) holds. Then there exists
a constant K1 > 0 such that∥∥[I −ΠQ(∞,µ)]|Q(ξ,µ)

∥∥ ≤ K1

[
|µ− µ0| eα−ξ + eα

f
−ξ
]

(5.25)

for all µ ∈ U ′ and all ξ ≥ 0.
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Proof. Consider a similar setup as in the proof of Lemma 5.5, now with yj ∈ Q(ξ, µ). This time, we
need to estimate the quantity evξzj , with

zj = Λ−1
∞ (µ)HξΛ∞(µ)yj . (5.26)

For all ξ′ ≥ ξ we compute

[Λ∞(µ)yk](ξ′) = [Λ(µ)yj ](ξ′) + [L(ξ′, µ)− L+(µ)]yjξ′ = [L(ξ′, µ)− L+(µ)]yjξ′ , (5.27)

since yj ∈ Q(ξ, µ). The estimate is now immediate.

Proof of Theorem 5.4. We will consider the identity

ΠQ(ξ,µ) −ΠQ(∞,µ) = ΠP (∞,µ)ΠQ(ξ,µ) −ΠQ(∞,µ)ΠS(ξ,µ) (5.28)

in more detail. In particular, let us write

ΠQ(∞,µ)ΠS(ξ,µ) = Λ−1
∞ (µ)F (ξ, µ)ΠS(ξ)[U∗ξ (µ)]−1, (5.29)

in which F (ξ, µ) : S(ξ, µ0)→ L∞
(
R,Cn

)
is defined by

[F (ξ, µ)φ](ξ′) = [L(ξ′, µ)− L+(µ)]evξ′v∗S(ξ)(µ)φ (5.30)

for all 0 ≤ ξ′ ≤ ξ, while [F (ξ, µ)φ](ξ′) = 0 for ξ′ ≥ ξ and

[F (ξ, µ)φ](ξ′) = [Λ∞(µ)y(ξ, µ)φ](ξ′) (5.31)

for ξ′ ≤ 0. Here the quantity y(ξ, µ)φ denotes a C1-smooth function that is defined on the interval
(−∞, rmax] and has ev0y(ξ, µ)φ = ev0v

∗
S(ξ)(µ)φ. In addition, Lemma 5.3 implies that this function

can be chosen in such a way that it depends Ck-smoothly on µ and also satisfies the following
estimate, for all ξ′ ≤ rmax and all integers 0 ≤ ` ≤ k,∥∥D`

µevξ′y(ξ, µ)φ
∥∥+

∥∥D`
µevξ′y′(ξ, µ)φ

∥∥ ≤ K1e
−αSξ ‖φ‖ . (5.32)

The representation (5.29) together with the estimates (5.14) and (5.32) now allow us to mimic the
calculation in (5.24) to obtain the estimate∥∥D`

µ[ΠQ(∞,µ)ΠS(ξ,µ)]
∥∥ ≤ K2

[
|µ− µ0| eα−ξ + e(α−−αS)ξ + eα

f
−ξ
]
, (5.33)

which holds for all integers 0 ≤ ` ≤ k and all ξ ≥ 0. An easier computation for the derivatives of the
quantity ΠP (∞,µ)ΠQ(ξ,µ) completes the proof.

To conclude this section, we show how we can isolate the part of S(ξ, µ) that decays at the rate
of the leading positive eigenvalue of the characteristic matrix ∆+. To this end, consider any ν > 0
such that the characteristic equation det ∆+(z, µ0) = 0 has no roots with Re z = ν. This allows us
to perform the spectral decomposition

X = Pν(∞, µ0)⊕Q(∞, µ0)⊕ Γ0,ν , (5.34)

in which Γ0,ν is the finite dimensional generalized eigenspace associated to the roots of det ∆+(z, µ0) =
0 that have 0 < Re z < ν. By nature of the spectral projection, we have the identity ΠΓ0,ν +
ΠPν(∞,µ0) = ΠP (∞,µ0).

Let us now introduce the operator Uξ ∈ L
(
Pν(∞, µ0)⊕ Γ0,ν ⊕Q(∞, µ0)

)
, that is defined by

(ψ, γ, φ) 7→ [ΠPν(∞,µ0) ⊕ΠΓ0,ν ⊕ΠQ(∞,µ0)][ΠSν(ξ,µ)ψ + ΠS(ξ,µ)γ + ΠQ(ξ,µ)φ]. (5.35)
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Here we have introduced the space Sν(ξ, µ), that should be seen as the analogue of S(ξ, µ) after
application of an exponential shift e−ν to the system (5.1). We claim that Uξ is close to the identity
for ξ large enough and µ sufficiently close to µ0. To see this, we compute

ΠPν(∞,µ0)Uξ(ψ, γ, φ) = ψ + ΠPν(∞,µ0)[ΠSν(ξ,µ) −ΠPν(∞,µ0)]ψ + ΠPν(∞,µ0)[ΠS(ξ,µ) −ΠP (∞,µ0)]γ
+ ΠPν(∞,µ0)[ΠQ(ξ,µ) −ΠQ(∞,µ0)]φ.

(5.36)

Similar estimates for the other projections complete the proof of the claim. This allows us to obtain
the following splitting, for all sufficiently large ξ,

X = Sf (ξ, µ)⊕ Ss(ξ, µ)⊕Q(ξ, µ), (5.37)

in which we have ΠSf (ξ,µ) + ΠSs(ξ,µ) − ΠP (∞,µ0) → 0 as ξ → ∞ and µ → µ0. In addition, we have
the identities

Sf (ξ, µ) = ΠSν(ξ,µ)

(
Pν(∞, µ0)

)
,

Ss(ξ, µ) = ΠS(ξ,µ)

(
Γ0,ν

)
.

(5.38)

6 Lin’s Method for MFDEs

Now that the necessary machinery for linear systems has been developed, we are ready to consider
the nonlinear functional differential equation of mixed type,

x′(ξ) = G(xξ, µ) (6.1)

and study bifurcations from heteroclinic connections. Our approach in this section was strongly
inspired by the presentation in [16], but the notation here will differ somewhat. This is primarily due
to the fact that we have to adapt the framework developed by Sandstede to an infinite dimensional
setting and need to avoid the use of a variation-of-constants formula.

To set the stage, let q be a heteroclinic solution to (6.1) at some parameter µ = µ0, that connects
the two equilibria q± ∈ Cn. We set out to find solutions to (6.1) that remain close to q, for parameters
that have µ ≈ µ0. We therefore write x = q + u and find the variational equation

u′(ξ) = G(qξ + uξ, µ)− q′(ξ)
= G(qξ + uξ, µ)−G(qξ, µ0)
= [G(qξ + uξ, µ)−G(qξ, µ0)−D1G(qξ, µ0)uξ −D2G(qξ, µ0)(µ− µ0)]

+D1G(qξ, µ0)uξ +D2G(qξ, µ0)(µ− µ0)
= N (ξ, uξ, µ) +D1G(qξ, µ0)uξ +D2G(qξ, µ0)(µ− µ0),

(6.2)

in which the nonlinearity N is given explicitly by

N (ξ, φ, µ) = G(qξ + φ, µ)−G(qξ, µ0)−D1G(qξ, µ0)φ−D2G(qξ, µ0)(µ− µ0). (6.3)

Throughout this entire section we will assume that the conditions (HG), (HL) and (HB) are satisfied.
We therefore obtain the boundN (ξ, φ, µ) = O

(
(|µ− µ0|+‖φ‖)2

)
as µ→ µ0 and φ→ 0. This estimate

holds uniformly for all ξ ∈ R, due to the fact that the heteroclinic connection q can be uniformly
bounded.

We write Λ for the operator (2.5) associated to the linear part of (6.2), i.e., for u ∈W 1,1
loc (R,Cn)

we have

[Λu](ξ) = u′(ξ)−D1G(qξ, µ0)uξ. (6.4)

Throughout the sequel, we use the following splitting of the state space X, that is associated to the
linearization (6.4),

X = P̂ (0)⊕ Q̂(0)⊕B(0)⊕ Γ(0). (6.5)
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We pick two constants α− < 0 < α+ in such a way that the characteristic equations det ∆±(z) = 0
associated to (6.4) have no roots in the strip α− ≤ Re z ≤ α+. To ease the notation throughout this
section, we now introduce the shorthands

BC+
α− = BCα−

(
[0,∞),Cn

)
, BC−α+

= BCα+

(
(−∞, 0],Cn

)
,

BC⊕α− = BCα−
(
[rmin,∞),Cn

)
, BC	α+

= BCα+

(
(−∞, rmax],Cn

)
.

(6.6)

We recall the inverses for Λ on half-lines that were constructed in (3.33). In particular, we will use
the appropriately defined inverses Λ−1

+ = Λqinv
(α−)(µ0) to ensure that for any f ∈ BC+

α− we can find

x ∈ BC⊕α− with Λx = f on [0,∞), with the analogous properties for Λ−1
− = Λqinv

(α+)(µ0).

Lemma 6.1. Consider the linearization (6.4). For every pair of functions (g−, g+) that has g− ∈
BC−α+

and g+ ∈ BC+
α− , there exists a unique pair (u−, u+) = L1(g−, g+), with u− ∈ BC	α+

and
u+ ∈ BC⊕α− , such that the following properties hold.

(i) We have the identities

[Λu−](ξ′) = g−(ξ′) for all ξ′ ≤ 0,
[Λu+](ξ′) = g+(ξ′) for all ξ′ ≥ 0. (6.7)

(ii) We have ev0u
− ∈ P̂ (0)⊕ Q̂(0)⊕ Γ(0) and similarly ev0u

+ ∈ P̂ (0)⊕ Q̂(0)⊕ Γ(0).

(iii) We have ev0[u− − u+] ∈ Γ(0), with

〈ev∗0d, ev0[u− − u+]〉0 =
∫ 0

−∞
d(ξ′)∗g−(ξ′)dξ′ +

∫ ∞
0

d(ξ′)∗g+(ξ′)dξ′, (6.8)

for any d ∈ K(Λ∗).

The linear map L1 is bounded as a map from BC−α+
×BC+

α− into BC	α+
×BC⊕α− .

Proof. One may easily check that the choice

u− = Λ−1
− g− − EΠB(0)ev0Λ−1

− g− + EΠ bP (0)[Λ
−1
+ g+ − Λ−1

− g−],
u+ = Λ−1

+ g+ − EΠB(0)ev0Λ−1
+ g+ + EΠ bQ(0)[Λ

−1
− g− − Λ−1

+ g+],
(6.9)

ensures that all the required properties hold, using the identity (4.8) to verify (iii).

Proof of Proposition 2.1. In order to find the functions u−(µ) and u+(µ) that satisfy the properties
stated in Proposition 2.1, it suffices to solve the nonlinear fixed point problem

(u−, u+) = L1

(
N (u−, µ) +D2G(q, µ0)(µ− µ0),N (u+, µ) +D2G(q, µ0)(µ− µ0)

)
. (6.10)

Here the maps N and D2G should be viewed as substitution operators, i.e., for any ξ′ ≥ 0 we have
N (u+, µ)(ξ′) = N (ξ′, evξ′u+, µ), together with similar identities for D2G(q, µ0) and N (u−, µ). By
construction we have that (0, 0) is a solution to this problem at µ = µ0. The definition of N in (6.3)
ensures that, by taking µ sufficiently close to µ0 and by restricting u+ to a small ball in BC⊕α− , we
may achieve ∥∥[D2N ](ξ, evξu+, µ)

∥∥ ≤ C[
∥∥evξu+

∥∥+ |µ− µ0|] (6.11)

for all ξ ≥ 0. Now consider the ball Bδ(0) ⊂ BC	α+
× BC⊕α− around the pair (0, 0) that has radius

δ > 0. Choosing δ sufficiently small, (6.11) implies that the right hand side of (6.10) is a contraction
on Bδ(0). In addition, choosing a sufficiently small neighbourhood U ′ ⊂ U ensures that the right hand
side of (6.10) maps Bδ(0) into itself. Together with the implicit function theorem, these observations
show that for each µ ∈ U ′, equation (6.10) has a unique solution in Bδ(0), that depends Ck+1-
smoothly on µ. We lose one order of smoothness here, due to the fact that the substitution operator
N is only Ck+1-smooth [16].
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We now proceed towards establishing Theorem 2.2. In order to meet the boundary conditions in
item (iii), we will need to insert x± = q(ξ) +u±(µ)(ξ) + v±(ξ) into the nonlinear equation (6.1). We
find that v± must solve the equations

[Dξv
−](ξ) = M−(ξ, evξv−, µ) +D1G(qξ + evξu−(µ), µ)evξv−, ξ ≤ 0,

[Dξv
+](ξ) = M+(ξ, evξv+, µ) +D1G(qξ + evξu+(µ), µ)evξv+, ξ ≥ 0, (6.12)

in which the nonlinearities M± are given by

M±(ξ, φ, µ) = G
(
qξ + evξu±(µ) + φ, µ

)
−D1G

(
qξ + evξu±(µ), µ

)
φ−G(qξ + evξu±, µ). (6.13)

Let us write Λ(µ) for the operator (2.5) associated to the inhomogeneous linearization

v′(ξ) = D1G
(
qξ + ẽvξu(µ), µ

)
vξ + f(ξ), (6.14)

in which we have ẽvξu(µ) = evξu+(µ) for ξ ≥ 0 and ẽvξu(µ) = evξu−(µ) for ξ ≤ 0. We remark
here that the matrix-valued functions Aj(ξ, µ) associated to (6.14) that were introduced in (3.17)
are no longer continuous at ξ = 0 for µ 6= µ0, but this will not matter for our purposes here. For
convenience, we introduce the following shorthands for ω+ > 0 and ω− < 0,

C+
(ω+) = C

(
[0, ω+],Cn

)
, C−(ω−) = C

(
[ω−, 0],Cn

)
,

C⊕(ω+) = C
(
[rmin, ω

+ + rmax],Cn
)
, C	(ω−) = C

(
[ω− + rmin, rmax],Cn

)
.

(6.15)

We also recall the splitting X = Q(ξ, µ) ⊕ S(ξ, µ) that holds for all ξ ≥ 0. Similarly, for all ξ ≤ 0
we will use the splitting X = P (ξ, µ) ⊕ R(ξ, µ). Here we have introduced the spaces R(ξ, µ), that
should be seen as the natural counterparts of S(ξ, µ) on the negative half-line.

Lemma 6.2. Consider the parameter-dependent inhomogeneous linear system (6.14). Then there
exists a neighbourhood U ′ ⊂ U , with µ0 ∈ U ′ and a constant Ω > 0, such that for every µ ∈ U ′,
every pair ω− < −Ω < Ω < ω+, every pair (g−, g+) ∈ C−(ω−) × C

+
(ω+) and every pair (φ−, φ+) ∈

Q(−∞) × P (∞), there exists a unique pair (v−, v+) ∈ C	(ω−) × C
⊕
(ω+) that satisfies the following

properties.

(i) The functions v± satisfy the linear system

[Λ(µ)v−](ξ′) = g−(ξ′) for all ω− ≤ ξ′ ≤ 0,
[Λ(µ)v+](ξ′) = g+(ξ′) for all 0 ≤ ξ′ ≤ ω+.

(6.16)

(ii) We have ev0v
−(µ) ∈ P̂ (0)⊕ Q̂(0)⊕ Γ(0) and similarly ev0v

+(µ) ∈ P̂ (0)⊕ Q̂(0)⊕ Γ(0).

(iii) The gap between v− and v+ at zero satisfies ev0[v−(µ)− v+(µ)] ∈ Γ(0).

(iv) The functions v± satisfy the boundary conditions

ΠQ(−∞)evω−v− = φ−,
ΠP (∞)evω+v+ = φ+,

(6.17)

in which we have introduced the shorthands ΠQ(−∞) = ΠQ(−∞,µ0) and ΠP (∞) = ΠP (∞,µ0).

This pair (v−, v+) will be denoted by

(v−, v+) = L3

(
g−, g+, φ−, φ+, µ, ω−, ω+

)
, (6.18)

in which L3 is a linear operator with respect to the first four variables that depends Ck+1-smoothly
on µ, with a norm that can be bounded independently of ω±.
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In addition, consider any d ∈ K∗ and write d+ = Eu∗Q∗(0)ev∗0d and d− = Eu∗P∗(0)ev∗0d. Then the
following identity holds for the gap at zero,

〈ev∗0d
−, ev0v

−〉0,µ = 〈ev∗0d
+, ev0v

+〉0,µ
+ 〈ev∗ω−d

−, evω−v−〉ω−,µ − 〈ev∗ω+d+, evω+v+〉ω+,µ

+
∫ 0

ω−
d−(ξ′)∗g−(ξ′)dξ′ +

∫ ω+

0
d+(ξ′)∗g+(ξ′)dξ′.

(6.19)

Proof. We first define the functions w+ = Λ−1
+ (µ)g+ and w− = Λ−1

− (µ)g−. In order to satisfy the
conditions (ii) through (iv), we now set out to find ψB+ ∈ B(0), ψB− ∈ B(0), ψ bQ ∈ Q̂(0), ψ bP ∈ P̂ (0),
ψS ∈ P (∞) and ψR ∈ Q(−∞) that satisfy the linear system

−ΠB(0)w
+
0 = ψB+ + ΠB(0)ev0EΠS(ω+,µ)ψ

S ,
−ΠB(0)w

−
0 = ψB− + ΠB(0)ev0EΠR(ω−,µ)ψ

R,

−Π bQ(0)[w
−
0 − w

+
0 ] = −ψ bQ + Π bQ(0)u

∗
P (0)(µ)[ψ bP + ψB−]

+ Π bQ(0)

[
ev0EΠR(ω−,µ)ψ

R − ev0EΠS(ω+,µ)ψ
S
]
,

−Π bP (0)[w
−
0 − w

+
0 ] = ψ

bP −Π bP (0)u
∗
Q(0)(µ)[ψ bQ + ψB+]

+ Π bP (0)

[
ev0EΠR(ω−,µ)ψ

R − ev0EΠS(ω+,µ)ψ
S
]
,

ΠP (∞)[φ+ − w+
ω+ ] = ψS + ΠP (∞)evω+Eu∗Q(0)(µ)[ψ bQ + ψB+]

+ ΠP (∞)[ΠS(ω+,µ) −ΠP (∞)]ψS ,
ΠQ(−∞)[φ− − w−ω− ] = ψR + ΠQ(−∞)evω−Eu∗P (0)(µ)[ψ bP + ψB−]

+ ΠQ(−∞)[ΠR(ω−,µ) −ΠQ(−∞)]ψR.

(6.20)

Then upon writing ψQ = ψ
bQ + ψB+ and ψP = ψ

bP + ψB− and defining

v+ = w+ + Eu∗Q(0)(µ)ψQ + EΠS(ω+,µ)ψ
S ,

v− = w− + Eu∗P (0)(µ)ψP + EΠR(ω−,µ)ψ
R,

(6.21)

we see that the properties (i) through (iv) are satisfied. The exponential estimates in Theorem 5.1,
together with the results established in Lemma 5.2 and Theorem 5.4, ensure that by choosing a
sufficiently small neighbourhood U ′ ⊂ U , with µ0 ∈ U ′ and a sufficiently large constant Ω > 0, the
system (6.20) can always be solved. Moreover, the inverse of the linear operator associated to (6.20)
depends Ck+1-smoothly on µ.

To verify the identity (6.19), it suffices to observe that for any continuous function d that satisfies
Λ∗(µ)d = 0 on the interval [0, ξ], we have

〈ev∗0d, ev0x〉0,µ = 〈ev∗ξd, evξx〉ξ,µ +
∫ 0

ξ
d(ξ′)∗[Λ(µ)x](ξ′)dξ′. (6.22)

To see the uniqueness of the pair (v−, v+) that has now been constructed, consider any continuous
function y ∈ C⊕(ω+) that has Λ(µ)y = 0 on [0, ω+]. Writing z = EΠS(ω+,µ)evω+y, we find that
Λ(µ)(y − z) = 0 on [0, ω+], while evω+ [y − z] ∈ Q(ω+, µ). This implies that ev0[y − z] ∈ Q(0, µ),
which in turn means y ∈ Q(0, µ) + S(ω+, µ), with some abuse of notation. It is thus sufficient to
show that

S(ω+, µ) = ΠS(ω+,µ)

(
P (∞)

)
,

R(ω−, µ) = ΠR(ω−,µ)

(
Q(−∞)

)
,

(6.23)

but these identities follow directly from the discussion at the end of Section 5.

We are now ready to consider a family of heteroclinic connections {qj}j∈J that connect the
equilibria {q∗` }`∈J ∗ , i.e.,

lim
ξ→±∞

qj(ξ) = q∗j± 1
2
. (6.24)

For any j ∈ J , let us write Λ(j)(µ) for the linear operator (6.14) that is associated to the heteroclinic
connection qj and P̂ (j)(0), Q̂(j)(0) and Γ(j)(0) for the spaces appearing in (6.5).

28



Lemma 6.3. Consider the nonlinear equation (6.1) and a family of heteroclinic connections {qj}j∈J
that satisfy (6.24). Then there exists a neighbourhood U ′ ⊂ U , with µ0 ∈ U ′ and a constant Ω > 0,
such that for every µ ∈ U ′, every family {ω`}`∈J ∗ that has ω` > Ω for all ` ∈ J ∗, every family
{g−j , g

+
j }j∈J with (g−j , g

+
j ) ∈ C−

(ω−j )
× C+

(ω+
j )

, and every family {Φ`}`∈J ∗ ∈ XJ
∗
, there is a unique

family {v−j , v
+
j }j∈J with (v−j , v

+
j ) ∈ C	

(ω−j )
× C⊕

(ω+
j )

, that satisfies the following properties.

(i) For every j ∈ J , the pair (v−j , v
+
j ) solves the linear system

[Λ(j)(µ)v−j ](ξ′) = g−j (ξ′) for all ω−j ≤ ξ′ ≤ 0,
[Λ(j)(µ)v+

j ](ξ′) = g+
j (ξ′) for all 0 ≤ ξ′ ≤ ω+

j .
(6.25)

(ii) For every j ∈ J , we have ev0v
−
j ∈ P̂ (j)(0)⊕ Q̂(j)(0)⊕Γ(j)(0) and similarly ev0v

+
j ∈ P̂ (j)(0)⊕

Q̂(j)(0)⊕ Γ(j)(0).

(iii) For every j ∈ J , the gap between v±j at zero satisfies ev0[v−j − v
+
j ] ∈ Γ(j)(0).

(iv) For every ` ∈ J ∗, we have the boundary condition

evω+
`− 1

2

v+
`− 1

2
− evω−

`+ 1
2

v−
`+ 1

2
= Φ`, (6.26)

which should be interpreted in the sense of item (iii) in Theorem 2.2.

This family {v−j , v
+
j } will be denoted by

{v−j , v
+
j } = L4

(
{g−j , g

+
j }, {Φ`}, µ, {ω`}

)
, (6.27)

in which L4 is a linear operator with respect to the first two variables that depends Ck+1-smoothly
on µ, with a norm that can be bounded independently of the family {ω`}.

Proof. It suffices to choose a family {φ−j , φ
+
j }j∈J , with φ−j ∈ Q(j)(−∞) and φ+

j ∈ P (j)(∞), such that
the family of solutions defined by (v−j , v

+
j ) = L3

(
g−j , g

+
j , φ

−
j , φ

+
j , µ, ω

−
j , ω

+
j

)
satisfies the following

boundary condition for every ` ∈ J ∗,

Π(`− 1
2 )

P (∞)

[
Φ` + evω−

`+ 1
2

L−3 (g−
`+ 1

2
, g+
`+ 1

2
, 0, 0)

]
= φ+

`− 1
2

+K+
`− 1

2

(
φ−
`+ 1

2
, φ+
`+ 1

2

)
,

Π(`+ 1
2 )

Q(−∞)

[
evω+

`− 1
2

L+
3 (g−

`− 1
2
, g+
`− 1

2
, 0, 0)− Φ`

]
= φ−

`+ 1
2

+K−
`+ 1

2

(
φ−
`− 1

2
, φ+
`− 1

2

)
.

(6.28)

Here we have introduced the obvious shorthand L3 = (L−3 , L
+
3 ) and dropped the dependence of L3

on µ and ω±. For any j ∈ J we can inspect (6.20) and obtain the bounds

∥∥K+
j

∥∥ ≤ K1e
αPω

−
j+1 +K2

∥∥∥∥Π(j+1)

R(ω−j+1,µ)
−Π(j+1)

Q(−∞)

∥∥∥∥ ,∥∥K−j ∥∥ ≤ K1e
−αQω+

j−1 +K2

∥∥∥∥Π(j−1)

S(ω+
j−1,µ)

−Π(j−1)
P (∞)

∥∥∥∥ , (6.29)

which ensures that the right hand side of (6.28) is close to the identity, for sufficiently large Ω > 0
and a sufficiently small neighbourhood U ′ ⊂ U .

With this result we are ready to establish the existence of the family {v−j , v
+
j }j∈J that appears

in Theorem 2.2. We will defer the proof of the estimates (2.18) to the next section.
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Proof of Theorem 2.2. In order to find the family {v−j , v
+
j }, we will first fix the family {ω`} and

solve the fixed point problem

{v−j , v
+
j } = L4

(
{M−(v−j , µ),M+(v+

j , µ)}, {Φ`}, µ, {ω`}
)
. (6.30)

First note that for some C > 0 we can make the estimate∥∥D2M+(ξ, φ, µ)
∥∥ ≤ C ‖φ‖ , (6.31)

uniformly for ξ ≥ 0 and µ ∈ U ′. This allows us to proceed as in the proof of Proposition 2.1 to obtain
families v±j

(
{Φ`}, µ, {ω`}

)
that solve (6.30), for small values of {Φ`} and µ sufficiently close to µ0.

Moreover, these families depend Ck-smoothly on {Φ`} and µ, where we have again lost an order
of smoothness due to our use of the substitution operators M±. Upon choosing a sufficiently large
constant Ω > 0 and subsequently using (2.15) to pick the appropriate (small) values for Φ` = Φ`(µ),
the fixed point of (6.30) will satisfy the properties (i) through (iv) in Theorem 2.2. Since Φ`(µ)
depends Ck-smoothly on µ, the fixed point of (6.30) will share this property.

It remains to consider the smoothness of the jumps with respect to the family {ω`}. Let us
therefore fix a sufficiently large Ω > Ω and reconsider the setting of Lemma 6.2. Instead of looking
for a pair (v−, v+) ∈ C	(ω−)×C

⊕
(ω+) that satisfies the properties (i) through (iv), we will look for a pair

(v−, v+) ∈ C	
(−Ω)
×C⊕

(Ω)
that satisfies these properties, still with the original quantities ω± that have

|ω±| < Ω. In order to solve this modified problem, let us adapt the action of the extension operator
E on the space S(ω+, µ), to ensure that Eψ ∈ C⊕

Ω
for ψ ∈ S(ω+, µ), with a similar modification

for the space R(ω−, µ). The exact details are irrelevant, as long as we still have Λ(µ)Eψ = 0 on the
interval [0, ω+]. After this modification, it again suffices to solve the linear system (6.20). To see that
ΠS(ω+,µ) depends smoothly on ω+, we note that for any ω∗ we can redefine the space S(ω∗, µ) so that
it contains solutions to (5.1) on the slightly larger half-line [−1, ω∗]. We can then obtain solutions to
(5.1) on the interval [0, ω+] with ω+ = ω∗+ ∆ω, by solving (5.1) with Aj(ξ, µ,∆ω) = Aj(ξ+ ∆ω, µ)
and shifting the resulting function to the right by ∆ω. This observation allows us to treat the
parameter ω+ on the same footing as µ. We emphasize that these modifications do not affect the
pair (v−, v+) when viewed as functions in C⊕(ω−)×C

	
(ω+), due to the uniqueness result in Lemma 6.2.

Applying similar modifications to Lemma 6.3 and the construction above now completes the proof,
using the estimates for Rj that are obtained in the next section.

7 The remainder term

Our goal in this section is to obtain estimates on the size of the remainder term Rj that features in
(2.17). To set the stage, assume that for some j ∈ J we have d ∈ K

(
(Λ(j))∗

)
with ‖ev∗0d‖ = 1. We

also recall the functions d+(µ) ∈ Q∗(0, µ) and d−(µ) ∈ P∗(0, µ) that are defined by

d+(µ) = Eu∗Q∗(0)(µ)ev∗0d,
d−(µ) = Eu∗P∗(0)(µ)ev∗0d.

(7.1)

In this section, we will study the slightly modified remainder term R̃j , that is given by

R̃j = 〈ev∗0d
−, ev0v

−〉0,µ − 〈ev∗0d
+, ev0v

+〉0,µ
− 〈ev∗

ω+
j

d+, evω−j+1
[qj+1 + u−j+1(µ)− q∗

j+ 1
2
]〉ω+

j ,µ

+ 〈ev∗
ω−j
d−, evω+

j−1
[qj−1 + u+

j−1(µ)− q∗
j− 1

2
]〉ω−j ,µ.

(7.2)

In the terminology of Theorem 2.2, we see that the difference satisfies
∣∣∣R̃j −Rj∣∣∣ = O(|µ− µ0| e−2αω),

but our final estimate on R̃j will satisfy the improved bound

R̃j ≤ ‖ev∗0d‖ [C1 |µ− µ0|2 e−2αω + C2e
−3αω]. (7.3)
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To simplify our arguments, we introduce the following quantities that are associated to the boundary
conditions in (2.15),

Θ±j = evω±j [qj + u±j (µ)− q∗
j± 1

2
],

Φ+
j = Π(j)

P (∞)

(
evω+

j
[qj + u+

j (µ)]− evω−j+1
[qj+1 + u−j+1(µ)]

)
,

Φ−j = Π(j)
Q(−∞)

(
evω−j [qj + u−j (µ)]− evω+

j−1
[qj−1 + u+

j−1(µ)]
)
.

(7.4)

We also introduce the supremum norms ‖Θ‖ = supj∈J
∥∥Θ±j

∥∥ and similarly ‖Φ‖ = supj∈J
∥∥Φ±j

∥∥. In
addition, we introduce the terms

r+
j =

∥∥∥ΠP (∞)[ΠS(ω+
j ,µ) −ΠP (∞,µ)]ΠP (∞)

∥∥∥+
∥∥∥Dω+

j
ΠP (∞)[ΠS(ω+

j ,µ) −ΠP (∞,µ)]ΠP (∞)

∥∥∥
+
∥∥ΠP (∞)[ΠP (∞,µ) −ΠP (∞,µ0)]ΠP (∞)

∥∥
r−j =

∥∥∥ΠQ(−∞)[ΠR(ω−j ,µ) −ΠQ(−∞,µ)]ΠQ(−∞)

∥∥∥+
∥∥∥Dω−j

ΠQ(−∞)[ΠR(ω−j ,µ) −ΠQ(−∞,µ)]ΠQ(−∞)

∥∥∥
+
∥∥ΠQ(−∞)[ΠQ(−∞,µ) −ΠQ(−∞,µ0)]ΠQ(−∞)

∥∥ .
(7.5)

We wish to remark at this point that∥∥ΠP (∞)[ΠP (∞,µ) −ΠP (∞,µ0)]ΠP (∞)

∥∥ = O(|µ− µ0|2), (7.6)

with a similar identity holding for the projections on the Q-spaces. To see this, we mimic the
constructions of S(ξ, µ) and Q(ξ, µ) in Section 5 and write P (∞, µ) and Q(∞, µ) as graphs over
P (∞) and Q(∞), using functions u∗P (∞) and u∗Q(∞) that should be seen as the analogues of u∗S(ξ)

and u∗Q(ξ). We also introduce U∗∞(µ) : X → X via U∗∞(µ) = u∗P (∞)(µ)ΠP (∞) + u∗Q(∞)(µ)ΠQ(∞),
which is invertible for µ close to µ0. This allows us to write ΠP (∞,µ) = u∗P (∞)(µ)ΠP (∞)[U∗∞(µ)]−1

and hence

DµΠP (∞,µ) = [Dµu
∗
P (∞)](µ)ΠP (∞)[U∗∞(µ)]−1

−u∗P (∞)(µ)ΠP (∞)[U∗∞(µ)]−1[Dµu
∗
P (∞)](µ)ΠP (∞)[U∗∞(µ)]−1

−u∗P (∞)(µ)ΠP (∞)[U∗∞(µ)]−1[Dµu
∗
Q(∞)](µ)ΠQ(∞)[U∗∞(µ)]−1.

(7.7)

Wedging this expression between ΠP (∞) and evaluating this derivative at µ = µ0 yields

[ΠP (∞)DµΠP (∞,µ)ΠP (∞)]|µ=µ0 = ΠP (∞)[Dµu
∗
P (∞)](µ0)ΠP (∞)

−ΠP (∞)[Dµu
∗
P (∞)](µ0)ΠP (∞)

−ΠP (∞)[Dµu
∗
Q(∞)](µ0)ΠQ(∞)ΠP (∞)

= 0.

(7.8)

Our main focus will be to study the rate at which the error terms R̃j decay as the quantities
{ω`}`∈J ∗ tend towards infinity. In order to eliminate the need to keep track of constants, we introduce
the notation

a
(
µ, {ω`}

)
≤∗ b

(
µ, {ω`}

)
(7.9)

to indicate that there exists a constant C > 0 such that for all µ ∈ U ′ and families {ω`} that have
ω` > Ω for all ` ∈ J ∗, we have the inequality

a
(
µ, {ω`}

)
≤ Cb

(
µ, {ω`}

)
. (7.10)

As a final preparation, we will assume that for every j ∈ J we have obtained the splittings

X = Ss(ω+
j , µ)⊕ Sf (ω+

j , µ)⊕Q(ω+
j , µ),

X = Rs(ω−j , µ)⊕Rf (ω−j , µ)⊕ P (ω−j , µ),
(7.11)
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as introduced at the end of Section 5. We write αfS and αfR for the exponential rates associated
to the fast spaces Sf (ω+, µ) and Rf (ω−, µ). In view of this more detailed splitting, we modify the
definition of v± in (6.21) to make it read

v+ = w+ + Eu∗Q(0)(µ)φQ + EΠSf (ω+,µ)ψ
S + EΠSs(ω+,µ)ψ

S ,

v− = w− + Eu∗P (0)(µ)φP + EΠRf (ω−,µ)ψ
R + EΠRs(ω−,µ)ψ

R.
(7.12)

Our first goal will be to fix a j ∈ J , consider small boundary values φ+ and φ− and get estimates
on the solution of the nonlinear fixed point problem

(v−, v+) = L3

(
M−(v−, µ),M+(v+, µ), φ−, φ+, µ, ω−, ω+

)
, (7.13)

in terms of φ+ and φ−. We proceed by introducing the notation w− = (w−, ψR, ψP ), w+ =
(w+, ψQ, ψS) and w = (w−, w+, ψR, ψP , ψQ, ψS) ∈W, where W denotes the space

W = C	(ω−) × C
⊕
(ω+) ×Q(−∞)× P (0)×Q(0)× P (∞). (7.14)

The problem (7.13) can now be written as

w = [I −K]−1
(

[J0B0 + J1B1 + J2B2]
(
M−(w−),M+(w+)

)
+ J3(φ−, φ+)

)
, (7.15)

in which the operators B0, B1 and B2 act as

B0(g−, g+) = (Λ−1
− (µ)g−,Λ−1

+ (µ)g+),
B1(g−, g+) = ev0B0(g−, g+),
B2(g−, g+) =

(
evω− , evω+

)
B0(g−, g+),

(7.16)

while the precise form of the operators K ∈ L(W) and Ji can be found by inspection of (6.20). Note
that for any b ∈W we have the bound∥∥[I −K]−1b− [I +K]b

∥∥ ≤ [I − ‖K‖]−1 ‖K‖ ‖Kb‖ . (7.17)

Now consider the first order estimate w0 = [I−K]−1J3(φ−, φ+). Upon introducing the quantities

T+
0 = e−αSω

+ ∥∥ΠSs(ω+,µ)φ
+
∥∥+ e−α

f
Sω

+ ‖φ+‖ ,
T−0 = eαRω

− ∥∥ΠRs(ω−,µ)φ
−
∥∥+ eα

f
Rω
− ‖φ−‖ ,

T+
1 = r+e−αSω

+ ‖φ+‖ ,
T−1 = r−eαRω

− ‖φ−‖ ,

(7.18)

together with T0 = T−0 + T+
0 and T1 = T−1 + T+

1 , we find w0 = (0, 0, ψR, ψP , ψQ, ψS), with∥∥ψR − φ−∥∥ ≤∗ r− ‖φ−‖+ eαPω
−

[T0 + T+
1 ],∥∥ψP∥∥ ≤∗ T0 + T1,∥∥ψQ∥∥ ≤∗ T0 + T1,∥∥ψS − φ+

∥∥ ≤∗ r+ ‖φ+‖+ e−αQω
+

[T0 + T−1 ].

(7.19)

In order to see that these are in fact all the terms, we note that we can use a separate norm on W for
each of the components. In particular, the operator K remains bounded, independently of ω+ ≥ Ω
and ω− ≤ −Ω, after the scalings ψ̃S ∼ e−αSω

+
ψS and ψ̃R ∼ eαRω

−
ψR, which allows us to get the

estimates on ψP and ψQ. To obtain the estimate on ψS , one can use the scalings ψ̃Q ∼ e−αQω+
ψQ,

ψ̃P ∼ e−αQω+
ψP and ψ̃R = eαRω

−
e−αQω

+
ψR.

We now include the higher order terms using the expansion

w = w0 + [I −K]−1[J0B0 + J1B1 + J2B2]
(
M−(w−0 ),M+(w+

0 )
)

+ (V −, V +), (7.20)
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in which ‖V ±‖0 ≤∗ ‖φ‖
3, with φ = (φ+, φ−). We thus find that the fixed point w = (w−, w+, ψR, ψP , ψQ, ψS)

of (7.15) can be bounded by

‖ŵ−‖0 ≤∗ e−2αSω
+ ‖φ‖2 ,

‖w̃−‖−αR ≤∗ eαRω
− ‖φ‖2 ,

‖ŵ+‖0 ≤∗ e2αRω
− ‖φ‖2 ,

‖w̃+‖αS ≤∗ e−αSω
+ ‖φ‖2 ,∥∥ψR − φ−∥∥ ≤∗ r− ‖φ−‖+ eαPω

−
[T0 + T+

1 ] + ‖φ‖2 ,∥∥ψP∥∥ ≤∗ T0 + T1 + e−αSω
+ ‖φ‖2 + eαRω

− ‖φ‖2 ,∥∥ψQ∥∥ ≤∗ T0 + T1 + e−αSω
+ ‖φ‖2 + eαRω

− ‖φ‖2 ,∥∥ψS − φ+
∥∥ ≤∗ r+ ‖φ+‖+ e−αQω

+
[T0 + T−1 ] + ‖φ‖2 ,

(7.21)

in which we have split w± = ŵ± + w̃±. Adding higher order terms does not change these estimates.
We are now ready to move on to the full system. We will use (6.28) to find the family {φ−j , φ

+
j }

in terms of the boundary conditions {Φ−j } and {Φ+
j }. To this end, we reformulate (6.28) as follows,

φ+
j = Φ+

j + ΠP (∞)

[
evω−j+1

w−j+1 + evω−j+1
u∗P (0)ψ

P
j+1

]
+ ΠP (∞)[ΠRs(ω−j+1,µ) + ΠRf (ω−j+1,µ) −ΠQ(−∞)]ψRj+1,

φ−j = Φ−j + ΠQ(−∞)

[
evω+

j−1
w+
j−1 + evω+

j−1
u∗Q(0)ψ

Q
j−1

]
+ ΠQ(−∞)[ΠSs(ω+

j−1,µ) + ΠSf (ω+
j−1,µ) −ΠP (∞)]ψSj−1.

(7.22)

We first set out to find the lowest order terms, i.e., we compute

{φ(1)−
j , φ

(1)+
j } = [D{φ−j , φ

+
j }](0)

(
{Φ−j }, {Φ

+
j }
)

= [I −K]−1({Φ−j }, {Φ
+
j }), (7.23)

for some linear operator K. We can use the estimate (7.21) to bound the components of K by∣∣K+
j ({c−}, {c+})

∣∣ ≤∗ r−j+1

∥∥c−j+1

∥∥+ r−j+1e
αPω

−
j+1e−αSω

+
j+1
∥∥c+j+1

∥∥
+ eαPω

−
j+1eαRω

−
j+1

∥∥∥ΠRs(ω−j+1,µ)c
−
j+1

∥∥∥
+ eαPω

−
j+1e−αSω

+
j+1

∥∥∥ΠSs(ω+
j+1,µ)c

+
j+1

∥∥∥
+ eαPω

−
j+1 [eα

f
Rω
−
j+1
∥∥c−j+1

∥∥+ e−α
f
Sω

+
j+1
∥∥c+j+1

∥∥]
+ eαPω

−
j+1e−αSω

+
j+1r+

j+1

∥∥c+j+1

∥∥ ,∣∣K−j ({c−}, {c+})
∣∣ ≤∗ r+

j−1

∥∥c+j−1

∥∥+ r+
j−1e

−αQω+
j−1eαRω

−
j−1
∥∥c−j−1

∥∥
+ e−αQω

+
j−1eαRω

−
j−1

∥∥∥ΠRs(ω−j−1,µ)c
−
j−1

∥∥∥
+ e−αQω

+
j−1e−αSω

+
j−1

∥∥∥ΠSs(ω+
j+1,µ)c

+
j−1

∥∥∥
+ e−αQω

+
j−1 [eα

f
Rω
−
j−1
∥∥c−j−1

∥∥+ e−α
f
Sω

+
j−1
∥∥c+j−1

∥∥]
+ e−αQω

+
j−1eαRω

−
j−1r−j−1

∥∥c−j−1

∥∥ .

(7.24)

Let us now introduce the scaling factors

φ̃+
j ∼ e−αPω

−
j+1φ+

j ,

φ̃−j ∼ eαQω
+
j−1φ−j .

(7.25)

In terms of these scaled variables, the operator K can still be bounded independently of the family
{ω`}`∈J ∗ , as long as ω` > Ω for all ` ∈ J ∗. We wish to invoke the general estimate (7.17) using
these scaled variables. Let us therefore split up K({Φ−}, {Φ+}) = {a−, a+}+ {b−, b+}, in which∥∥b−j ∥∥ ≤∗ r+

j−1

∥∥Φ+
j−1

∥∥ ,∥∥b+j ∥∥ ≤∗ r−j+1

∥∥Φ−j+1

∥∥ , (7.26)
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while the family {a−, a+} can be estimated using the scaled norm according to∥∥{a−, a+}
∥∥

sc
≤∗ S0, (7.27)

where we have introduced the quantity

S0 = supj∈J
{
eαRω

−
j

∥∥∥ΠRs(ω−j ,µ)Φ
−
j

∥∥∥+ e−αSω
+
j

∥∥∥ΠSs(ω+
j ,µ)Φ

+
j

∥∥∥
+ eα

f
Rω
−
j

∥∥Φ−j
∥∥+ e−α

f
Sω

+
j

∥∥Φ+
j

∥∥
+ eαRω

−
j [r−j + r+

j ]
∥∥Φ−j

∥∥+ e−αSω
+
j [r+

j + r−j ]
∥∥Φ+

j

∥∥
+ eαRω

−
j r+

j−1

∥∥Φ+
j−1

∥∥+ e−αSω
+
j r−j+1

∥∥Φ−j+1

∥∥}.
(7.28)

We now compute K({b−, b+}) = {e−, e+}+ {f−, f+} and obtain the bounds∥∥e−j ∥∥ ≤∗ r+
j−1r

−
j

∥∥Φ−j
∥∥ ,∥∥e+

j

∥∥ ≤∗ r−j+1r
+
j

∥∥Φ+
j

∥∥ ,
‖{f−, f+}‖sc ≤∗ S0.

(7.29)

Since the family {e−, e+} is now bounded componentwise by the family {Φ−,Φ+}, we may write∥∥∥φ(1)−
j − Φ−j

∥∥∥ ≤∗ r+
j−1

∥∥Φ+
j−1

∥∥+ e−αQω
+
j−1S0,∥∥∥φ(1)+

j − Φ+
j

∥∥∥ ≤∗ r−j+1

∥∥Φ−j+1

∥∥+ eαPω
−
j+1S0.

(7.30)

Adding the second order terms, we arrive at∥∥φ−j − Φ−j
∥∥ ≤∗ r+

j−1[
∥∥Φ+

j−1

∥∥+ ‖Φ‖2] + e−αQω
+
j−1 [S0 + ‖Φ‖2],∥∥φ+

j − Φ+
j

∥∥ ≤∗ r−j+1[
∥∥Φ−j+1

∥∥+ ‖Φ‖2] + eαPω
−
j+1 [S0 + ‖Φ‖2].

(7.31)

We are now finally in a position to estimate the error term. To this end, we write R̃j = R̃+
j +R̃−j

and represent the two parts in the following manner,

R̃−j =
∫ 0

ω−j
d−(ξ′)M−(ξ′, evξ′v−j , µ)dξ′ + 〈ev∗

ω−j
d−, φ−j − Φ−j 〉ω−j ,µ

+ 〈ev∗
ω−j
d−, [ΠR(ω−j ,µ) −ΠQ(−∞)]evω−j v

−
j 〉ω−j ,µ

− 〈ev∗
ω−j
d−, [ΠR(ω−j ,µ) −ΠQ(−∞)][Θ−j −Θ+

j−1]〉ω−j ,µ
+ 〈ev∗

ω−j
d−,ΠR(ω−j ,µ)Θ

−
j 〉ω−j ,µ,

R̃+
j =

∫ ω+
j

0 d+(ξ′)M+(ξ′, evξ′v+
j , µ)dξ′ − 〈ev∗

ω+
j

d+, φ+
j − Φ+

j 〉ω+
j ,µ

− 〈ev∗
ω+
j

d+, [ΠS(ω+
j ,µ) −ΠP (∞)]evω+

j
v+
j 〉ω+

j ,µ

+ 〈ev∗
ω+
j

d+, [ΠS(ω+
j ,µ) −ΠP (∞)][Θ+

j −Θ−j+1]〉ω+
j ,µ

− 〈ev∗
ω+
j

d+,ΠS(ω+
j ,µ)Θ

+
j 〉ω+

j ,µ
.

(7.32)

In order to complete our estimate, observe that ΠS(ω+
j ,µ)Θ

+
j ≤∗ ‖Θ‖

2, because the function qj+u+
j (µ)

is contained in the stable manifold of q∗
j+ 1

2
. Notice also that for some small constant ε > 0, we may

write d+(ξ) = O(e−(αS+ε)ξ) as ξ → ∞, since the characteristic equation det ∆+(z) = 0 associated
to the equilibrium q∗

j+ 1
2

has no roots in the strip 0 ≤ Re z ≤ αS . Putting everything together we
obtain the following result, which completes the proof of Theorem 2.2.

Lemma 7.1. Consider the setting of Theorem 2.2. For every j ∈ J , we have the following estimate
for the error term R̃j that is defined in (7.2),

R̃j ≤∗ e−αSω
j
+ [‖Θ‖2 + (r−j+1 + r+

j ) ‖Θ‖+ eαPω
−
j+1S0]

+eαRω
−
j [‖Θ‖2 + (r+

j−1 + r−j ) ‖Θ‖+ e−αQω
+
j−1S0].

(7.33)
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8 Derivative of the remainder term

The main goal of this section is to provide an estimate for the quantitiesDω`R̃j , for j ∈ J and ` ∈ J ∗.
Recalling the fixed point problem (7.15), together with the solution w = w(φ−, φ+, ω−, ω+) ∈W,
we set out to compute the derivatives Dφ±w and Dω±w. We start with the observation

Dω±w = [I −K]−1[Dω±K]w
+[I −K]−1Dω± [J0B0 + J1B1 + J2B2]

(
M−(w−),M+(w+)

)
.

(8.1)

Inspection of (6.20) yields the identities

[Dω−KψR ]w ≤∗ r−
∥∥ψR∥∥+ eαPω

− ∥∥ψP∥∥ ,
[Dω−KψP ]w ≤∗ eαRω

− ∥∥ΠRs(ω−,µ)ψ
R
∥∥+ eα

f
Rω
− ∥∥ψR∥∥ ,

[Dω+KψP ]w ≤∗ e−αSω
+ ∥∥ΠSs(ω+,µ)ψ

S
∥∥+ e−α

f
Sω

+ ∥∥ψS∥∥ ,
[Dω−KφQ ]w ≤∗ eαRω

− ∥∥ΠRs(ω−,µ)ψ
R
∥∥+ eα

f
Rω
− ∥∥ψR∥∥ ,

[Dω+KφQ ]w ≤∗ e−αSω
+ ∥∥ΠSs(ω+,µ)ψ

S
∥∥+ e−α

f
Sω

+ ∥∥ψS∥∥ ,
[Dω+KψS ]w ≤∗ r+

∥∥ψS∥∥+ e−αQω
+ ∥∥ψQ∥∥ .

(8.2)

Let us write Dw±0 = [I −K]−1[Dω±K]w. Utilizing the bounds (7.21) and performing a calculation
in the spirit of the previous section now yields the estimates

(Dw+
0 )ψR ≤∗ eαPω

−[
T+

0 + T+
1 + e−αSω

+
e−αQω

+
[T−0 + T−1 ] + e−αSω

+ ‖φ‖2
]
,

(Dw+
0 )ψP ≤∗ T+

0 + T+
1 + e−αSω

+
e−αQω

+
[T−0 + T−1 ] + e−αSω

+ ‖φ‖2 ,
(Dw+

0 )ψQ ≤∗ T+
0 + T+

1 + e−αSω
+
e−αQω

+
[T−0 + T−1 ] + e−αSω

+ ‖φ‖2 ,
(Dw+

0 )ψS ≤∗ r+ ‖φ+‖+ e−αQω
+

[T0 + T−1 ] + ‖φ‖2 .

(8.3)

Inserting this back into (8.1), we find the following estimate for the derivative Dω+w, where w =
(w−, w+, ψR, ψP , ψQ, ψS) is the solution of the fixed point problem (7.15),

‖Dω+ŵ−‖0 ≤∗ e−αSω
+

[e−αSω
+

+ eαRω
−

] ‖φ‖2 ,
‖Dω+w̃−‖−αR ≤∗ eαRω

−
eαPω

−
e−αSω

+ ‖φ‖2 ,
‖Dω+ŵ+‖0 ≤∗ e−αSω

+
[e−αSω

+
+ eαRω

−
] ‖φ‖2 ,

‖Dω+w̃+‖αS ≤∗ e−αSω
+
r+ ‖φ‖2 ,∥∥Dω+ψR

∥∥ ≤∗ eαPω
−[
T+

0 + T+
1 + e−αSω

+
e−αQω

+
[T−0 + T−1 ]

]
+ e−αSω

+
[e−αSω

+
+ eαRω

−
+ eαPω

−
] ‖φ‖2 ,∥∥Dω+ψP

∥∥ ≤∗ T+
0 + T+

1 + e−αSω
+
e−αQω

+
[T−0 + T−1 ] + e−αSω

+ ‖φ‖2 ,∥∥Dω+ψQ
∥∥ ≤∗ T+

0 + T+
1 + e−αSω

+
e−αQω

+
[T−0 + T−1 ] + e−αSω

+ ‖φ‖2 ,∥∥Dω+ψS
∥∥ ≤∗ r+ ‖φ+‖+ e−αQω

+
[T0 + T−1 ] + ‖φ‖2 .

(8.4)

Using a similar calculation, we also obtain

‖[Dφŵ
−](∆φ+,∆φ−)‖0 ≤∗ e−2αSω

+ ‖φ‖ ‖∆φ‖ ,
‖[Dφw̃

−](∆φ+,∆φ−)‖−αR ≤∗ eαRω
− ‖φ‖ ‖∆φ‖ ,

‖[Dφŵ
+](∆φ+,∆φ−)‖0 ≤∗ e2αRω

− ‖φ‖ ‖∆φ‖ ,
‖[Dφw̃

+](∆φ+,∆φ−)‖αS ≤∗ e−αSω
+ ‖φ‖ ‖∆φ‖ ,∥∥[Dφψ

R](∆φ+,∆φ−)
∥∥ ≤∗ ‖∆φ−‖+ e−αSω

+
eαPω

− ‖∆φ+‖+ e−αSω
+ ‖φ‖ ‖∆φ‖ ,∥∥[Dφψ

P ](∆φ+,∆φ−)
∥∥ ≤∗ ∆T0 + ∆T1 + [e−αSω

+
+ eαRω

−
] ‖φ‖ ‖∆φ‖ ,∥∥[Dφψ

Q](∆φ+,∆φ−)
∥∥ ≤∗ ∆T0 + ∆T1 + [e−αSω

+
+ eαRω

−
] ‖φ‖ ‖∆φ‖ ,∥∥[Dφψ

S ](∆φ+,∆φ−)
∥∥ ≤∗ ‖∆φ+‖+ eαRω

−
e−αQω

+ ‖∆φ−‖+ eαRω
− ‖φ‖ ‖∆φ‖ .

(8.5)
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These expressions can be used to determine the derivatives Dω`φ
±
j for j ∈ J and ` ∈ J ∗ using

the boundary conditions in (7.22). Let us therefore fix some j∗ ∈ J and determine the family
{b−j , b

+
j }j∈J that describes the derivatives of the family {φ−, φ+} with respect to ω+

j∗ up to first

order in ‖Φ‖, i.e.,
∥∥∥Dω+

j∗
φ±j − b

±
j

∥∥∥ ≤∗ ‖Φ‖2. Careful inspection of (7.22) shows that we must solve
the coupled system

b+j = B+
j + L+

j

(
b−j+1, b

+
j+1

)
,

b−j = B−j + L−j
(
b−j−1, b

+
j−1

)
,

(8.6)

in which the norms of L±j share the estimates for K±j given in (7.24), while the initial value B can
be bounded as∥∥∥B+

j − δjj∗Dω+
j∗

Φ+
j∗

∥∥∥ ≤∗ δj,j∗−1

[
eαPω

−
j∗
∥∥∥Dω+

j∗
ψPj∗
∥∥∥+ r−j∗

∥∥∥Dω+
j∗
ψRj∗
∥∥∥ ]∥∥B−j ∥∥ ≤∗ δj,j∗+1e

−αQω+
j∗ [
∥∥∥ψQj∗∥∥∥+

∥∥∥Dω+
j
ψQj∗
∥∥∥]

+ δj,j∗+1r
+
j∗ [
∥∥ψSj∗∥∥+

∥∥∥Dω+
j∗
ψSj

∥∥∥].

(8.7)

As in the previous section, a small number of applications of the operator family {L−j , L
+
j }, together

with the scaling (7.25), enables us to obtain an estimate on the solution to the coupled system (8.6).
We obtain ∥∥∥b+j − δjj∗Dω+

j∗
Φ+
j∗

∥∥∥ ≤∗ δjj∗r
−
j∗+1r

+
j∗

∥∥φ+
j∗

∥∥+ eαPω
−
j+1E,∥∥b−j ∥∥ ≤∗ δj,j∗+1[r+

j∗

∥∥∥Dω+
j∗

Φ+
j∗

∥∥∥+ r+
j∗

∥∥φ+
j∗

∥∥] + e−αQω
+
j−1E,

(8.8)

in which we have defined the quantity

E = E+
(j∗) = T j

∗

0 + T j
∗

1 + r+
j∗e

αRω
−
j∗+1

∥∥φ+
j∗

∥∥+ r−j∗e
−αSω+

j∗
∥∥φ+

j∗

∥∥
+ e−αSω

+
j∗
∥∥∥ΠSs(ω+

j∗ ,µ)Dω+
j∗

Φ+
j∗

∥∥∥+ e−α
f
Sω

+
j∗
∥∥∥Dω+

j∗
Φ+
j∗

∥∥∥
+ [e−αSω

+
j∗ + eαRω

−
j∗+1 ]r+

j∗

∥∥∥Dω+
j∗

Φ+
j∗

∥∥∥+ r−j∗e
−αSω+

j∗
∥∥∥Dω+

j∗
Φ+
j∗

∥∥∥ . (8.9)

Of course, similar estimates can be obtained for the derivatives with respect to ω−j∗+1. In order to
combine these estimates, we now fix `∗ ∈ J ∗ and introduce the following quantities for any ` ∈ J ∗,

|Φ`|1 =
∣∣∣Φ+
`− 1

2

∣∣∣+
∣∣∣Φ−
`+ 1

2

∣∣∣+
∣∣∣Dω`∗Φ+

`− 1
2

∣∣∣+
∣∣∣Dω`∗Φ−

`+ 1
2

∣∣∣ ,∣∣ΦS` ∣∣1,s =
∣∣∣ΠSs(ω`,µ)Φ+

`− 1
2

∣∣∣+
∣∣∣ΠSs(ω`,µ)Dω`∗Φ+

`− 1
2

∣∣∣ ,∣∣ΦR` ∣∣1,s =
∣∣∣ΠRs(−ω`,µ)Φ−`+ 1

2

∣∣∣+
∣∣∣ΠRs(−ω`,µ)Dω`∗Φ−

`+ 1
2

∣∣∣ ,
r` = r+

`− 1
2

+ r−
`+ 1

2
.

(8.10)

We also introduce the quantity S1, which should be seen as the sum of the quantities E+
(`∗− 1

2 )
+

E−
(`∗+ 1

2 )
, after insertion of the inequalities (7.31),

S1 = e−αSω`∗
∣∣ΦS`∗ ∣∣1,s + e−αRω`∗

∣∣ΦR`∗ ∣∣1,s
+ [e−α

f
Sω`∗ + e−α

f
Rω`∗ ] |Φ`∗ |1

+ [e−αSω`∗ + e−αRω`∗ ]r` |Φ`∗ |1
+ e−αRω`∗−1

∣∣ΦR`∗−1

∣∣
1,s

+ e−α
f
Rω`∗−1 |Φ`∗−1|1 + r`∗−1e

−αRω`∗−1 |Φ`∗−1|1
+ e−αSω`∗+1

∣∣ΦS`∗+1

∣∣
1,s

+ e−α
f
Sω`∗+1 |Φ`∗+1|1 + r`∗+1e

−αSω`∗+1 |Φ`∗+1|1
+ e−αSω`∗ e−αPω`∗S0 + e−αRω`∗−1e−αQω`∗−1S0

+ e−αRω`∗ e−αQω`∗S0 + e−αSω`∗+1e−αPω`∗+1S0

+ ‖Φ‖2 .

(8.11)
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We are now ready to put everything together. Using (8.8) together with the definitions above
and inserting the second order terms in the appropriate places, we obtain the estimates∥∥∥Dω`∗ [φ+

`∗− 1
2
− Φ+

`∗− 1
2
]
∥∥∥ ≤∗ e−αPω`∗S1 + r−

`∗+ 1
2
|Φ`∗ |1

+ r−
`∗+ 1

2
[e−αQω`∗S0 + r+

`∗− 1
2
e−αPω`∗S0] + ‖Φ‖2 ,∥∥∥Dω`∗ [φ−

`∗+ 1
2
− Φ−

`∗+ 1
2
]
∥∥∥ ≤∗ e−αQω`∗S1 + r+

`∗− 1
2
|Φ`∗ |1

+ r+
`∗− 1

2
[e−αPω`∗S0 + r−

`∗+ 1
2
e−αQω`∗S0] + ‖Φ‖2 ,∥∥Dω`∗φ

+
j

∥∥ ≤∗ eαPω
−
j+1S1, for all j 6= `∗ − 1

2 ,∥∥Dω`∗φ
−
j

∥∥ ≤∗ e−αQω
+
j−1S1, for all j 6= `∗ + 1

2 .

(8.12)

With these estimates in hand, we can move on and analyze (7.32) in order to obtain estimates
for the quantities Dω`∗ R̃j . Care has to be taken to distinguish the terms in (7.32) that depend
directly on ω`∗ , from those that only depend on this quantity through the family of boundary terms
{φ−, φ+}. Using methods similar to those employed here to estimate the derivatives

∣∣∣DµR̃j
∣∣∣ and∣∣∣DµDω∗`

R̃j
∣∣∣, we obtain the following result.

Lemma 8.1. Consider the setting of Theorem 2.2 and recall the error terms (7.2). Fix an `∗ ∈ J ∗
and let j ∈ J be such that j 6= `∗ ± 1

2 . Then the following estimates hold for the error terms {R̃},∣∣∣Dω`∗ R̃`∗− 1
2

∣∣∣ ≤∗ ∣∣∣R̃`∗− 1
2

∣∣∣+ e−αSω`∗ [‖Θ‖+ r`∗ ] |Φ`|1
+ e−αSω`∗ e−αPω`∗S1

+ e−αRω`∗−1e−αQω`∗−1S1,∣∣∣Dω`∗ R̃`∗+ 1
2

∣∣∣ ≤∗ ∣∣∣R̃`∗+ 1
2

∣∣∣+ e−αRω`∗ [‖Θ‖+ r`∗ ] |Φ`|1
+ e−αRω`∗ e−αQω`∗S1

+ e−αSω`∗+1e−αPω`∗+1S1,∣∣∣Dω`∗ R̃j
∣∣∣ ≤∗ e−αSω

+
j eαPω

−
j+1S1 + eαRω

−
j e−αQω

+
j−1S1.

(8.13)

In addition, for all j ∈ J we have the estimates∣∣∣DµR̃j
∣∣∣ ≤∗ |µ− µ0| e−2αω + e−3αω,∣∣∣DµDω∗`
R̃j
∣∣∣ ≤∗ |µ− µ0| e−2αω + e−3αω,

(8.14)

in which α and ω are defined as in Theorem 2.2.

We are now ready to consider the orbit-flip bifurcation for (2.1). An application of Theorem 2.2
to the setting of Theorem 2.3 yields a finite dimensional bifurcation equation, that is very similar
to the one obtained in Chapter 4 of [16]. The calculations contained in that chapter carry over to
our setting and can hence be used to establish Theorem 2.3.
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