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Abstract

We extend Lin’s method for use in the setting of parameter-dependent nonlinear func-
tional differential equations of mixed type (MFDEs). We show that the presence of
M-homoclinic and M-periodic solutions that bifurcate from a prescribed homoclinic
connection can be detected by studying a finite dimensional bifurcation equation. As
an application, we describe the codimension two orbit-flip bifurcation in the setting of
MFDEs.
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1 Introduction

The main purpose of this paper is to provide a framework that facilitates the detection of solutions
to a parameter-dependent nonlinear functional differential equation of mixed type

() = Glae, ), (1.1)

that bifurcate from a prescribed homoclinic or heteroclinic connection. Here z is a continuous C"-
valued function and for any £ € R the state ¢ € C([Tmin, Tmax], C™) is defined by z¢(0) = z(£ + 0).
We allow rpin < 0 and rpax > 0, hence the nonlinearity G may depend on advanced and retarded
arguments simultaneously. The parameter p is taken from an open subset of RP, for some integer
p=1

The fact that travelling wave solutions to lattice differential equations are described by functional
differential equations of mixed type (MFDESs) forms one of the primary motivations for this paper.
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As exhibited in detail in [8], lattice differential equations have many modelling applications in a
wide range of scientific disciplines. As a consequence they are attracting a considerable amount of
interest, both from an applied as well as a theoretical perspective. One of the driving forces in these
investigations is the desire to apply the powerful tools that are currently available for ODEs to
the infinite dimensional setting of (1.1). The constructions in [10, 11] concerning finite dimensional
center manifolds, which describe the behaviour of solutions to (1.1) in the vicinity of equilibria and
periodic solutions, should be seen in this light.

In the present work we continue this approach, by studying solutions to (1.1) that remain orbitally
close to a prescribed homoclinic or heteroclinic solution ¢ that solves (1.1) at u = po. We will be
particularly interested in the construction of M-homoclinic and M-periodic orbits, which loosely
speaking wind around the principal orbit ¢ exactly M times, before converging to an equilibrium or
repeating their pattern. More precisely, we will fix a Poincaré section that intersects the trajectory
of ¢ at go in a transverse fashion and study solutions that pass through this section M times. We
will show that for p sufficiently close to pg, one may construct solutions that satisfy these winding
properties, up to M possible discontinuities that occur exactly at the Poincaré section. Moreover, our
construction will force these jumps to be contained in some finite dimensional subset of this section.
This crucial reduction allows us to search for M-homoclinic and M-periodic orbits by studying the
roots of M finite dimensional bifurcation equations, that effectively measure the size of the jumps.

This construction is known as Lin’s method and was originally developed by Lin [13] in order to
study systems that depend upon a single parameter. Sandstede generalized the method in such a
way that bifurcations with higher codimensions could also be incorporated [16]. Our approach here
should be seen as a subsequent generalization of this latter framework to the infinite dimensional
context of (1.1). In addition, we will show that the bifurcation equations that describe the size of the
jumps have a similar asymptotic form as those derived for the ODE version of (1.1). This provides
a bridge that will allow classical bifurcation results obtained for ODEs to be directly lifted to the
mixed type functional differential equation (1.1).

We mention here that very recently Lin’s method was used to study homoclinic solutions to a
reversible lattice differential equation, in the neighbourhood of a prescribed symmetric homoclinic
connection [3]. The approach in [3] however cannot be used to detect bifurcating periodic solutions.!
In addition, the choice to use the Hilbert space C" x L2([rmin, "max), C") as a state space for (1.1)
causes the nonlinearity to have a domain and therefore requires the use of a proper functional-analytic
setup. We prefer to avoid such complications and therefore choose to work with the traditional state
space C([rmin, "max); C™). This will enable us to stay very close to the finite dimensional framework
developed in [13, 16] and should considerably ease the application of our results.

Historically, the primary motivation for the work by Lin and Sandstede mentioned above, was
the classification of the bifurcations that homoclinic solutions to generic ODEs with one or two
parameters may undergo. In a sequence of papers, Shilnikov [17, 18, 19, 20, 21, 22| presented an
alternative for generic ODE versions of (1.1) with p = 1. In particular, the ODE either admits
precisely one branch of large-period periodic solution that bifurcates from the homoclinic orbit ¢ for
> o or u < pig, or else admits symbolic dynamics for all o sufficiently close to pg. The existence
of the unique periodic orbit was generalized to semilinear parabolic PDEs and delay equations by
Chow and Deng [1] using semigroup techniques. Sandstede lifted the result concerning the presence
of symbolic dynamics to parabolic PDEs that have a sectorial linear part [16].

According to Yanagida [23], the generic non-resonant bifurcations of codimension two that a
hyperbolic homoclinic solution to an ODE may undergo, are the inclination-flip and the orbit-flip bi-
furcations. The former of these has been analyzed by several authors [7, 12] using Lyapunov-Schmidt
techniques, that unfortunately break down when studying the orbit-flip bifurcation. However, em-
ploying the adaptation of Lin’s method discussed above, Sandstede obtained a general description of
this bifurcation for ODEs in [16]. In Section 2 we will use our bridge to lift this result and characterize
the orbit-flip bifurcation for (1.1).

1This restriction was lifted in a sequel [4] that appeared simultaneously with the present paper.



The first obstacle that needs to be overcome in any bifurcation analysis involving MFDEs, is that
the linearized problems one encounters are ill-posed and therefore do not generate a semiflow. It is
known that exponential dichotomies form a very powerful tool when dealing with ill-posed problems,
since they split the state space into separate parts that do admit a semiflow. The existence of
such exponential splittings for parameter-independent homogeneous linear MFDEs, was established
independently and simultaneously by Verduyn Lunel and Mallet-Paret [15] on the one hand and
Hérterich and coworkers [6] on the other, using very different methods.

A second obstacle is that there is no immediate way to write down a variation-of-constants
formula that solves inhomogeneous MFDEs. This is caused by the fact that the inhomogeneity will
simply be a C™-valued function, while the projections associated to the exponential dichotomies
act on the state space C(["min, max], C™). Such a difficulty was also encountered in the study of
retarded differential equations, i.e. (1.1) with rmax = 0. It was resolved by the development of so-
called sun-star techniques [2], which allow both the system under consideration and its relevant
spectral projections to be lifted to the appropriate extended state space C™ x L°°([rpin, 0], C").
Unfortunately, these constructions are based on a semigroup approach and therefore break down
when Tpin < 0 < Tmax, due to the ill-posedness mentioned above. In view of this fact, a third obstacle
arises when one wishes to study systems that depend on a parameter, since robustness theorems for
exponential dichotomies are generally established using a variation-of-constants formula.

In previous work [9, 10, 11], the absence of a variation-of-constants formula was circumvented
by utilizing variants of the Greens function that was constructed by Mallet-Paret for autonomous
MFDEs [14]. Continuing in this spirit, we will use the Fredholm theory developed in [14] for nonau-
tonomous MFDEs to construct inverses for inhomogeneous MFDEs on half-lines. By carefully com-
bining these inverses with the exponential splittings developed in [15], we are able to construct
exponential dichotomies for parameter-dependent MFDEs without using a variation-of-constants
formula. In addition, this setup will allow us to obtain precise estimates on the speed at which the
projections associated to these dichotomies approach the limiting spectral projections at +oo. We
will also be able to isolate the portion of the state space that corresponds to a specific eigenvalue
of one of these spectral projections. These results can be found in Sections 3 to 5 and provide the
machinery that we require to construct the bridge between ODEs and MFDEs.

In Section 2 we state our main results, which describe Lin’s method in the setting of MFDEs
and give an explicit expression for the leading order terms in the bifurcation equations. In addition,
we characterize the orbit-flip bifurcation for MFDEs. In Section 6 we construct the candidate M-
homoclinic and M-periodic orbits, that satisfy (1.1) up to M jumps. Our approach in that section
broadly follows the presentation in [16], but we avoid the smooth coordinate changes that are used
there, since these are often problematic in an infinite dimensional setting. Instead, these coordinate
changes are only applied after the problem has been reduced to a finite dimensional one. Finally, in
Sections 7 and 8 we obtain estimates on the size of the error that is made if one only considers the
leading order terms when measuring the size of the M jumps.

2 Main Results

Consider for some integer N > 0 the general nonlinear functional differential equation of mixed type

2'(§) = G(@(§ + 7o), - w(€+rw), 1) = Glae, p), (2.1)

in which z should be seen as a mapping from R into C" for some n > 1. The shifts r; € R may
have either sign and we will assume that they are ordered as g < ... < ry, with 7o < 0 and
ry > 0. Introducing ryin = 79 and rpax = 7, we write X = C([rmin, "max), C™) for the state space
associated to (2.1). The state of a function = at £ € R will be denoted by xz¢ € X or alternatively
evex € X and is defined by z¢(0) = (£ +0) for rmin < 0 < riyax. The parameter 4 is taken from an
open subset U C RP for some integer p > 1. For convenience, we will use both of the representations



for G that were introduced in (2.1) interchangeably throughout the sequel, but the details should
be clear from the context.

We will need the following assumptions on the nonlinearity G. We remark that the parameter-
independence of the equilibria is not a real restriction, as this can always be achieved by means of
a change of variables.

(HG) The nonlinearity G : X x U — C" is C**2 smooth for some integer k£ > 2. In addition, it
admits D distinct equilibria ¢* € C™, which we label as qa) through q*D) These equilibria
do not depend on the parameter u, i.e., we have G( () i) = 0 for all 4 € U and all integers
1<i<D.

It is important to understand the linearizations of (2.1) around these equilibrium solutions. To this
end, we define L) (1) = D1G(q(;, ) and consider the homogeneous linear MFDE

2/ (§) = LY (p Z AP ()€ + 7)), (2.2)
Associated to this linear MFDE one has the characteristic matrix
AD (2, p) =21 — LD (p)e* = 21 — Z A (e (2.3)

We will need the following assumption on the linearizations, which basically states that all equilibria
are hyperbolic.

(HL) For all integers 1 < i < D and all u € U, the characteristic equation det A®(z, 1) = 0
admits no roots with Rez = 0.

Now let us assume that for u = pg, equation (2.1) has a heteroclinic solution ¢ that connects the
equilibria ¢* and ¢} . Inserting () = ¢(&) + v(&) into (2.1), we find the variational MFDE

Ul(g) = DIG(QE’MO)vﬁ + R(E, Ug,,u), (2'4)

which is no longer autonomous. Associated to the linear part of this equation we define the operator
A:WE(R,C") — L) (R,C") that is given by

loc
N
[Av](§) = v'(§) — D1G(ge, pro)ve = v'( ZAy v(€+15), (2.5)
7=0

with 4;(§) = DjG(q(é—i—To), ooy q(E+rn), ,uo). It is possible to define an operator A* : W, I(R C™) —

loc

L{ (R,C") that can be interpreted as an adjoint for A under suitable conditions. This adjoint is
given by
N
[Aw](&) = w'(€) + ) Aj(€ —ry) w(€ — 7). (2.6)
3=0

We will write Y = C([~7max, —7min], C"*) for the state space associated to the adjoint (2.6) and evg
for the associated evaluation operator, which now maps into Y. The coupling between A and A* is
provided through the Hale inner product, which is given by

(1, ) = ¥ Z / B0 — 1) A (6 + 0 — r;)6(0)do, (27)

for any ¢ € X and ¢ € Y. The followmg condition on the operator A ensures that the Hale inner
product is nondegenerate, in the sense that if (1, ¢)¢ = 0 for all ¢ € ¥ and some ¢ € X, then ¢ = 0.
A proof for this fact can be found in [15].



(HB) The matrices Ag(¢) and Ay (&) are nonsingular for every & € R.

Let Z C R be an interval. To state our results, we use the following family of Banach spaces,
parametrized by 1 € R,

BC,(I,C") = {x € O(Z,C") | ||zl], := supeer e ™ ()] < oo} . (2.8)

We also need to consider the finite dimensional kernels

K b€ BCy(R,C") | Ab =0},
K* = {de BCy(R,C")|A*d=0}.

(2.9)

Let us write Xo = {¢ € X | ¢ = by for some b € K} and choose X in such a way that X = Xa Xo.
In addition, we write Yo = {¢ € Y | ¥ = dy for some d € K*} and define the space

X, ={peX | d)=0foralye Y} (2.10)

We note that X 1 C X is closed and of finite codimension, which allows us to fix a finite dimensional
complement I" and write X = Xod X, ¢ T.

Proposition 2.1. Consider the nonlinear equation (2.1) and suppose that (HG), (HL) and (HB)
are satisfied. There exists a small neighbourhood U' C U, with ug € U’, a small constant € > 0 and
two C**t1-smooth maps u~ : U — BC+€((—oo,rmaX],C”) and ut : U — BC,E([rmin,oo),(C”),
such that the following properties are satisfied.

(i) For any p € U’, the function (&) = q(§) +u~ (u)(§) satisfies the nonlinear equation (2.1) for
all £ < 0. In addition, the function x(&) = q(&) +ut(u)(€) satisfies (2.1) for all € > 0.

(it) For all u € U’, we have the identities

evou (u) € X, @,

2.11
evout(u) € X, T, (2.11)
(iii) For all p € U', we have £ () := evou™ (u) —evou™t(u) € T.
(iv) For any d € K*, we have the Melnikov identity
Dyl{evod, € (1))olju=po = / (&) D2G(qe, po)ds’- (2.12)

These maps are locally unique, in the sense that there exists § > 0 such that any pair (a™,u7)
that satisfies (i) through (iii) for some p € U’ and also has ™ € BCoy([rmin,0),C"), ™ €
BCy((—00, max), C*) and ||a*||, < 6, must satisfy u™ = u™(p) and &~ = u™(p).

We remark that the condition (HB) ensures that the Hale inner product is nondegenerate, which
means that the inner product appearing in (2.12) is a valid way of measuring the gap between the
local stable and unstable manifolds of (2.1). If one is merely interested in studying heteroclinic orbits
that bifurcate from a prescribed heteroclinic connection, then Proposition 2.1 already reduces this
problem to a finite dimensional one. Indeed, item (iii) implies that one has to search for the roots
of a C**1-smooth function defined on T'.

For the purpose of this paper however, let us consider a family of heteroclinic connections {g; } je7,
in which J C Z is a possibly infinite set of subsequent integers. We emphasize here that these
connections need not be distinct, thus any heteroclinic connection can appear in the family an
arbitrary number of times. We write J* C Z + % for the set of half-integers J* = {j £ %}jej, that



will be related to the boundary conditions that tie the connections together. In particular, we will
assume that the family {g;};cs connects the equilibria {g} }scs~, i.e.,

(dm q;(8) = gjay- (2.13)

Our aim is to construct solutions x to (2.1) that subsequently intersect the Poincaré sections evog; +

)?(f) +TU) close to evog; at prescribed times T;. To this end, we look for solutions to (2.1) that can
be written as

(T4 = GO+ WO+ WO @ e €Sty
2(Tj+€) = (&) +uf (W) +v (1),  rmin <& LW + Tmax,
in which we will take w;-r =-w; | = w1, for some family {wy}eec s+ that has Tj1 —T; = 2wy 1,

wherever this is defined. If 7 is finite, i.e., J = {1,... , M}, then we can supply boundary conditions
by requiring either lime_,_ o 2(§) = q”;‘ and limg o 2(§) = qj‘wr 1 if we are looking for a heteroclinic
connection or ev ST =€V 4T if we are interested in periodic orblts

The main result of thls paper shows that if the prescribed crossing times 7 are sufficiently far
apart, the search for solutions z of the form (2.14) is equivalent to the search for roots of a smooth
function defined on the collection of finite dimensional spaces {T'W)} ;¢ 7.

Theorem 2.2. Consider the nonlinear equation (2.1) and suppose that (HG), (HL) and (HB) are
satisfied. Furthermore, consider a family of heteroclinic connections {q;};jcy that satisfies (2.13).
There exists an > 0 and an open neighbourhood U’ C U, with puo € U’, such that for any
family {we}tec 7+ that has wy > Q for all £ € J*, there exist two families of functions vy U —
C([wj —&-rmlmrmaxL(C”) and vj U — C([rmm,wj + Pmax), C ), defined for j € J, that satzsfy the
following properties.
(i) For any p € U’ and j € J, the function x(§) = q;(§) + u; (u)(§) + v; (1)(§) satisfies the
nonlinear equation (2.1) for allw; < & < 0. In addition, the function x(§) = qj(«f)—l—u;r(u)(f)—l—

v;-r(f) satisfies (2.1) for all 0 < ¢ < wj.

(ii) For any p € U’ and any j € J, we have evov; (1) € )/(\'(f) ® TV and similarly evov;'(,u) €
XV oro).
(i) For any p € U and j € J, the following boundary conditions are satisfied,

¥ V() — v (1) = vl +uf ()] — v lgo bupn () (215)
If the family J is finite with M elements and —oco < w; = —w}\t[, then vy, should be read

as vy . If however wj = —oo and wAJCI = o0, then (2.15) holds for all 1 < j < M and one has
the additional limits

lime oo vy (u)() = 0,  limg oo vy () (&) 0. (2.16)
(iv) For any p €+U’ and any j € J, we have &(u) € TW, in which &;(u) denotes the gap
evolvy (1) — v (1)].

The two families {UJi }ieg are locally unique in a sense similar to the one described in Proposition

2.1. In addition, these functions vj-[ depend C*-smoothly on u, while the gaps &; depend C*-smoothly
on the pair (u, {we}ecg+). Finally, for any d € K* and j € J, we can estimate &;(p) according to

(evod, & ()o = (eviidiev — lgj +uyp (1) — i ]),

<Jevw;d,evw+ [gj-1 +uj_ (1) — ¢} _ (2.17)

4
J
1
2

Do + Ry



The error term R; enjoys the following estimate, for some positive constants Cy and Cs,
Rj < levid| [Cr | — pol e 4 Coe™3]. (2.18)

Here we have introduced w :_mingej*{wg}, while o > 0 is sufficiently small to ensure that the
characteristic equations det Az = 0 have no roots with |Re z| < a for all 1 <i < D.

We note here that sharper estimates for the remainder terms R; can be found in Sections 7
and 8, where we also provide estimates on the derivatives of R; with respect to yu and the family
{we}eeg+. In combination with these estimates, Theorem 2.2 allows bifurcation problems for the
infinite dimensional system (2.1) to be treated on a similar footing as bifurcation problems for
ODEs.

The orbit-flip bifurcation

To illustrate the application range of Theorem 2.2, we lift a result obtained by Sandstede [16] that
describes the homoclinic orbit-flip bifurcation for ODEs. We proceed by stating the assumptions on
the system (2.1) that we will need.

(OF1) The nonlinearity G is C**2-smooth with k£ > 2. The parameter space U is two dimensional
and contains the origin, i.e., 0 € U C R?. The nonlinear differential equation (2.1) has an
equilibrium at z =0 for all p € U.

(OF2) There exists a homoclinic solution ¢ to (2.1) at x4 = 0 that satisfies limg_ 4 ¢(§) = 0.
The kernel K = K(A) € BCy(R,C™) associated to the linearization (2.5) of the nonlinear
equation (2.1) around this orbit ¢, is one dimensional and satisfies

K = span{q'}. (2.19)

We remark here that the Fredholm theory developed by Mallet-Paret [14], which is recalled here
in Section 3, now implies that the kernel * = KC(A*) associated to the adjoint of the linearization
(2.5) is also one dimensional. In particular, for some d € BCy(R,C™) we may write

K* = span{d}. (2.20)

(OF3) There exist constants 77{ < 0 and n_{ > 0, such that for every p € U, the characteristic
equation det A(z, 1) = 0 associated to the equilibrium of (2.1) at « = 0 has precisely two
eigenvalues z = Ay (p) in the strip nf < Rez < ni. These eigenvalues are simple roots of
the characteristic equation and there exist constants n3 such that the following inequalities
are satisfied for all y € U,

nl <A (n) <n® <0<l <Ay(w) <nl. (2.21)

Throughout the sequel we will often use the shorthands AL = A1 (0). The spectral splitting in (OF3)
ensures that we can decompose the state spaces X and Y as

X:MC(#)QBM/\JN)@M/\HM)’ Y:Mz@Mi)\f@M*,Aw (2.22)

in which M, (,,) are the one dimensional eigenspaces associated to the eigenvalues A+ (1) and M. (u)
is a closed complement, while the starred spaces are defined similarly. The spectral projections
m,, () and 11 Me,  onto these eigenspaces can be written in terms of the Hale inner product [5].

More precisely, there exist ¥4 () € Y and ¢4 (u) € X such that
HM,\i(,L)(b = <wi(ﬂ)v (b)oo,u(bi(,u)v HM**)‘:!: '(/) = <'(/)? ¢i>oo,p,’(/}i7 (223)



again with the shorthands 1+ = ¥+ (0) and ¢+ = ¢+(0). Let us now consider the functions u™*(u)
introduced in Proposition 2.1, together with the jump £*°(u). We also need to introduce the functions
®y : U’ — R given by

Bo(u) = lmeioo e F 0 (1), ove (g + ut (1)) oo (2.24)

In a similar fashion we define the scalars
DL = limgioo 4 (evid, Pi)ro00- (2.25)

Using arguments very similar to those given in [14, Section 7], one may show that both ®, depend
C*-smoothly on .

(OF4) We have the identities ®4(0) = 0, ®_(0) # 0 and ®% # 0. In particular, ¢ approaches

its limit in forward time at an exponential rate faster than 77{ , but behaves generically as
¢ — —o0, while d behaves generically at both 4-oc0.

(OF5) The Melnikov integral [~ d(¢')*D2G(ger,0)dé’ € R? and the derivative [D®,](0) € R?
are linearly independent.

This condition allows us to redefine the coordinates on the parameter space U to ensure that

pr = @y (p1,p2),
e = (d €% (s ). (2.26)

In the event that A, > —77{ we need to strengthen the condition (OF3) and give a more detailed
description of the negative part of the spectrum associated to the limiting equation.

(OF6) There exist constants n'l <nf <0and 77-{ > 0 such that for all p € U, the characteristic
equation det A(z, u) = 0 associated to the equilibrium of (2.1) at = 0 has precisely three
eigenvalues z = Ay(p) and z = A (1) in the strip 'l < Rez < ni. These eigenvalues
are simple roots of the characteristic equation and there exist constants n7 such that the
following inequalities are satisfied for all y € U,

T < M () <nf <x () <> <0<l <A (p) <nl. (2.27)

Writing @i and ®*7 for the quantities associated to this eigenvalue M that are analogous
to those defined for AL in (2.24) and (2.25), we have @i(O) #£0and @ +£0.

After all these preparations, we are almost ready to apply Theorem 2.2 and describe the orbit-flip
bifurcation for functional differential equations of mixed type. It merely remains to define the type
of solutions to (2.1) in which we are interested. To this end, consider any pair of positive constants
(6,9), where ¢ should be seen as small and 2 as large. Let us consider a solution z to (2.1) that
satisfies the limits lime_, 4+ 2(§) = 0. Suppose that there exist exactly M distinct values {¢; }Jj\il for

which eve, @ € evoq + XJ_ + T, with ||ev§jx — evqu < 4. Suppose furthermore that x remains J-close
to g, in the sense that there exists a nondecreasing function j, : R — {1,... , M} with j.(§;) = j
such that Hevgv — ev5_5j*(§)qH < 6 for all £ € R. Finally, suppose that for any pair 1 < ji,jo < M,
we have |£;, —&;,| > Q. Then we will refer to = as a (4,2, M)-homoclinic solution. Similarly, let us
consider a periodic solution z to (2.1) with minimal period w. If  also satisfies the conditions above,
where the values &; should now be interpreted modulo w, then we will call  a (4,2, M)-periodic
solution.

Theorem 2.3. Consider the nonlinear equation (2.1) and assume that the conditions (OF1) through
(OF5) and (HB) are satisfied, with A, # —A_. In the event that Ay > —n?, assume furthermore

that (OF6) is satisfied and that Ay # —\.. Then upon fizing § > 0 sufficiently small and Q > 0
sufficiently large, one of the following three alternatives must hold.



(A) (Homoclinic Continuation) We have Ay < —A_. For all sufficiently small pairs (p1, pi2), with
to > 0, equation (2.1) admits precisely one (8,2, 1)-periodic solution. For all sufficiently small
|pe1], there exists precisely one (6, 1)-homoclinic solution to (2.1) with us = 0. For all integers
M > 2, there are no (8,9, M)-periodic and (6, Q, M)-homoclinic solutions to (2.1).

(B) (Homoclinic Doubling) We have —A_ < A < —n’ . Excluding the line py = 0, there are two
curves that extend from the origin in parameter space on which codimension one bifurcations
occur. More precisely, there is a branch of (8,9, 2)-homoclinic solutions that passes through
the origin and a curve emanating from the origin at which a period-doubling bifurcation takes
place, turning (9,2, 1)-periodic solutions into (9,2, 2)-periodic solutions.

(C) (Homoclinic Cascade) We have —\. < \,.. For every M > 1 there is a branch of (8,w, M)-
homoclinic solutions to (2.1) that emerges from the origin in parameter space. In addition,
branches of codimension-one period-fold and period-doubling bifurcations emerge from the ori-
gin and there is an open wedge in parameter space in which (2.1) admits symbolic dynamics.

We refer to [16] for a more graphic description of these three bifurcation scenarios.

3 Preliminaries

In this section we develop some preliminary results for the linear inhomogeneous system

() = L(&)ze + f(€) ZA 2(§+ 1) + f(8), (3.1)

in which we take x € W1H°(R,C") and f € L*(R,C"). We will assume throughout this section
that the complex n x n matrix valued functions A; are continuous and that the shifts r; are ordered
according to g < ... < 7y, again with 7g < 0 and ry > 0. Our main goal here is to develop a
method to solve (3.1) on half-lines in weighted function spaces, which will allow us to construct
exponential dichotomies for linear MFDESs in the sequel. To prepare for this, we state the Fredholm
properties for (3.1) that were obtained by Mallet-Paret [14] and show how (3.1) transforms under
exponential shifts.

The system (3.1) is said to be asymptotically hyperbolic if the limits Aji = lime_ 100 A;(§) exist
for all integers 0 < j < N, while the characteristic equations det A*(z) = 0 associated to these
limiting equations do not have any roots on the imaginary axis. Here we have defined

N
(2) =2l - ZAJie”j. (3.2)
We recall the linear operator A : W1 (R, C") — L*°(R,C") associated to (3.1) that is given by

[Az](¢ AJ z(E+1j), (3.3)

QMZ

together with the formal adjoint A* : Wh>°(R,C") — L*°(R,C") that acts as

N

[A*Y)(€) =y () + D Aj(§ —ry)"y(& — 1)) (3.4)

j=0

The following important result, that describes the relation between the Fredholm operators A and
A*, is due to Mallet-Paret and can be found in [14].



Theorem 3.1. Assume that (3.1) is asymptotically hyperbolic. Then both A and A* are Fredholm
operators, with Fredholm indices given by

ind(A) = —ind(A*) = dim K(A) — dim K£(A™"). (3.5)

Every element in the kernels IC(A) and IC(A*) decays exponentially as & — Fo0o, while the relation
between A and A* is given by the following identities,

3
2
I

he L®(R,C) | [ d(&)*h(¢')de' =0 for every d € IC(A*)} ,

s (3.6)
he L®(R,CM) | [ b(&)*h(&)de' = 0 for every b e /C(A)} .

2
=
I

In the special case that the functions A;(§) do not depend on &, the operator A is invertible and there
exists a Greens function G : R — C"*" such that

A6 = [ T G- ) f(Ee (3.7)

The Fourier transform of the function G is given by é(r]) = A~L(in), which implies that G decays
exponentially at both +oo.

For our purposes in this paper, we will need to study the action of A on function spaces with
exponentially weighted norms. We therefore introduce the notation e, f = e f(-) for any v € R and
f €Ll _(R,C"). In addition, we introduce the family of exponentially weighted spaces

loc

LERCY) = {z€Ll(R,C")|e que L°(R,C")},

loc
W#“’O(R, c™) {z e Ll (R,C")|e_pyz € WL>(R,C")},

loc

(3.8)

with norms given by [|lz]| . = [[e—y[ . and similarly [|z]|y1e = le—pz|[y.0-
n
To study how A behaves under the action of e,, let us define the shifted operator A,, : W (R, C")
L>(R,C") that acts as

N
[Ayz)(€) =2/ (&) = nz(&) = > Aj( eI z(€ +15). (3.9)

j=0

In addition, we write A,jf for the characteristic equations associated to the shifted operator A,,. It is
not hard to check that

Aeyz = e A_yz,

) = A (310

Using the definition of the adjoint A* in (3.4), one may also easily conclude that we have the identity
(A,)" = (A")-. (3.11)
In this fashion we can define the Fredholm operator A : W,»>°(R,C") — L;°(R,C™) by means of
Ay =e€q0A_poe . (3.12)

In a similar fashion we define A’(kn) : Wnl"x’(R7 C") — L*(R,C") by
Al =eno(A")_yoe_y. (3.13)

The next proposition provides the appropriate generalization of Theorem 3.1.

10



Proposition 3.2. Assume that (3.1) is asymptotically autonomous and in addition that the char-
acteristic equations det A*(z) = 0 have no roots with Rez = 1. Then both A, : W, >(R,C") —

Ly (R,C") and A7, Wi;])o (R,C") — L=, (R,C") are Fredholm operators, with
ind(A () = —ind(A]_,)) = dim K(A,) — dim K(A]_,)). (3.14)

For every element b in K(A(,)), the function e_,b decays exponentially at both +oo, while for any d
n IC(A?_T])) we have that e,d decays exponentially at both +-00. The relation between A, and A’("_n)
is given by the following identities,

R(Awy) = {heL=®,C)| [ d€)h(E)=0 for every d IC(AZ‘_n))} , 1)
R(AL,)) = {heL®(R,C") | [ bE)h(E) =0 for every b € K(A) '
Proof. The result follows using Theorem 3.1 and the identities
KAw) = eK(A_y),
’C(A?fn)) = e K((A")y) = e K((A—)"), (3.16)
R(Aw) = enR(A_y),
RN, = eoyR((A),) = ey R(A_,)"),
together with the identities Ajfn(z) = A%(z+ 7). O

We now introduce parameter dependence into our main linear equation (3.1). In particular, we
study the system

N
2(§) = L(& mhwe + F(€) = D Aj(& ma( +715) + £ (), (3.17)
j=0
in which the parameter p is taken from an open set U C RP for some p > 1. We write A(u) :
Whe(R,C") — L*(R,C") for the parameter-dependent version of (3.3). Throughout the remainder
of this section, we will assume that A depends C*-smoothly on the parameter p € U for some integer
k>0.

We set out here to define a solution operator for (3.17) on half-lines that also depends smoothly
on the parameter p, in the neighbourhood of some fixed parameter pg € U. To this end, let us
introduce the shorthands K = K(A(uo)) and R = R(A(uo)). Consider two arbitrary complements
Kt for K€ and R+ for R, which allow us to write

Whe(R,C") = Kaekt, L®R,C") = RaR. (3.18)

The projections associated to this splitting of L>°(R,C") will be denoted by 7w and mx.. Note
that for u sufficiently close to ug, we have that mrA(u) : K+ — R is invertible, with a C*-smooth
inverse 1 — [rrA(1)]"! € L(R,K*). Upon choosing a sufficiently small neighbourhood U’ C U,
with pg € U’, we can hence define a C*-smooth function h : U’ — L(K,K*t) via

B()(8) = —[mrA ()]~ TR A ()b, (3.19)

Observe first that we have h(ug) = 0 by construction. In addition, this definition ensures that for
p € U’ the infinite dimensional problem to find x € W°°(R, C") that solves A(u)z = f, is equivalent
to the search for a solution b € K of

TR [A()](b + h()b) = TRt f — T Ap) [rR A1)~ 7R f. (3.20)
This can be seen by substituting
x = [rrA(n)] ' f + b+ h(p)b. (3.21)

These considerations allow us to define a quasi-inverse for A that solves (3.17) in the sense of the
following result.

11



Proposition 3.3. Consider the parameter-dependent inhomogeneous system (3.17) and fix a pa-
rameter po € U for which (3.17) is asymptotically hyperbolic. Then there exists an open subset
U' C U, with pg € U, together with a C*-smooth function

C:U — L(L>®(R,C"),R") (3.22)
and a C*-smooth quasi-inverse
A U — L(L™(R,C"),WH>(R,C")), (3.23)
such that the following properties hold.
(i) For all p € U" we have
dim K (A(p)) < dim K(A(po))- (3.24)
(i) For all p € U’ and all f € L™ (R,C™) we have the identity
A AT™ () f = f+C(u)f- (3.25)

In addition, the restriction of C(ug) to the set R vanishes identically.
Proof. Ttem (i) can be confirmed by noting that
dim C(A(p)) = dim K — rank o A(p)[I + h(p)] < dim K. (3.26)

To establish item (ii), we choose C and A4™ according to

Aqinv (M)f = [WRA(M)]ilﬂ—Rfy (327)
Clu)f = —mpof 4R A(p)[rRA(p)] T TR S
A simple calculation is now sufficient to conclude the proof. O

In order to define a solution operator for (3.17) on half-lines, we will need to utilize the freedom
we still have to choose the complements K1+ and R* in a special fashion. To do this, we will need
to assume that condition (HB) holds, i.e., we demand that both det Ag(&, o) and det An (&, po) are
non-zero for all £ € R.

Lemma 3.4. Consider the parameter-dependent linear system (3.17) and suppose that condition
(HB) holds for this system at p = o, for some po € U. Write ng = dimK(A* (1)) and choose a
basis {d'}}, for K(A*(uo)). For any € € R there exists a set of functions {)'}74; C 'Y such that
for any pair of integers 1 < i,j < ng we have

/ T e+ 0 (0)d8 = b, (3.28)

Tmax

Proof. The explicit representation in (3.4) shows that the condition (HB) also holds for the linear
system associated to the adjoint A*(ug). This implies that any d € K* that has evid = 0, must

K2

satisfy d = 0. The set of elements {evzdi}n:d 4 C Y is thus linearly independent. In particular, this

means that the ng X ng matrix Z with entries Z;; = (evgdi,evgdj ) is invertible, where (,) denotes
the integral inner product

w.o)= | (0 6(6)db. (3.29)

Tmax

12



For any integer 1 < 7 < ng we now choose

P = i evid“Z, ! (3.30)
k=1
A simple calculation shows that indeed
ndg ng
(evg CapT) = z:(evzdi,evgdk)Zk_j1 = Z Zika_j1 = 0i;. (3.31)
k=1 k=1

O

We will use Lemma 3.4 to explicitly construct a representation for 7z and mr .. Indeed, let us
write 7 = rpax — Tmin and fix an arbitrary £y < —4r. In addition, for any integer 1 <1 < ng we let
g' € L=(R,C") denote the function that has evzogi =%, while ¢g*(¢/) = 0 for all £’ < &y — rmax and
€ > £y — Tmin. Here the functions {¢*}1'4; C Y arise from an application of Lemma 3.4 with & = &.
Since the set {g"}7¢, is linearly independent, we can now explicitly define the projection

mraf = LT A (E) f(E)dE g (3.32)

This enables us to define an inverse for A(u) on the positive half-line. Indeed, consider the operator
A7 (p) : L2°([0,00),C") — W ([rypmin, 00), C") given by

AT () f = ATV ES, (3.33)

in which [Ef](€) =0 for all £ < 0 and [Ef](£) = f(&) for all € > 0. Since ¢g*(£) = 0 for all £ > 0 and
all integers 1 < i < ng, an application of (3.25) immediately implies that for all £ > 0 we have

[A() AT (1) £16) = f(©). (3.34)

In a similar fashion an inverse A”"(p) : L ((—00,0],C") — W1 ((—00, Fmax), C") can be con-
structed for the negative half-line. Both these inverses depend C*-smoothly on the parameter p € U’.

4 Exponential Dichotomies

In this section we study exponential splittings for the homogeneous counterpart of the linear system
(3.1), which we will write as

N
¥'(€) = L(&)ze = Y Aj(©z(€ +15). (4.1)

=0

Throughout this entire section we will assume that the functions A; are continuous. In addition, we
will assume that (4.1) is asymptotically hyperbolic and that the condition (HB) holds.

We start by stating the main theorem which we set out to prove in this section. We remark that
a similar result was previously obtained in a Hilbert space setting [6]. In addition, an exponential
splitting in a Banach space setting can already be found in [15]. The construction developed there
is summarized in Proposition 4.2 and provides exponential dichotomies that are defined on the full
line. However, in order to use Lin’s method we will also need to consider dichotomies that are defined
on half-lines. In addition, the results in [15] do not allow us to control the limiting behaviour of the
projections associated to the dichotomies as precisely as is needed here.

The results in this section provide these necessary extensions. The splittings obtained in this
manner will allow the freedom that remains when solving the inhomogeneous system (3.1) to be
controlled in a detailed fashion. In particular, they will facilitate the construction of stable and
unstable manifolds for the nonlinear system (2.1) in Section 6.
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Theorem 4.1. Consider the linear system (4.1). There exist constants K > 0, ag > 0 and ag > 0,
such that for every & > 0 there is a splitting

X =Q() & 5(6), (4.2)

such that each ¢ € Q(€) can be extended to a solution E¢ € C([£+rmin, 00), C™) of the homogeneous
equation (4.1) on the interval [£,00), while each ¥ € S(€) can be extended to a function Ev €
C((—oo, E+Tmax)s (C") that satisfies the homogeneous equation (4.1) on the interval [0,&]. In addition,
we have the exponential estimates

(B < Kel g forevery € Q) and ¢ ¢, (4.3)
B < KesIE=lp|  for everyp € S(€) and 0<¢ <€

These spaces are invariant, in the sense that for any 0 < & < & and any v € S(§), we have
eve By € S(¢'), together with a similar identity for ¢ € Q(§). Finally, the projections gy and
[lge) depend continuously on § > 0 and there exists a constant C' such that HHQ(é)H < C and
||HS(£)H < C forall€>0.

<
<

Throughout this section, we will follow the notation employed in [15]. For any £ € R, we will
consider the space P(§) that consists of all bounded solutions to (4.1) on the interval (—oo,£],
together with the space Q(&) that consist of all bounded solutions to (4.1) on [£,00). Notice that
any bounded function b that satisfies (4.1) on the entire line will have both b € P(€) and b € Q(&).
It is therefore convenient to introduce normalized spaces P(¢) and O(¢) which do not contain such
kernel elements. To be more precise, let us recall the operators A and A* defined in (2.5) and (2.6)
that are associated to (4.1), together with their kernels IC = IC(A) and K* = KL(A*). In addition, let
us write

77(5) = }x S BCO(( [e%e] §+rmax] ”) |x/ 5/ ( )xE/ for all 5/ ( OOvﬂ}a

Q(€) = {x € BO(E+ rumn.00),C") [2'(€)) = L )re: for all ¢ € [€,00) ).

Ble) = {weP(e)] [0 yenpende = 0 for all be K}, (44)
0(6) = {ze Q)| [rxErrmmOp(erya(e)de’ = 0 for all b € K}

As in [15], we also introduce the following spaces, that describe the initial conditions associated to
the spaces above and the kernels K and K*.

PE) = {¢€X|¢=uafor some z € P(£)},

Q) = {¢ € X | ¢ = for some z € 9(5)},

PE) = {¢p € X|¢=ufor somexE?i(f)}, (4.5)
QE) = {¢p€X|¢=uxefor somez e Q(&)}, .
B() = {¢€X|¢=nbforsomebec K},

B*(¢) = {¢€Y |p=dg forsomedeK*}.

The reader familiar with [15] will notice that the definitions of P and O have been adapted slightly to
accomodate for the half-line setting of Theorem 4.1. In particular, the upper bounds of the defining
integrals are now constant for & > 0 respectively & < 0. This choice ensures that P(£) is invariant
on the positive half-line and @(5) is invariant on the negative half-line, but does not affect any of
the results in [15].

The following result was obtained in [15] and shows that P(£) and Q(§) together span X up to a
finite dimensional complement, that can be described explicitly in terms of the Hale inner product.

Proposition 4.2. Consider the homogeneous linear system (4.1). For any £ € R, let Z(§) C X be
the closed subspace of finite codimension that is given by

Z(¢) = {gb €X | (¥,d)e =0 for every ¢ € B*(f)}. (4.6)
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Then we have the direct sum decomposition

Z(€) = P(¢) ® Q) @ B(€). (4.7)

Our main contribution in this section is to provide an explicit complement for Z(£) that will
allow us to enlarge the space P(£) and obtain a set S(¢) that satisfies the properties in Theorem
4.1. To do this, we will employ a very useful property of the Hale inner product. In particular, fix an
interval [¢_,&,] and consider an arbitrary function z € W, ([€- — rmax, €4 — Tmin]) together with
an arbitrary function z € Wli’cl [€— + Tmin, &+ + Tmax)- Then for every £ € [£_,&4], we can perform
the computation

3
) a(6) + 20 (€) — 3 2(6) Ay(E)ale +7,) (4.8)
+2(§ —1j)"A; (577"3) z(§)
(©)*[A](©) + [A"2)() ().

Lemma 4.3. Consider the homogeneous linear system (4.1). Let {d*}!'?, be a basis for the kernel
K* and recall the constant T = Tmax — Tmin- Lhen for every & > 0 and every integer 1 <1 < ng, there
exists a function y ) € C’((—oo, &+ Tmaxl, (C") that satisfies the following properties.

De(eviz,ever)e = D [2(&)*z(&) — ZN S0 — ri)*A; (0 — 7))z (6)dbd]

N

™D

(i) For every & > 0 and every integer 1 < i < ng4, we have [Ay&)](fl) =0 for all & > —3r and all
& < —br.

(i1) For any pair 0 < & < & and any pair of integers 1 <i,j < ng, we have the identity
(evid' everyly e = bij. (4.9)

(i4i) Fiz an integer 1 < i < ng and a constant 0 < &'. Then the function £ — ev5/yf£) depends
continuously on &, for & <E&.

(iv) Consider any triple 0 < &' < & < &. Then for any integer 1 < i < ng we have
everlYle,) — Yiey)) € PE)- (4.10)

(v) For every & > 0 and every integer 1 < i < ng, we have the integral condition

0
/_ b(E) o) (€)dE' = 0, (4.11)

which holds for all b € IC(A).

Proof. Fix & = —4r and consider the functions {1’ "dl C Y that were constructed in Lemma
3.4 for £ = &. As in Section 3, define the functions g* € L>°(R,C") that have ev{ g* = 1, while
g" = 0 elsewhere. For the remainder of this proof, fix an integer 1 < i < ng. Consider a sequence
§k = k — oo and define y(y = A(_kl) g%, where the inverse A(_kl) should be interpreted as the analogue

of A~! for the half-line (—oo, &]. Note that by adding an appropriate element in K to Y(k) We can
ensure that the integral condition (4.11) is satisfied. For any integer 1 < j < ng we can use (4.8)
together with the exponential decay of d7 at —oco to compute

4 & o
(eved, evey) ) :/_ & (&) Ay |(§)dE" = (eve,d’, ¢") = 0y (4.12)
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Choose a continuous function x : [0, 00) — [0, 1] such that x is zero near even integers and one near
odd integers. Write

e = x2Eyren + [ = X2)(rex 17 (4.13)

in which [£] denotes the smallest integer that is larger or equal to £. With this definition it is easy
to see that the properties (i) through (v) all hold. O

The functions defined in Lemma 4.3 are sufficient to construct the space S(£) appearing in Theorem
4.1. Indeed, we will use the spaces

S = 7?:(5) S5 Span{yzg)}?:dl,
S(€) P @ Span{@ngzf)}:ﬁl.

The following result should be seen as the appropriate generalization of Theorem 4.2 in [15] and
shows that functions in S automatically decay exponentially.

(4.14)

Proposition 4.4. Consider the homogeneous linear system (4.1). Let the sets S(§) C X for £ >0
be defined as in (4.14). Then there exist constants K > 0 and ag > 0 such that for all £ > 0 and all
& <&, we have

j2(€)] < Kem s~ |z, (4.15)

for every x € S(§).
Proof. As in [15] it suffices to prove the following two statements.

(i) There exists o > —rmpax such that for all £ > 0 and all y € S(&), we have
1
[Y(EN] < S5UWPsctsr,,, [y(s)] forall f <& -0 (4.16)

(ii) There exists K > 0 such that for all £ > 0 and all y € S(§), we have

[y(§)] < K [levey]| for all § <&+ rmax. (4.17)

Assuming that (i) fails, we have sequences 07 — 0o, &/ > 0 and 3/ € S(¢7) such that
yi(s)| =1. (4.18)

Suppose first that —o7 + &7 is unbounded, i.e., —07 + & — 400 after passing to a subsequence.
Writing 27 (¢') = y7 (¢’ — 09 4+ €7), an application of Ascoli’s theorem yields a convergent subsequence
2 — z. Notice that z(0) > %, which means that z is a nontrivial bounded solution on R of one
of the limiting equations at +oco. This situation is however precluded by the hyperbolicity of these
limiting equations.

Now suppose that, possibly after passing to a subsequence, we have —o7 + &/ — (9. Using the
fact that [Ay7](¢") = 0 for € > rpn, together with the limit &/ — oo, we may apply Ascoli-Arzela to
conclude that y/ — y, uniformly on compact subsets of [rmin, o). Since we also have [Ay,](¢) =0
for all ¢ > 0, we conclude that evoy. € Q(0). However, this immediately implies that for any
¥ € B*(0) we have (¥, evoy.)o = 0. In view of the identity

|yj(_o—j + 5J)| Z %7 Sups<57+rmax

nd
Ay’ =" g evid' evoy? o, (4.19)

i=1

this however implies that Ay’ — 0 uniformly on every compact subset of R. This allows us to apply
Ascoli-Arzela on the entire line, by means of which we obtain the convergence y? — y,, which is
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again uniform on compacta. In addition, we have Ay, = 0, which now means that y, € K. However,
this is precluded by the integral condition (4.11).

Let us now suppose that (ii) fails, which implies that for some sequence K7 — oo, & > 0 and
yl € 8(¢7), we have

SUD; i 4y yj(s)| = K’ ||ev§jyj|| =1. (4.20)
In view of (i), this means that there exists a sequence 0/ € [~ iy, o] such that ’yj(—aj + §j)‘ =1.

Suppose that &7 is unbounded. We find ¢/ (¢ + &¢7) — 2(¢') where z : (—00,Tmax] — C" is a
bounded solution of the limiting equation at 4ooc. Since the sequence o7 is bounded, z does not
vanish identically. Since ||eve;y7|| = 1/K7 — 0, we have [|z|| = 0 and hence z can be extended
to a bounded nontrivial solution of the limiting equation at 4+oc on the entire line. Again, this is
precluded by the hyperbolicity of this limiting equation.

Now assume that, possibly after passing to a subsequence, we have &7 — £* > 0. Since evej Yy =0,
we can use Ascoli-Arzela to find the convergence 3y — ., which is now uniform on the interval
[=7 + Tmin, § + Tmax]. In addition, we have [Ay.](¢) = 0 for all £’ € [—r,£*]. If £ > o, this fact is
precluded by the non-degeneracy condition (HB), since we also have eve-y, = 0. In the case where
£* < 0, we can again use (4.19) to obtain the convergence y’ — v., which this time is uniform on
compact subsets of (—00, £* 4 rmax]. As before, the condition (HB) now leads to a contradiction. [

Notice that we have now obtained a splitting
X =50)eQ©) (4.21)

that satisfies nearly all of the properties stated in Theorem 4.1. It remains only to consider the
statements concerning the projections Ilg(¢) and Il ). We will address these issues in the remainder
of this section by establishing the continuity of these projections and studying the limiting behaviour
as & — oo. In Section 5 we will show how these estimates can be improved if one has detailed
information concerning the rate at which L({) approaches its limits as £ — +oo. For the moment
however, let us recall the splitting

X = P(00) @ Q(0) (4.22)
associated to the autonomous limit of (4.1) at +oo, which was established in [15].

Lemma 4.5. Consider the linear homogeneous system (4.1). The following limit holds with respect
to the norm on L(S(§), X),

H[[ — HP(OO)]|S(E)H -0 as £ — . (4.23)
In addition, for the norm on L(Q(§), X) we have the similar limit
17 = Hoeoliqe | =0 as & —oe. (4.24)

Proof. The second limit was established in [15], so we restrict ourselves to the first limit here. Choose
an arbitrarily small € > 0 and fix C' > 0 sufficiently large to ensure that for all £ € R, the inequality

N
D JA(€e*smi| < C (4.25)
j=0

holds. Recalling the constants K and «g from Proposition 4.4, pick &, > 0 sufficiently large to ensure
that 4(1 + C)2K exp(—aséo) < § and also

Z |4;(¢) — Af| < 5 (4.26)
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for all ¢ > &. Fix any § > 2§ + Tmax. Consider an arbitrary y € S(&) and write ¢ = evey € S(§).
Notice first that ¢jp.,....0 € C!([rmin, 0], C™). We can hence approximate ¢ with a sequence of C'-
smooth functions ¢* that have ¢*(0) = ¢(#) for all § € [~1,0]. Let us extend these functions to
C*'-smooth functions y* on the line, with evey® = ¢* but also y*(¢') = y(¢’) for all 0 < ¢ < €.
Notice that we may construct the functions 3* in such a way to ensure that the following estimate
holds for all ¢ <0,

|Dy*(E)| + [y"(€)] < 2(|Dy*(0)] + |y*(0) ). (4.27)
In particular, this means that for all £ < £ we have the bound
|Dy*(€)] + [9*(€)] < 2K (1 + O)[e@s¢ 4+ esE=E] ||| (4.28)
Now, for any C''-smooth function 3 we have the representation
g eoyevey = eve AL [T — Hel Ay, (4.29)
in which we have introduced the notation [Asx](§') = 2/(£') — z;\[:o A;'m(g’ + 7;), together with
the Heaviside function H that satisfies He(¢) = I if ¢’ > € and zero otherwise. Observing that
N
(At (&) = )+ >[4 Tevery®, (4.30)
j=0

we may compute

I = Hel Aot || joo ey < sUP<eo |Dyk )]+ Cllevery*|| + supg,<er<e 5% [leve y”||
< 4K+ O)%emesf o] + 5 o]
< cer
(4.31)
This however means that for some constant C’ > 0 we have
Mooy || < e [[¢°]], (4.32)
which concludes the proof due to the continuity of Il (a)- O

Lemma 4.6. Consider the system (4.1) and suppose that (HB) is satisfied. For & > 0, write I'(§) =
span{ev§yé£)}?g1 and consider the splitting

X =P(E)al(€)®Q(E) (4.33)

with the corresponding projection operators Hp(f), ) and Tlge). Then we have the following
limits for any &, > 0,

L =Upeylipe| — 0 as & — &o,
[ - HQ(&)MQ(&) - 0 as&— &,
[I-Trelirel — 0 asé—é&.

(4.34)

Proof. The statements concerning P(¢) and Q(€) were established in [15]. The limit involving I'(&)
follows easily using the finite dimensionality of I'(¢) and item (iii) in Lemma 4.3. O

Lemma 4.7. Consider an arbitrary §o > 0. The projections gy can be uniformly bounded for all

&> 6.
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Proof. Assuming the statement is false, let us consider a sequence &/ and ¢/ € X that has & > &
and ||¢7|| =1 for all integers j > 1, while || Tlg(e/)¢’ || — 0o as j — co. Let us first assume that &7 is
bounded, which after passing to a subsequence implies that &7 — &, for some &, > &y. Let us write
ol = HF(§J)¢j, P = Hp(gj)gi)j and ¢/ = HQ(&j)Qﬁj‘ Defining x; = ||ajH + HpJH + quH, let us also

157 and similarly defined sequences p/ and ¢7. In addition,

introduce the bounded sequence 7 = Ky
we introduce &7 = Ire.y67 and similarly 7= Hp(f*)ﬁj and @ = (.’ . Using Lemma 4.6 we

obtain the following limits as j — oo,

P +¢ — 0,
5 — 5 — 0,
55 0 (4.35)
7 - - 0

Since I'(&,) is finite dimensional, we can pass to a subsequence and obtain &7 — o, This implies the

following limit as j — oo,
o+ DL+ — 0. (4.36)

We now introduce the truncation operators 7+ : X — C’([O, T'max)s (C") and7m™ : X — C([rmin, 0], (C").
Using the exponential estimates on Q(&,) and ﬁ(f*), it is not hard to see that the restriction of 7+

~

to Q(&«) is compact, as is the restriction of 77 to P(&,). After passing to a subsequence, we thus
find that 77¢Z and hence also 7 p% converge uniformly on [0, 7max]. Invoking a similar argument
involving 7~ we conclude that as j — oo, we must have ﬁ;’k — p. and ?ﬂ — g« for some p, € ﬁ(é})
and g, € Q(&). In view of (4.36), this leads to a contradiction, since ||oy|| + [|p«|| + ||g«|| = 1.

It remains to consider the case that & — oo. However, using the splitting X = S(¢) ® Q(&) and
the limits in Lemma 4.5, we can obtain a contradiction in the same fashion as above. O

Corollary 4.8. Consider the linear homogeneous system (4.1) and recall the splittings

X =50 @ Q) (4.37)

that hold for & > 0. The projections g and lgg) depend continuously on § € R. In addition, we
have the limits

limg—.c [[Heee) =Moo =0, lime—oc [Ms(e) = Tpoe) || =0 (4.38)
Proof. The limit for Ilg¢) as § — oo can be seen by writing

o) = o) = [ = o) Hee) — [ = poo)Is(e) (4.39)
and using the limits in Lemma 4.5, together with the uniform bounds for Il ¢) and Ilg¢) that follow
from Lemma 4.7. The other statements follow analogously. O

Proof of Theorem 4.1. The spaces S(£) can be defined as in 4.14, while the spaces Q(§) can be
defined as in (4.5). The decay rates in (4.3) for S(§) follow from Proposition 4.4, while Theorem 4.2
in [15] provides the rates for Q(&). The continuity of the projections Ilg¢) and g follow from
Corollary 4.8 and the boundedness of these projections follows from Lemma 4.7. O

5 Parameter Dependent Exponential Dichotomies

In this section we show how homogeneous linear systems of the form

N
2'(€) = L& e = Y Aj(& pa(€ +1y), (5.1)

Jj=0
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which depend on a parameter 1 € U, can be incorporated into the framework developed in the previ-
ous section. Throughout this section, we will assume that the linear operators A(u) : WH*°(R,C") —
L>(R,C") associated to (5.1) by means of (3.3) depend C*-smoothly on the parameter pu for some
integer £ > 0. In addition, we will assume that (HB) holds for some parameter ug € U, that (5.1) is
asymptotically hyperbolic for € U and that the limiting operators L* depend C*-smoothly on .

The first part of this section is devoted to the proof of Theorem 5.1, which shows that the
exponential splittings in Section 4 can be constructed in such a way, that the relevant spaces and
projections depend smoothly on the parameter p. The price we have to pay is that we lose the
invariance of S(, ), but for our purposes this will be irrelevant.

In the second part of this section we study the limiting behaviour of the projection operators
IMge, ) and Ilge ). Theorem 5.4 improves upon the estimates in the previous section and relates
the convergence Tlg(¢ ) — Tlg(oo,u) to the rate at which L(€, ) approaches its limit as § — oo.
Together, Theorems 5.1 and 5.4 should be seen as the analogue of Lemma 1.1 in [16].

Theorem 5.1. Consider the linear homogeneous system (5.1). There exists an open neighbourhood
U C U, with ug € U', such that for all € U’ and all £ > 0 we have the splitting

X =Q(& ) @S¢ ). (5.2)

In addition, there exist constants K > 0, ag > 0 and ag > 0, such that each ¢ € Q(&, p) can
be extended to a solution E¢ of the homogeneous equation (5.1) on [§,00), while each ¢ € S(&, )
can be extended to a function Ev that is defined on the interval [Fmin, & + rmax] and satisfies the
homogeneous equation (5.1) on [0,€]. The maps p — Ilge ) and p— Tlg ) are C*-smooth and
all derivatives can be bounded independently of € > 0. Moreover, we have the following exponential
estimates for all integers 0 < { < k,

Ke—oel¢'—¢| for every & > &,
Keosls'=¢| for every 0 < & < €.

| Dfieve ETlge. ||

(5.3)
| Dfieve Elge ||

IA A

Our approach towards establishing Theorem 5.1 will be to construct the parameter-dependent
spaces Q(&, 1) and S(, 1) separately, using the implicit function theorem to represent these spaces
as graphs over Q(&, puo) and S(&, o). The exponential estimates will follow essentially from those
established in the previous section for (5.1) with p = pg.

Lemma 5.2. Consider the exponential splitting X = Q(§) ® S(§) for £ > 0, as defined in Theorem
4.1 for the system (5.1) with u = po. Then there exists an open neighbourhood U’ C U, with
po € U’, together with a family of C*-smooth functions UZ)(g) U — L(Q(E),X), parametrized
by & > 0, such that for all p € U’ we have R(ugy e (1) = Q& p), with Hoeug e (1) = I and
I - HQ(&)]“Z)(g)(N) — 0 as p — po, uniformly for &€ > 0. In addition, there exist constants K > 0
and ag > 0 such that for all € U', all pairs & > £ > 0 and all integers 0 < £ < k, we have

¢ p —aqlg'—¢
HDueV?EuQ(f)<“)H£<Q<s>,x>SKe el (54)

Proof. We recall the C*-smooth operator
C:U" — L(L™(R,C"), R(A(uo)) ") (5.5)

defined in Proposition 3.3 and we choose a basis for R(A(uo))* in such a way that the support of
each basis function is contained in [—4r — rpax, —4r — rmin] C (—00,0). We also recall the constants
K > 0 and ag > 0 obtained by an application of Theorem 4.1 to the system (5.1) at 1 = .
For any £ > 0, let us consider the map G : U — L(BC’_QQ ([rmin + &, 00), (C”)) that is given by
Glpyu = ALY ) (10)[L(1) = L(po)lu — Ellgeeyeve A" ) (10)[L(1) — L(pwo)]u. (5.6)

aqQ (—aq)
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Here we have introduced the notation [L(u)u](§) = L(&, u)ue. We first note that G is well-defined,
since the extension operator E indeed maps Q(€) into BC_q, ([Fmin + §,00),C™) due to the ex-
ponential estimates in Theorem 4.1. To be more precise, note that for some constant K; > 0, the
ﬁ(Q(f), BC_ap ([rmin + &, 00), (C”))—norm of this extension is given by

|E| < Kye*et. (5.7)

Notice also that for some constant C7 > 0 the £(BC,QQ([Tmin +¢£,00),CM), X)—norm of the evalu-
ation operator evgs is bounded by

lleve || < Cre—ae¥, (5.8)

The Ck-smoothness of p +— L(y) now implies that G is C*-smooth as a map from U into
E(BC_,IQ([rmin + §,oo),(C")). By taking p sufficiently close to pug we can achieve the following
bounds, simultaneously for all £ > 0 and every integer 1 < ¢ < k,

G (Wl < 3

PG| < Co. (5.9)

in which we have introduced a constant Cy > 0. The first estimate in (5.9) implies that for all u
sufficiently close to pg and all £ > 0, we can define the linear maps

Vo) (1) 2 Q) = BC_ag ([rmin +£,00),C"), ¢ = [1 = G(u)] " Ed, (5.10)

together with ug, ) (1) = evevg ) (n). The exponential estimates (5.4) follow directly from this
representation of ug ) (1), together with (5.7), (5.8) and (5.9). In addition, it is immediately clear
from our choice of G that Hoe)ug ©) (1) = I. The remainder term can be bounded using the identity

[ — Tlge)Jufye) (1) = eve[lT — G(w)]* — 1] E, (5.11)

which approaches 0 as y — ppo. Again, this limit can be obtained simultaneously for all £ > 0 by
using (5.7) and (5.8).

We now set out to prove that R(U*Q(g) (1)) = Q(&, p). Suppose therefore that u = V5 ¢y (1)@ for
some ¢ € Q(&). Notice that u necessarily satisfies the following identity for all &' > ¢,

A(pul(€) = [L(E o) — L& wleve E¢ + [L(E', 1) — L(E, po)leveru
+ L o) — L&, wleve NG ) (ko) [L (1) — L(po)]u
= [L(€', o) = L(&', w)leve Ellge eve AZ] ) (ko) [L (k) — L(po)]u
= [L(&, po) — L', w)]everu + [L(E', p) — L(E', po)leveru = 0.

This means that Ua(g)(“) indeed maps into Q(&, u).

(5.12)

It remains to show that Q(&, 1) C R (v, (1)) Supposing this is not the case, pick g, € Q(&, p)
with q,ﬁ ¢ R(Uzg(g) (1)) and write ¢ = HQ(g)evg]i and qi = 5(0) (p)¢. Writing g, = qi —qi, we have
qu € Q(&, ) with I eyeveq, = 0. Noticing that [L(u) — L(po)|q, = A(po)qy, we find that for some
Qo € Q(€) we must have

G(Wau = qu+ qu, — EMgee)eve(qu + qu,] (5.13)
= qutquo — 9uo = qu

and hence ¢, € K(I — G(u)) = {0}, which concludes the proof. O

In the next proposition, a similar approach is used to construct S(&, ut). Notice however that this
construction will be treated as a definition, as there is no canonical way to define S(&, ) as was

possible for Q(&, ).
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Lemma 5.3. Consider the exponential splitting X = Q(§) ® S(§) for £ > 0 as defined in Theorem
4.1 for the system (5.1) with u = pg. Then there exists an open neighbourhood U' C U, with ug € U’
together with a family of C*-smooth functions “TS‘(&) U — L(S(& o), X), parametrized by € > 0,
such that for all pp € U" we have Ug(gyug ¢ (1) = I and [I =g |ug e (1) — 0 as p — po, uniformly
for £ > 0. In addition, there exist constants K > 0 and ag > 0, such that for all p € U’, all pairs
0 <& <€ and all integers 0 < £ < k, we have

¢ p —asle’—¢
HD#GV?E”S@(“)Hz:<s<s>,x>SK@ e (5.14)

Finally, for all w € U' and all £ > 0, the range R(ug(@(,u)) C X is closed.

Proof. We can proceed in the same fashion as in the proof of Lemma 5.2, although we here need
to use the function space BCy, ([rmin,§ + rmax],(C"). To see that R(ug(g)(u)) is closed, consider
a sequence ¢/ € S(§), write ¢ = UG ) (n)¢’ and assume that 17 — .. Since Tlgg)y’ = ¢, we
also have ¢/ — Ilg(¢). 1= d.. Since ug (1) is bounded, we have Ug(e) (1)[¢? — ¢«] — 0 and hence
Yy = UZ(@(M)QS*- O

Proof of Theorem 5.1. We first establish the splitting X = Q(&, u) ® S(§, u). To this end, consider
the family of maps U7 : U’ — L(Q(&) @ S(€)) defined by

UZ (1) (¢, v) = (I [“23(5) () + UE(g)(HW] g [UZ)(@(HW + ug(g)(MW] ). (5.15)

Since HQ(g)ug(g) — 0 as pu — po and similarly HS(&)“E(@ — 0, uniformly for £ > 0, we find that by
choosing the neighbourhood U’ small enough, we can ensure that U; () is invertible for all p € U’
and all £ > 0, with a bound on the inverse and the first k& derivatives of this inverse with respect to
1 that is uniform for g € U’ and £ > 0. This allows us to define the projections

Usep = e (s Ug ()],

o oy 5.16
Hoew = uge(WleelUs (] (5.16)

It is easy to see that indeed Hg?(é,u) = Il and similarly H%(g’#) = Hge,pu)- Also Mge,u) +
s,y = 1. These functions p — T, ) and p— g ) are CF-smooth as functions U’ — L(X),
which follows from the C*-smoothness of uZ}(E)’ ug(é) and U{. In addition, since we have estimates
on the first k derivatives of these functions with respect to p that are uniform for 4 € U’ and £ > 0,

the same holds for the derivatives of the projections. The exponential estimates (5.3) now follow
from (5.4) and (5.14). O

Throughout the remainder of this section we will consider the limiting behaviour of the projec-
tions Ilg ¢ ) and Iy ) as § — oo. The next result describes the speed at which these projections
approach their limiting values Ip(s ) and g (s, u)-

Theorem 5.4. Consider the linear system (5.1) and suppose that for some a_ < 0, the character-
istic equations det AT (z,u) = 0 have no roots in the strip a_ < Rez < 0 for u € U, where AT
is the characteristic matriz associated to the limiting system at +o00. Suppose furthermore that for
some a{ <a_, all £ € R and some constant C > 0 we have the bound

(1) = L ()| oy < C LI — o] €2 + 72, (5.17)

for p € U, in which L (u) denotes the linear operator (3.1) associated to the limiting system at
+00. Then there exists a constant K > 0 and an open neighbourhood U’ C U with uy € U’, such
that the following bound holds for all € > 0 and all p € U’

Me) — Moo || < K [ — pol e + el@- =29 4 eol¢]. (5.18)
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In addition, suppose that for some C' > 0 and all integers 0 < ¢ < k, we have

HDﬁ[L(g,,u) - L+(:LL)H|£(X7@”) S C[ |/‘L - .u0| 60‘75 + 60&56]5 (519)

for all p € U. Then there exists a constant K > 0, an open neighbourhood U' C U with py € U’
such that for all £ > 0, all integers 0 < £ <k and all u € U', we have the bound

D4 Mgy — Mooounl]| < K [ — ol 2= + el@-—a)¢ 1 ga’€]. (5.20)

Our approach towards proving these bounds will be to provide sharper versions of the results
previously established in Lemma 4.5. The next two Lemma’s will show that the quantity Il ) —
IIg(s0,u) indeed behaves as prescribed above, using an explicit Greens function representation of
g(s0,u) and I p(,,)- The calculations in these Lemma’s can also be used to study the derivatives
be Mo,y — Mg(oo,w], after an appropriate reformulation.

Lemma 5.5. Consider the setting of Theorem 5.4 and suppose that (5.17) holds. Then there exists
a constant K1 such that

17 = Tpoe mliscen || < K[l = o] €2~ 4 =€ 4 elem—o)e], (5.21)

for all p e U" and £ > 0.

Proof. Consider a ¢ € S(£, ). We recall the sequences ¢? and y? of Cl-smooth functions that were
introduced in the proof of Lemma 4.5, with ¢ — ¢ as j — oo and evey’ = ¢/. We will give a
detailed estimate of the quantity evez? defined by

# = A () — He] Ao ()y’ - (5.22)

To this end, we recall the Greens functions G' from Theorem 3.1 that satisfy G(&, u) < Koe®-¢ for
¢ > 0 and allow us to write

AL WN© = [ 6le-smias (5:29

Using this representation, we introduce the shorthands z = 27 and y = 3’/ and calculate

2O = [ GlE— 5. 1) Mo 0)u)(s) + J GE — ) Aoe ()] ()
< Kseost|lgl| [0 e ds + [ @@ || L(€, 1) — L+ ()|l |lev.y]| ds
< Kyemoster=C g (5.24)
+ K5 [|g] fif e €| — ol e~ + - 5Jem0s (€= g
< Kyelo-—as)t g
+ Ky 6] e0-0€ 1 — o] [e5€ — 1] - el o )6 ]
Similar estimates for z(£ + 0), with rpin < 0 < rpax, complete the proof. O

Lemma 5.6. Consider the setting of Theorem 5.4 and suppose that (5.17) holds. Then there exists
a constant K1 > 0 such that

1 = Tgoe e | < K[l = ol =€ + 2] (5.25)

for all w € U' and all € > 0.
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Proof. Consider a similar setup as in the proof of Lemma 5.5, now with ¢/ € Q(&, u1). This time, we
need to estimate the quantity evez’, with

2= AL (W) He Moo 1)y - (5.26)

For all € > € we compute
(Ao (1)9*1(€)) = Ay’ 1(€) + (L€, 1) = LT ()]l = [L(E, ) — LT (w)]yl,, (5.27)
since y? € Q(&, ). The estimate is now immediate. O

Proof of Theorem 5.4. We will consider the identity

Mo, = Nooo,w) = Mp(oomIaoe,n) — Moo, s m) (5.28)

in more detail. In particular, let us write

T (o0 Ms(e,) = Ase (W) F (&, 1)) [UE ()], (5.29)
in which F(¢, 1) : S(, po) — L*(R,C") is defined by
[F (& m)8l(€) = [L(E 1) — LT (w)]eve vy (n)d (5.30)
for all 0 < ¢ < &, while [F(&, u)g](€) = 0 for ¢ > £ and
[F(& m)el(€') = [Ao()y(&, n)8](E") (5.31)

for ¢ < 0. Here the quantity y(&, )¢ denotes a C'-smooth function that is defined on the interval
(—00, max| and has evoy(§, u)o = evovg(g) (1)¢. In addition, Lemma 5.3 implies that this function

can be chosen in such a way that it depends C*-smoothly on g and also satisfies the following
estimate, for all £ < 7.« and all integers 0 < ¢ < k,

| Dlevery(&, 1ol + || Dievery' (&, m)o|| < Kie ¢ || (5.32)

The representation (5.29) together with the estimates (5.14) and (5.32) now allow us to mimic the
calculation in (5.24) to obtain the estimate

1D Moo, Wse ]| < Ko [l = paol e~ + el 7)€ 4 e2%¢], (5.33)

which holds for all integers 0 < ¢ < k and all £ > 0. An easier computation for the derivatives of the
quantity Tlp o ) Ilg(e, ;1) completes the proof. O

To conclude this section, we show how we can isolate the part of S(, ) that decays at the rate
of the leading positive eigenvalue of the characteristic matrix A™. To this end, consider any v > 0
such that the characteristic equation det A*(z, uo) = 0 has no roots with Re z = v. This allows us
to perform the spectral decomposition

X = PV(OOMU‘O) D Q(Oovlu’o) D FO,Vv (534)

in which I'g ,, is the finite dimensional generalized eigenspace associated to the roots of det A™ (z, ug) =
0 that have 0 < Rez < v. By nature of the spectral projection, we have the identity Ilr,, +
1P, (00.10) = 1P (00,10)-

Let us now introduce the operator Ug € E(P,,(oo, po) @ To, & Q(o0, ,uo)), that is defined by

(1, 7.¢) = [p,(0o,u0) @ g, & (oo ,u0)][Ms, (€,)% + Wse,my + oe,m @) (5.35)
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Here we have introduced the space S, (&, i), that should be seen as the analogue of S(&, u) after
application of an exponential shift e_, to the system (5.1). We claim that U is close to the identity
for £ large enough and p sufficiently close to pg. To see this, we compute

p, (c,u0)Ue(®:7,0) = %+ p, (00,10)[Hs, (6,00 = 1P, (00,0) 1% + TP, (00,0) Ms(,1) = TP (00,107
+1p, (00,10) M@ e.n) — HQ(o0,10)]9-
(5.36)

Similar estimates for the other projections complete the proof of the claim. This allows us to obtain
the following splitting, for all sufficiently large &,

X =81 p) @S¢ ) @ Q& 1), (5.37)

in which we have gy (¢ ) + ss(e,p) — Hp(oo,ue) — 0 as § — oo and p — po. In addition, we have
the identities

SH(&n) = s, (Po(00, 10)),
(57/1') = Hs(&“)(l—‘o’y . (538)

6 Lin’s Method for MFDEs

Now that the necessary machinery for linear systems has been developed, we are ready to consider
the nonlinear functional differential equation of mixed type,

2'(§) = Glwe, p) (6.1)

and study bifurcations from heteroclinic connections. Our approach in this section was strongly
inspired by the presentation in [16], but the notation here will differ somewhat. This is primarily due
to the fact that we have to adapt the framework developed by Sandstede to an infinite dimensional
setting and need to avoid the use of a variation-of-constants formula.

To set the stage, let ¢ be a heteroclinic solution to (6.1) at some parameter 1 = pg, that connects
the two equilibria g1 € C™. We set out to find solutions to (6.1) that remain close to g, for parameters
that have u =~ pg. We therefore write © = ¢ + u and find the variational equation

w(€) = Glge+ug,p) —q(&)
= G(ge +ug, 1) — G(ge, po)
= [G(ge + ue, 1) — G(ge, po) — D1G(qe, po)ug — D2G(qe, po) (1 — 1o)] (6.2)

+ D1G(ge, pro)ue + DaG (g, pro) (1 — fto)
= N(&ug, p) + D1G(ge, po)ue + D2G (e, p1o) (1t — pio),

in which the nonlinearity A is given explicitly by

N ¢, 1) = G(ge + ¢, 1) — G(ge, o) — D1G(ge, pro)d — D2G (e, p1o) (1 — fio)- (6.3)

Throughout this entire section we will assume that the conditions (HG), (HL) and (HB) are satisfied.
We therefore obtain the bound NV (¢, ¢, 1) = O((|pw — pol+|¢[)?) as 1 — po and ¢ — 0. This estimate
holds uniformly for all £ € R, due to the fact that the heteroclinic connection ¢ can be uniformly
bounded.

We write A for the operator (2.5) associated to the linear part of (6.2), i.e., for u € Wi)’cl(]R, Ccm™)
we have

[Au)(§) = u'(§) — D1G(qe, po)ue. (6.4)

Throughout the sequel, we use the following splitting of the state space X, that is associated to the
linearization (6.4),

X = P(0) & Q(0) & B(0) & T'(0). (6.5)
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We pick two constants a_ < 0 < a in such a way that the characteristic equations det A*(z) = 0
associated to (6.4) have no roots in the strip a— < Rez < a4. To ease the notation throughout this
section, we now introduce the shorthands

BCY = BC, ([0,%),C"), BC;, = BC.,((~,0],C"),

BC? = BCa ([rmin;0),C"),  BCS. = BCa, ((—00, max)C"). (6.6)

We recall the inverses for A on half-lines that were constructed in (3.33). In particular, we will use
the appropriately defined inverses A;' = A?&“j’) (1o) to ensure that for any f € BCY we can find

x € BC?® with Az = f on [0, 00), with the analogous properties for A~! = A?g:')(uo).

Lemma 6.1. Consider the linearization (6.4). For every pair of functions (g~,g") that has g~ €
BC,, and gt € BCY , there exists a unique pair (u™,u*) = Li(9~,9"), with u= € BCS, and
ut € BCY | such that the following properties hold.

(i) We have the identities

Au)€) = () forall € <0, 6
[AuF](§) = g*()  forall & =>0. '
(ii) We have evou~ € P(0) @ Q(0) & I'(0) and similarly evou™ € P(0) & Q(0) & I'(0).
(iii) We have evolu~™ —ut] € I'(0), with
0 e}
evidevalu” ~ o= [ d€yg €)'+ [ d€ygt€r, (69
—o0 0
for any d € IC(A*).
The linear map Ly is bounded as a map from BC’;+ x BCY into BCO% x BCY .
Proof. One may easily check that the choice
u- = A:ig_ - EHB(O)eVOAiig_ + Ellp [Alig‘*‘ - A:lg_], (6.9)
ut = A7'gt — EllgevoA; gt + Ellgy[AZ g™ — AT g,
ensures that all the required properties hold, using the identity (4.8) to verify (iii). O

Proof of Proposition 2.1. In order to find the functions 4~ (u) and u* (i) that satisfy the properties
stated in Proposition 2.1, it suffices to solve the nonlinear fixed point problem

(u™,u®) = Ly (N (u™, @) + DaG(g, po) (1 — p10), N (u™, 1) + DaG(g, o) (1 — o)) (6.10)

Here the maps A and DG should be viewed as substitution operators, i.e., for any & > 0 we have
N(ut,u)(€) = N(¢,eveu™, p), together with similar identities for DyG(g, o) and N(u™, u). By
construction we have that (0,0) is a solution to this problem at p = 9. The definition of A in (6.3)
ensures that, by taking u sufficiently close to po and by restricting 4 to a small ball in BCP | we
may achieve

|[DoA(€ eveu™ )| < Cllfeveu || + 12 — o] (6.11)

for all £ > 0. Now consider the ball B5(0) C BCY, x BCY  around the pair (0,0) that has radius
d > 0. Choosing ¢ sufficiently small, (6.11) implies that the right hand side of (6.10) is a contraction
on By (0). In addition, choosing a sufficiently small neighbourhood U’ C U ensures that the right hand
side of (6.10) maps Bs(0) into itself. Together with the implicit function theorem, these observations
show that for each u € U’, equation (6.10) has a unique solution in Bs(0), that depends C**+1-
smoothly on p. We lose one order of smoothness here, due to the fact that the substitution operator
N is only C¥*1-smooth [16]. O
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We now proceed towards establishing Theorem 2.2. In order to meet the boundary conditions in
item (iii), we will need to insert z% = g(&) 4+ u® (1) (&) + v*(€) into the nonlinear equation (6.1). We
find that v must solve the equations

[Dev](€) = M™(&evev™, pu) + D1G(qe + eveu (n), pevev—, £ <0, (6.12)
[DevT)(€) = MT(& evevt, p) + DiG(ge +eveut(p), plevevt,  £>0, ’

in which the nonlinearities M¥ are given by

/\/li(f o, 1) = (Qg +eveu () + o, u) — DlG(Qg + evwi(u),u)(ﬁ — Glge + evwi,u). (6.13)

Let us write A(u) for the operator (2.5) associated to the inhomogeneous linearization

v'(€) = D1G(ge + eveu(p), p)ve + f(), (6.14)

in which we have eveu(p) = eveu™(p) for € > 0 and eveu(p) = eveu™ (p) for € < 0. We remark
here that the matrix-valued functions A;(§, i) associated to (6.14) that were introduced in (3.17)
are no longer continuous at £ = 0 for p # pg, but this will not matter for our purposes here. For
convenience, we introduce the following shorthands for w; > 0 and w_ < 0,

C(jﬁ) = C(jo,w"],C"), Cim C(lw™,0],C"),

C(Ezﬂ = C([Pmin,w" 4 rmax), C"), 08) = C([w™ + Tmin; "max), C").

(6.15)

We also recall the splitting X = Q(&, 1) & S(&, i) that holds for all £ > 0. Similarly, for all £ <0
we will use the splitting X = P(§, u) ® R(&, 1). Here we have introduced the spaces R(&, 1), that
should be seen as the natural counterparts of S(&, 1) on the negative half-line.

Lemma 6.2. Consider the parameter-dependent inhomogeneous linear system (6.14). Then there
exists a neighbourhood U' C U, with po € U’ and a constant Q > 0, such that for every pu € U’,
every pair w- < —Q < Q < w*, every pair (g7,97) € C(_w ) X C(—:ﬁ) and every pair (¢~,¢") €

Q(—00) x P(x), there exists a unique pair (v™,v") € CZ _. x Cﬁi*) that satisfies the following

(w™)
properties.

(i) The functions v* satisfy the linear system

g (&) forall w <E<0
A(p)ot](€) =gt () forall 0<¢ <wt (6.16)

(ii) We have evor~ (1) € P(0) & Q(0) ® T(0) and similarly evov™ (1) € P(0) & Q(0) & T(0).
(iii) The gap between v~ and v™ at zero satisfies evo[v™ () — v (u)] € I'(0).

(iv) The functions v* satisfy the boundary conditions

HQ(—oo)ve*vi = d)ia
Opoyevyrvt = ot (6.17)

in which we have introduced the shorthands g ooy = llg(—co ) and Ilp(oo) = lp (oo i) -
This pair (v=,vT) will be denoted by
(U_7U+):L3(9_79+7¢_a¢+7/%w_aw+)> (618)

in which L is a linear operator with respect to the first four variables that depends C**1-smoothly
on pi, with a norm that can be bounded independently of w®.
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In addition, consider any d € K* and write d* = Bug,y. g evod and d™ = Eup. o evid. Then the
following identity holds for the gap at zero,
(evid™,evov ), = (evidt,evout)o
+ <eVZ,—d7a evw—vi>w_,u - <eVZ+d+aevw+v+>w+,u (619)
0 _ * — wt *
+ J,- d7 (&) g7 (§)dE + [ dT () g™ (€)dE".
Proof. We first define the functions wt = Ajrl(u)g“‘ and w~ = A~ (u)g~. In order to satisfy the

conditions (ii) through (iv), we now set out to find 2+ € B(0), v?~ € B(0), @ e Q(0), PP e P(0),
S € P(c0) and 9 € Q(—o0) that satisfy the linear system

—pEywg = PPT + g evoEllg+ ) Y°,
—Ipywy = w3;+ HB(O)eVOEHR(w*ﬁ;L)'(/JRv
~Tpylwg —wg] = % + T up) (W + 5]

+1g [evoEll (- T — evoEllg(+ ) ¥%],
WP = T gy ) (1) 08 + 5]
+ Hb(o)TeVOEnR(u—,N)wR — eVOEﬂs(w+)M)T/JS] ,
Mp(ooy ¢t —wli] = ¥ + p(eoyevys Budy g, (1)[H® + 5+
+ I p(oo) Mt ) = Mp(oo) 9%,
Mo-oolé™ —wy] = ¥F + o oeve- Bup ()’ + w57
+Ig(—o0) MR- u) — o(—o0) ™.
Then upon writing @ = 1/1‘9 + B+ and o = w}: + 4¢P~ and defining

vt = wt+ Eug(o)(u)w‘? + EHS(w+,u)¢S’
vT o= wT + Buj (WYF 4+ Bl ) 9f,

— _
—Ilpo)[wo —wy] (6.20)

(6.21)

we see that the properties (i) through (iv) are satisfied. The exponential estimates in Theorem 5.1,
together with the results established in Lemma 5.2 and Theorem 5.4, ensure that by choosing a
sufficiently small neighbourhood U’ C U, with o € U’ and a sufficiently large constant Q > 0, the
system (6.20) can always be solved. Moreover, the inverse of the linear operator associated to (6.20)
depends C**'-smoothly on .

To verify the identity (6.19), it suffices to observe that for any continuous function d that satisfies
A*(p)d = 0 on the interval [0,&], we have

(evid,evoz)o,, = (evid,ever)e, —|—f50 d(&N)*[A(p)z](&)dE' . (6.22)

To see the uniqueness of the pair (v, v™") that has now been constructed, consider any continuous
function y € Cé‘iﬁ) that has A(u)y = 0 on [0,w™]. Writing z = Ellg(+ ,)eve+y, we find that
A(u)(y — z) = 0 on [0,w™], while ev,+[y — z] € Q(w™, u). This implies that evoly — 2] € Q(0, ),
which in turn means y € Q(0, 1) + S(w™, 1), with some abuse of notation. It is thus sufficient to
show that

Swh ) = Hg+u(P(0))
_ w K 6.23
R(w 7/1') = HR(W_,H) (Q(—OO)), ( )
but these identities follow directly from the discussion at the end of Section 5. O

We are now ready to consider a family of heteroclinic connections {g;};cs that connect the
equilibria {q} }¢e g+, ie.,

lim ¢;(§) =

Jim g6 = g7y (6.24)

For any j € J, let us write AU) () for the linear operator (6.14) that is associated to the heteroclinic
connection ¢; and PU)(0), Q) (0) and T'9)(0) for the spaces appearing in (6.5).
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Lemma 6.3. Consider the nonlinear equation (6.1) and a family of heteroclinic connections {q;}jers
that satisfy (6.24). Then there exists a neighbourhood U' C U, with ug € U’ and a constant Q > 0,
such that for every p € U', every family {we}ec 7+ that has we > Q for all £ € J*, every family
{g;,gj}jej with (g;,g;»r) € C’7 X C’(JrJr) and every family {®;}icr- € X, there is a unique

family {v; v} TYieq with (v v, ] ) € C(e,) X C(@ﬂ’ that satisfies the following properties.

(i) For every j € J, the pair (v} ,v; ) solves the linear system

[AD (u)o; 1) = g5 (¢1)  for all - wy <€ <0, (6.25)

AD (v ](&) =g/ (&) forall 0<¢ <wf. ’

(ii) For every j € J, we have evou; € PY)(0)& QW (0)&TW(0) and similarly evov} € PU)(0) &
QY (0) ® TU)(0).

(iii) For every j € J, the gap between v at zero satisfies evolv; — v;r] € TW(0).

(iv) For every £ € J*, we have the boundary condition

+ —_
ev+ v, —ev -
w, 1 =3 “_2 E+

1= (I)é, (626)
2

Nl

which should be interpreted in the sense of item (iii) in Theorem 2.2.

This family {vj_,v;'} will be denoted by

{v; v} = La({g; 9/ } A ®e}, 1 {we}), (6.27)

in which Ly is a linear operator with respect to the first two variables that depends C*+1-smoothly
on [, with a norm that can be bounded independently of the family {we}.

Proof. 1t suffices to choose a family {¢;, ¢+}]€j, with ¢7 € QU (—o0) and (bj € PU)(00), such that
the family of solutions defined by (v v, ; vi) = L3 (gj .95 ,(bj , ;L,u,w;,wj) satisfies the following
boundary condition for every ¢ € J*,

(t—3) — (0= + — At + - +
Hp(og) [(I)Z‘FQVW;F%LZS (gg+%agg+%70a0)] - d)ffé +K£7%(¢e+%v¢£+%)7 (6 28)
(e+3) (0 + - - - + '
HQ(—zoo) [veZr_ng (ngévggféaoao) —(I)g] - ¢Z+% +K£+% (d)ef%?gbzfé)'

)

Here we have introduced the obvious shorthand L3 = (L3, L;) and dropped the dependence of L3
on p and w*. For any j € J we can inspect (6.20) and obtain the bounds

K| < Kierem 4 K HHU“ L=
Wiyt
(6.29)
K7 < Kieo O‘wal—&-KQHH(SJ(?W) Hg(oi; ;

which ensures that the right hand side of (6.28) is close to the identity, for sufficiently large 2 > 0
and a sufficiently small neighbourhood U’ C U. O

With this result we are ready to establish the existence of the family {v] $V; vi}ecs that appears
in Theorem 2.2. We will defer the proof of the estimates (2.18) to the next section.
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Proof of Theorem 2.2. In order to find the family {v;,v;f}, we will first fix the family {wy} and
solve the fixed point problem

{07 0F } = La({M- (0, 1), M (o i)}, {0 s (). (6.30)
First note that for some C' > 0 we can make the estimate
| D2M* (&, 0, m)|| < Clol, (6.31)

uniformly for £ > 0 and p € U’. This allows us to proceed as in the proof of Proposition 2.1 to obtain
families Uj-[ ({®¢}, 1, {we}) that solve (6.30), for small values of {®,} and y sufficiently close to yo.
Moreover, these families depend C*-smoothly on {®,} and p, where we have again lost an order
of smoothness due to our use of the substitution operators M*. Upon choosing a sufficiently large
constant 2 > 0 and subsequently using (2.15) to pick the appropriate (small) values for ®, = ®y(u),
the fixed point of (6.30) will satisfy the properties (i) through (iv) in Theorem 2.2. Since ®;(u)
depends C*-smoothly on y, the fixed point of (6.30) will share this property.

It remains to consider the smoothness of the jumps with respect to the family {w;}. Let us
therefore fix a sufficiently large Q > € and reconsider the setting of Lemma 6.2. Instead of looking
for a pair (v—,v") € C(ew,) X C(ﬂiﬁ) that satisfies the properties (i) through (iv), we will look for a pair

- ot o
(v™,v )EC’(_Q)

|w®| < Q. In order to solve this modified problem, let us adapt the action of the extension operator
E on the space S(w™, ), to ensure that Ei € Cg for ¢ € S(w™, ), with a similar modification
for the space R(w™, u). The exact details are irrelevant, as long as we still have A(u)Ev = 0 on the
interval [0, w™]. After this modification, it again suffices to solve the linear system (6.20). To see that
g+ ) depends smoothly on w™, we note that for any w, we can redefine the space S(w, 1) so that
it contains solutions to (5.1) on the slightly larger half-line [—1, w,]. We can then obtain solutions to
(5.1) on the interval [0,w™] with wt = w, + Aw, by solving (5.1) with A;(&, u, Aw) = A;(§+ Aw, p)
and shifting the resulting function to the right by Aw. This observation allows us to treat the
parameter w™ on the same footing as u. We emphasize that these modifications do not affect the
pair (v™,v") when viewed as functions in Cé‘i,) X C(ewﬂ, due to the uniqueness result in Lemma 6.2.
Applying similar modifications to Lemma 6.3 and the construction above now completes the proof,
using the estimates for R; that are obtained in the next section. O

X C%) that satisfies these properties, still with the original quantities w* that have

7 The remainder term

Our goal in this section is to obtain estimates on the size of the remainder term R; that features in
(2.17). To set the stage, assume that for some j € J we have d € K((AD))*) with [evid| = 1. We
also recall the functions d*(u) € Q*(0, ) and d~(p) € P*(0, ) that are defined by

d+ = FEu’,. evid,
7(#) Q (o)(ﬂ) 8 (7.1)
d=(p) = Eup.q(pevid.
In this section, we will study the slightly modified remainder term ﬁj, that is given by
ﬁj = <ev3d*7 evov*)g,# — <6V3d+, eV()U+>(]7lL
- <eV:;r d+7 ve;+1 [Qj+1 + ’U/;+1(M) - q;f+%]>w;r,u (72)
+evi-dm evp gi-1 w0 = 4 Dos e
In the terminology of Theorem 2.2, we see that the difference satisfies ‘7%] —R;| =O(Ju — pol e™22%),
but our final estimate on ﬁj will satisfy the improved bound
R; < llevid|[ [Ca i — pol* 72 + Coe ], (7.3)
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To simplify our arguments, we introduce the following quantities that are associated to the boundary
conditions in (2.15),

07 = ev%i[qj+uji(u)—q;‘i;],
of = TP (evarle +uf ()] — vyl +ui (1), (7.4)
O = TG (v, gy +uy ()] —evyr [gm1 +ul ()

We also introduce the supremum norms O] = sup,¢ 7 ||®Ji{| and similarly ||®|| = sup;¢ 7 ||<I>]i|| In
addition, we introduce the terms

+
Ty

HHP(oo S~ P(oon) HP(oo)H + HD (o) Mgt ) — HP(oo,m]HP(oo)H
[T o) Moy — T (o010 (o) |
T, = Hg(—o0)[II R(w ) — Hg(-, )]HQ H + HD (oo [IT R(wy ,pu) HQ(*“’“)]HQ“C’O)H
[T ooy Mt sey — Mo seuoy Moo
(7.5)
We wish to remark at this point that

T p (o) TP (00,0) = TP (00,p00) P00y || = Ot = p10]?), (7.6)

with a similar identity holding for the projections on the Q-spaces. To see this, we mimic the
constructions of S(&, 1) and Q(&, 1) in Section 5 and write P(oco, u) and Q(oo, 1) as graphs over
P(o0) and Q(o00), using functions u}(oo) and u*Q(OO) that should be seen as the analogues of u’g(g)
and ug ). We also introduce US (p) : X — X via UL (1) = wp o) (1) p(0c) + o0y (1)l g(o0)
which is invertible for u close to pg. This allows us to write Hp( ) = u};(oo)(u)Hp(oo)[U;‘O(u)]’l
and hence

Dyullp(oc,ny = [DHU’*P(OO)](M)HP(OO)[U:O(M) !

]
~Up a0y () ILP(00) [UZe (1)) Dt (o) (1)L p (00 (U (10)] 1 (7.7)
~Up ooy ()L (00) (Ul (1)] ™ [D iy (o] (1) 00 (U ()] -

Wedging this expression between Ilp () and evaluating this derivative at u = o yields
(e (00) DIl p (o, i) P (o0)ju=ps = Tlp(oo >[Duu*p(oo>]( 0)1Lp (o)
I p(o0) [Dptp (o0 ] (110) L p(o0)
(

—Ip(oo) [D HuQ(oo)] 10)TIQ(00) TP (o0)
= 0.

(7.8)

Our main focus will be to study the rate at which the error terms Ej decay as the quantities
{we }ee 7+ tend towards infinity. In order to eliminate the need to keep track of constants, we introduce
the notation

ap. {we}) <. b fwr)) (7.9)

to indicate that there exists a constant C' > 0 such that for all 4 € U’ and families {w,} that have
wy > Q for all £ € J*, we have the inequality

a(p, {we}) < Cb(p, {we}). (7.10)
As a final preparation, we will assume that for every j € J we have obtained the splittings
X = 8wfpos (W, meQw w, (7.11)
X = R(wj,pu)®R (0, 1)@ Pwy,p),
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as introduced at the end of Section 5. We write ag and ozf% for the exponential rates associated
to the fast spaces Sf(w*,u) and R/ (w™, ). In view of this more detailed splitting, we modify the
definition of v* in (6.21) to make it read

vt = wt+ EUQ(O (1)o@ + El_.[sf(er,“)wS + EHSs(m—,M)?/JS»

_ 7.12
vu o= we +Eup(0)(p)¢P+EHRf(W’H)¢R+EHRS(W,H)¢R. (7.12)

Our first goal will be to fix a j € J, consider small boundary values ¢ and ¢~ and get estimates
on the solution of the nonlinear fixed point problem

(07 0") = La(M™ (07 ). MF (0F, 1), 67, 6% o™ ™), (7.13)

in terms of ¢t and ¢~. We proceed by introducing the notation w~ = (w™,y% ¢F), wt =
(wt, 9, ¢%) and w = (w™,wt, YT, YT Y9 %) € W, where W denotes the space

W = C(@w_) x O, 4y X Q(=00) x P(0) x Q(0) x P(c0). (7.14)
The problem (7.13) can now be written as
w=[l- K] ([JOBO + JiB1 + JoBo] (M™(w ™), M (w™)) + J3(¢7, ¢+)>7 (7.15)

in which the operators By, B; and By act as

Bolg=g") = (AN (wg™ AT (w)gh),
Bi(97,9") = evoBo(9~,9"), (7.16)
B2(g_ag+) = (evw*>evw+)BO(g_ag+)v

while the precise form of the operators K € £L(W) and J; can be found by inspection of (6.20). Note
that for any b € W we have the bound

|[I - K]™"b — [I + Kb < [I - | K[~ || K| [|EKb . (7.17)

Now consider the first order estimate wo = [[ — K]~ 1J3(¢~, #T). Upon introducing the quantities

T(;r = efasw HHS (w+u)¢+“+eiasw ||¢+||

Ty = e [Mpeem o | + e |67, 7.18
T = rremesst gt o
T, = r7e*= o7,

together with Ty = T, + 71" and Ty = Ty + T, we find wo = (0, 0,95, T @ %), with

VR —o=|| <. o7l + e [To + T4,

P <. To+T1,
Ye <. To+1T1, (7.19)
|05 —oF|| <o vt gt + e [Ty + T7).

In order to see that these are in fact all the terms, we note that we can use a separate norm on W for
each of the components. In particular, the operator K remains bounded, independently of w™ > Q
and w™ < =, after the scalings ¢S ~ eTsY ws and wR ~ e®rY pf which allows us to get the
estimates on wP and 1/)Q To obtain the estlmate on ¥, one can use the scalings 1/1@ ~eTrw wQ
wP e~ QW ¢P and q/)R — XRW p—aQu ’l/)R

We now include the higher order terms using the expansion

W = Wq-+ [I - K]il[JQBO + J1B1 + JQBQ}(Mi(WO_)7M+(W8_)) + (Vi, V+), (720)
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in which [|[VE]|, <. ||¢||37 with ¢ = (¢T, ¢ ™). We thus find that the fixed point w = (w™,w™, T T @ %)
of (7.15) can be bounded by

[l <. em2ase || g)|? )

(il S T PATES

[ <. eere g,

Tt ], <o e g2, 721)
[WR —¢~|| <o v 67|+ e [To+ T3] + |16, '
47| <o To+To+e s [|g]* +exre o],

49 <o To+Ti+e s ||g]” + eone o),

05 —ot|| <o rT ot + e [Ty + T ] + I8,

in which we have split w* = @* 4+ w*. Adding higher order terms does not change these estimates.

We are now ready to move on to the full system. We will use (6.28) to find the family {¢;, d)j}
in terms of the boundary conditions {®; } and {@j‘} To this end, we reformulate (6.28) as follows,

+ _ et = 7
¢j - (I)j + HP(‘X’) [ev‘”;ﬂwj‘*‘l + ve;HUp(O)wﬁrJ
R
e eoo) Mgy ) T Mrs sy, — HQE <l (7.22)
¢o; = @7 +1lg(—) [evw;r_lw;r_1 + ve;r_luZQ(o)wj—l]

S
FHooo) Moty F Msrior |y = Tpeeo)J¥51-
We first set out to find the lowest order terms, i.e., we compute
- (1 _ _ _ _
{677,051} = [D{o; . 6O ({25 ). {2 }) = [T - K] ({®; . {8 }), (7.23)
for some linear operator K. We can use the estimate (7.21) to bound the components of K by

K ({e LA D] <o el + rj.—ﬂeapwfﬂe—aswﬁl [

II

+ e¥PYi+1e¥RYj4+1

Re (Wi om) Gi41 H
- +
QAPW; g ,~ASW, +
+ e F¥itte i HHSS(le,u)CJH
- £, ot
apw; apWw; — —gw; + H
+ et [enin e || + e s [ ]

- +
e S
Te e TGl

o CJre - B (7.24)
[ Qe b e D] <o riafleaf| +riiae e met il |

+ -

+emtetmetntin HHRS(wf . u)cj_flw
+ + o

—aqul_, —aswl +

4 e ¥R%i-1¢ O;S‘“J 1 ‘Hss(wj+1,ﬂ)ij—1‘
+ - +

e @ e legy || e ey ]

e oy

Let us now introduce the scaling factors
5~ g, 72

~ + U
¢] ~ 6&ij_1¢j .

In terms of these scaled variables, the operator K can still be bounded independently of the family
{we}eeg~, as long as wy > 2 for all £ € J*. We wish to invoke the general estimate (7.17) using
these scaled variables. Let us therefore split up K({®~},{®*}) = {a",a’} + {b~,b"}, in which

Sx Tj+—1 Héj—le

|
Al <o raller

(7.26)
j+1 | )
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while the family {a~,a"} can be estimated using the scaled norm according to

H{a‘,a"‘}HSC <, So, (7.27)

where we have introduced the quantity

So = Ssupjey {eo"w; Re(w- m J H +e” asw) ‘Hss(wj,u)q)jH
f —
+ ARW; (ﬁ._ + 70‘5“’ (p-&-
6aRwi H73 || +€ B H iCUSer - . (7.28)
+et Iy +rfl]|eg ] +e [y i1l
e | e g [ )
We now compute K({67,b"}) = {e",et} + {f~, fT} and obtain the bounds
e <o iy [
He] H S« J+1Tj ||(I)J Ha (729)
= e <+ So

Since the family {e,e™} is now bounded componentwise by the family {®~, ®T}, we may write

) =0 | <o llef] 4 e,

(7.30)
¢§‘1)+ —0f|| <o 15 |95 + e So.
Adding the second order terms, we arrive at
67 = @7 <o ralllefy ]l + 12IP) + oo i[5 + @), (7.31)
6 = @5 <. j+1H¢j+J|+lmn\] + P58y + [|]|].

We are now finally in a position to estimate the error term. To this end, we write ﬁj = ﬁj +7€J_
and represent the two parts in the following manner,

Ry = fo- (€)M (€ evervy , mde + (evid™, 07 = &)), -,
+ <eV::J d- [HR(@'*,;L) - HQ(foo)]ve; v]'_>W;7H
- <eV::,d_ [ R((.u JHL) HQ(foo)][(_); _6;;1]>W;aﬂ
< ::*d HR(w- ,M)®f>w-_vﬂ7
St wf M (€ Tt —of (732
RI = Jo @ dr(EHYMT(€, every; Fopde — <€V +dT, 07 — @] >wj+,p
+
- <eij+d ) [Hs(w;r,p) - HP(OO)]QV?TUJ >u_lj e
+ <eV:);_rd+7 [HS(w;r,u) - HP(OO)][G)J o @j+1]>w;r7lt
- <evz/_+d+,l'[s(wj+7“)®j>w;r7u.
In order to complete our estimate, observe that ITg 9 <, [|©]|, because the function ¢; +ul (1)

is contained in the stable manifold of qj L1 Notlce also that for some small constant € > 0, we may
2

write dT () = O(e‘<as+5)5) as & — oo, since the characteristic equation det AT (z) = 0 associated
to the equilibrium q +1 has no roots in the strip 0 < Rez < ag. Putting everything together we
obtain the following result which completes the proof of Theorem 2.2.

Lemma 7.1. Consider the setting of Theorem 2.2. For every j € J, we have the following estimate
for the error term R; that is defined in (7.2),

R; <. e *s“i[|o]? (J+1—|-7‘ )||@||+eapwj+lso]

Jone; o (7.33)
" [H@H + (rf" ity )O| +e” 1—150}.
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8 Derivative of the remainder term

The main goal of this section is to provide an estimate for the quantities Dwﬂ%j, forje Jand/l € J*.
Recalling the fixed point problem (7.15), together with the solution w = w(¢~, ¢, w™,w™) € W,
we set out to compute the derivatives Dy+w and D,+w. We start with the observation

D, sw = [I*K]il[Dw:tK]W (8 1)
+[I — K]ilDwi[JOBO + 1By + JQBQ}(Mi(Wi),./\/ﬁF(WjL)). '
Inspection of (6.20) yields the identities
Kl <o 0 e |
o Kyrlw <o e [gs- pyy” | + ek [l
e g+ b 9], 2

g
IA

e [ b + ek [
o e el T |
e )

S

+

is
2,280, 8 3,

g

IA

VASRVAN

Let us write Dwi = [ — K]~'[D,+ K]w. Utilizing the bounds (7.21) and performing a calculation
in the spirit of the previous section now yields the estimates

(Dw)yr  <u P [T + T + e em e [Ty + T ] + e [|o]*],

(Dwg)yr <o T +T7 +emosw ema@ [T 4 Ty ] 4 em0se ||, (8.3)
(Dwg)ye <o To +Ti e emoaw [T 4 T 4 e7os< g2, '
(Dwd)ys <o 1T 6T+ e [T+ T + [l

Inserting this back into (8.1), we find the following estimate for the derivative D +w, where w =
(w™,wt, T, P h@ %) is the solution of the fixed point problem (7.15),

D@ [lg <o el [emoswT 4eane] g%,

1Dy @, <o eomeeoreemase |g]|?,

D@y <i el [emosw 4 eaneT] g,

IDgr@t|l,, <o et o),

[Dorwf] < e [T + T 4 emeseemeae™ [Ty 4 1)) 8.4)
+emaswgmasw’ 4 ganw” 4 care”] ),

[ Do+ 7|| <. Ty + T e sl e [T 4 T + e s [|g]f

| D09 <o Ty 4T +eos@ emoaw™ [T L T |+ em@s@ " ||g)?,

[romed| <o gt e [T + T ) + o)

Using a similar calculation, we also obtain

D@~ ](Ad", 207)]ly < e25=7 [l A,

IDsT ) AGT, A7)y, <o e [16]l [ AG],

IDs@ (A6, A7)y <o e [l] A,

ID6w ) (AG*, A7), o e ] A0], . ®5)
I[P R)(A07, AgT)| - < [[AGT [+ e e JAGT | e [l | Ag),
I[DsyP)(A0", Mg <o ATy + ATy + [ 4 e ] [l9]] [ Ag]l,

[Dev(Ad Ag7) | <o AT+ ATy + e 4 eon g | A,

|DsvS)(A0*, ApT)| <o [AGT] + e e [ AGT |+ exm 9| [ Ag)]-
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These expressions can be used to determine the derivatives D, (bj[ for j € J and ¢ € J* using
the boundary conditions in (7.22). Let us therefore fix some j* € J and determine the family
{b;, 0] *1,e7 that describes the derivatives of the family {¢~, ¢} with respect to w . up to first

order in ||®], i.e., i b]iH <, ||®||*. Careful inspection of (7.22) shows that we must solve

the coupled system

by = B+ LI (by1,000),

J 8.6
by = B+ L (b b0 ,), (8.6)

in which the norms of Lj[ share the estimates for K ji given in (7.24), while the initial value B can
be bounded as

ozpw._*

HB-+ = 0Dy || a0 eale D+ ¥5. di
HBJ H < Gjjeq1e e ] (8.7)
+ 6] 7 «‘rlr + ’(/}S ]

As in the previous section, a small number of applications of the operator family {L;, L;r}, together
with the scaling (7.25), enables us to obtain an estimate on the solution to the coupled system (8.6).
We obtain

oy = 8Dt <o drzart awﬂlE’ (8.8)
— —aguwl :
Hb] H < 5]] +1[7’ . D (I)+ j* } +e e ]71E’
in which we have defined the quantity
+ + . —aswh
E=E/ ., = Tj —I—TJ +—l—?“ eORYj7 11 || ; afs‘*’i
e Mg b, Do, || + €770 || D, @ (8.9)
J* J
+ [e—aswj* + eaRw‘]*‘Fl}T t HD (I)+ ToSW ik

Of course, similar estimates can be obtained for the derivatives with respect to w;. ;. In order to
combine these estimates, we now fix £* € J* and introduce the following quantities for any ¢ € J*,

[y = [of |+ |, [+ [P0+ |Dun
s _
28], = Hsb‘(we,mq’ | ‘HSS(w,mee*‘I’ 1) (8.10)
“I’f‘l’s = HRS(*W,M)(DZJH ’ + ‘HRS(*M’#)DUJZ* (I’g_+1 )
Ty = + ~1 + T€+1
We also introduce the quantity S7, which should be seen as the sum of the quantities E&*_l) +
2
E(_z*-s- 1) after insertion of the inequalities (7.31),
- « | HS - « |®R
S = e sve By, L Te B (74
4 [efaéwz* 4 efawaz*] (bé* |1
+ [em@swer 4 emanwe]p, ‘(I)Z*h
- ._ R —atwpe_ —aRwes_
4 emORWer 1 ‘(I)E**lll,s + e~ YRWer -1 |<I)E*_1‘1 + e _qeTORWe 1 “bf*—lh (811)

+ e” @s@er 1 }‘I)‘Z_H’l T e=abwer 1 [ g 1]y + Terpre” S+ | Dy gy

+ €_asw[‘* e—apwe* SO + e—aRwe*_le—aQwe*_lso
+ e—ang* e—OCQLu'g* SO + e—aswg*+1€—apw£*+l SO

+ 2|
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We are now ready to put everything together. Using (8.8) together with the definitions above
and inserting the second order terms in the appropriate places, we obtain the estimates

Do 6ty -2y

—Qpwy* -
<i e S1 —|—7‘£*+% | P |,

_ _ . — x 2
+T£*+%[€ cawe So+r;7%e aree Sl + (|27,

HDUJ“ [¢€:+% — CI);”_%] <, e Qw4 r;_% | D g 1 (8.12)
trf g leTorer S+ s e Sl + 1@,
. 2 2
||Dw*¢j|’ <, e*PUinSy, forall j#£6* — 1,
||Dw[*<b;|| <, ef"‘Q‘”JJ‘r—lSl7 for all j # £* + %

With these estimates in hand, we can move on and analyze (7.32) in order to obtain estimates
for the quantities D,,.R;. Care has to be taken to distinguish the terms in (7.32) that depend
directly on wy«, from those that only depend on this quantity through the family of boundary terms

{¢™,¢T}. Using methods similar to those employed here to estimate the derivatives ’Duﬁj‘ and
‘Dqu; R;

, we obtain the following result.

Lemma 8.1. Consider the setting of Theorem 2.2 and recall the error terms (7.2). Fix an ¢* € J*
and let j € J be such that j # 0* + % Then the following estimates hold for the error terms {R},

Dw[* RZ**%

= ‘ﬁe*f% ‘ +em s [0 + re-][Dely
4 g QSWex g apWer Sl
+ €_aRwZ**16_aQw“*151,

<o [Reiy|+emenee O] +re] 19, (8.13)
4 e T ORWer g aQUex Sl

+ e T ASWet 41 p T P Wk 4 517

~ —aswT - 7 —aqu]
Dwe*Rj‘ <o 7MY MY S + e eT M1 S

Dwe* Rf*-‘r%

In addition, for all j € J we have the estimates
Duﬁj
D,D.:R;

S* |M _ N'0| e—Qaw + e—Sou.u7
‘ (8.14)

o=l e e,

IN

in which a and w are defined as in Theorem 2.2.

We are now ready to consider the orbit-flip bifurcation for (2.1). An application of Theorem 2.2
to the setting of Theorem 2.3 yields a finite dimensional bifurcation equation, that is very similar
to the one obtained in Chapter 4 of [16]. The calculations contained in that chapter carry over to
our setting and can hence be used to establish Theorem 2.3.
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