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Goal: Method:
Rule 1: Describe the topology of the uni- | Consider the quotient topology
tary dual. on the space of coadjoint orbits:
G =~ g"/G
Rule 2: Construct the unitary irreducible | Take a polarisation h C g sub-
representation 7w associated to | ordinate to F, and set mp =
the coadjoint orbit of F' € g*. Indfl PF.H-
Rule 10: Compute the Plancherel measure | Decompose the Lebesgue mea-
dP on G. sure on g* into the Liouville mea-
sures on the coadjoint orbits.

Table 1: User’s Guide to the orbit method [Kirl5, p.xix].

Feel free to remark any mistakes or gaps in these notes. Any mistakes are due to me, as are any
inaccuracies in claims without reference and the computed examples. The main reference for the
method is [Kir15], although most preliminaries were found elsewhere.

1 Introduction

The orbit method could be described as a heuristic on where to look for unitary irreducible repre-
sentations of Lie groups and their properties and how to understand them geometrically. For certain
classes of Lie groups it modifies to theorems. When it works (already), it consists of some 'rules’ as
in table 1. We will discuss rule 1,2 and 10 for the Heisenberg group and catch a glimpse of the proof
for simply-connected nilpotent groups, for which the rules are a theorem without modification. This
was the type of group discussed in the seminal paper on the subject.
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2 Part I: Lie Groups and Coadjoint Orbits

We start by providing some background for Lie groups, as these are the groups in the definition of
the coadjoint orbits. We restrict our attention to matrices for exposition.

2.1 Lie groups

Definition 1. A Lie group G is a smooth (Hausdorff, second countable) manifold and a group,
such that the multiplication is smooth.

This class of topological groups could be called ’rigid’ in the following sense:

Proposition 1. e The inversion mapping is smooth (so Lie groups are topological groups) [HN11,
exercise 9.4.1]

e Continuous morphisms between Lie groups are smooth, and so each topological group admits a
unique Lie group smooth structure [HN11, thm 9.2.16]

e Hilbert’s 5th: Locally euclidean (Hausdorff, second countable) topological groups are isomorphic
to a Lie group [Taol4]

To a Lie group G one can associate a Lie algebra g, realised as the tangent space at the identity,
and the following subclass of Lie groups provides a convenient description of this Lie algebral.
Emphasis be put on the remark that this is merely an expository choice.

Definition 2. A Matrix Lie group is a closed subgroup G C GL,, := {A € Mat,(R) | det(A) #
0} ¢ R™} for some natural number n.

While any subgroup of GL,, is a topological group, the closedness condition is necessary and
sufficient for it to be a Lie group [HN11, prop 9.3.9].

Definition 3. The Lie algebra of a matrix group G is the vectorspace
g:={A € Mat,(R)|VteR: exp(td) € G}.
This is a vectorspace, and indeed closed under taking the commutator bracket [A, B] := AB—BA
[HN11, prop4.1.4].

Definition 4. A Lie subalgebra of a Lie algebra h C g is a subspace closed under taking the
commutator.

By definition, the exponent of a Lie algebra element A € g will lie in the Lie group G, and hence
we can create the following Lie groups:

Definition 5. From a subalgebra ) C g, we create the Lie group exph C G, generated by elements
of the form exp A for A € b.

These will play a role in the construction of unirreps := unitary irreducible representations of G.

Example 1 (Heisenberg). As a running example we take the Heisenberg group H as it is low-
dimensional enough to be convenient for calculations, nilpotent enough for the orbit method to
work (without modifications, and minimizing symplectic geometry) while demonstrating interesting
orbit-related behaviour of Lie group representations in general.

1 a c
H:= 0 1 b]l]abceRyCGL;s
0 0 1

is a (unimodular) matrix Lie group, with Lie algebra
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1These are some results to convince one that this expository restriction is not that bad: At least compact Lie
groups and Nilpotent Lie groups are of this type. For compact Lie groups this can be shown using Peter-Weyl, and
for Nilpotent groups see the references in [Kirl5, p.72].

Also, by Ado’s theorem, every finite dimensional Lie algebra can be represented as some matrices with the
commutator as Lie bracket [HN11, thm 7.4.11]. As a corollary, we get Lie’s third theorem, asserting that every
finite dimensional Lie algebra is in fact the tangent space at the identity of some Lie group [HN11, thm 9.4.11].



as one can compute easily since the exponential truncates after second order. It is generated by
matrices

X = 7= Y =
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satisfying the relation [X,Y] = Z.

The Heisenberg group is an example of a Nilpotent group: a (Lie group isomorphic to a) matrix
Lie group consisting of matrices that are upper-triangular with 1’s on the diagonal. Astoundingly:

Proposition 2. [Kir15, p.72] For simply-connected Nilpotent groups G we have:
o The exponential map is a diffeomorphism exp:g — G

o G is unimodular, and the Lebesgue measure on its Lie algebra induces a biinvariant Haar
measure via exp

2.2 Orbits

A Lie group acts on its Lie algebra’s dual, introducing the orbits of the orbit method. Although
we minimize the discussion of symplectic geometry aspects in this exposition, it might be good to
mention that these coadjoint orbits admit a natural symplectic form? [Kirl5, chapter 1.2], appearing
e.g. in the formulas of the 10 rules.

Definition 6. The Adjoint representation of a matrix Lie group G,
Ad:G — GL(g),9 — Ad,

is defined by
Ady(A) == gAg™'.

It is a real representation of the topological group G.
The Coadjoint representation is then the contragradient representation on g* := hom(g, R):

Ad* : G — GL(g"),
Ady(F) = F o Adg-1,
precomposing a functional F' with the adjoint representation.

By rigidity, these are indeed smooth maps.

As a tangent, the modular function on a Lie group can be computed as follows:

Proposition 3. [HN11, def 10.4.9] The modular function of a matriz Lie group satisfies:
A(g) = | det Ady|.

Exercise 1. Understand why this formula equals 1 for your favourite unimodular group, which is

SU(2).

Let Qp € g*/G denote the orbit of the functional F', it is a topological space by the subspace
topology in g* with the compact-open topology. For connected nilpotent groups the orbits are cut
out by polynomials [94, lem 7.11]. For simply-connected nilpotent groups, the orbits are simply-
connected too [Kirl5, p.72].

We introduce one last notion before we look at some important representations®:

Definition 7. Given a Lie algebra g and a functional F' on it, a Polarisation for F' is a maximal
Lie subalgebra h such that

F([b,b]) = 0.

2In fact, coadjoint orbits are the symplectic leaves of the Poisson manifold g*, and in some sense universal examples
in the Poisson context, in that homogeneous Poisson G-manifolds naturally cover coadjoint G-orbits. [Kirl5, p.17]

31t corresponds to (G-invariant) real polarisations, i.e. integrable distributions with Lagrangian fibres over the
symplectic manifolds, in the context of geometric quantisation. [Kirl5, p.28]




The maximality amounts to the formula
2dimb = dimg + dimStabp.

Here Stabp denotes the stabiliser Lie group of F.
Given a polarisation, one can construct a 1-dimensional unirrep of exp(h) given by:

PF. (eX) — eQTI’iF(X)7

acting by multiplication on C. An idea of the orbit method is that these unirreps induce the (classes
of) unirreps, as in rule 2 of 1.

Lemma 1. [94, lem 7.7] These unirreps are well-defined.

Proof. (sketch) The point is that we have the BCH formula for the product eXe¥ = ¢X+Y+3[X.Y]+ higher commutators
so prp need a priori not be a homomorphism. However F' vanishes on commutators, so that

)

X+Y+%[X,Y]+ higher commutators ) — 627riF(X+Y)

pry(eXe’) = ppyle = prp(e)prpe’).

O

The maximality condition for polarisations further ensures that they induce irreducible repre-
sentations [94, thm 7.2].

Luckily for us, polarisations exist for any functional for nilpotent Lie groups [Wal77]. There are
some theorems and algorithms to determine polarisations as mentioned in [94], converting a part of
the problem of finding representations to one of Lie algebras.

Consider the following examples of orbits, which we portray as orbits inside R3.

Example 2 (Heisenberg). Recall that the vectorspace of matrices has a non-degenerate bilinear
form by tracing the product of two matrices, and compute that then h* consists of upper-triangular
matrices. Note that

MatsR/h* = b,

A+pt = tr(A).

This isomorphism intertwines the coadjoint action with the induced adjoint action on the quotient:

Ady(tr(A.)) = tr(Ag—'_g) = tr(gAg~'.) = tr(Ad,(A).) = Ad,A+ bt

0 0 0 0 1 0 0 0
Let X =1{0 0], Z=10 0 0)J,Y=[0 0 1] beabasisoflh, and X*,Y™*, Z* the
0 0 0 0 0 0 0 0

o o

dual basis. Then the isomorphism is generated by

h* — Mat;R/h* =~ R?

00 0

X*— [1 0 0f+(1,0,0)
0 0 0
[0 0 0]

Y*— (0 0 0 —(0,1,0)
0 1 0
[0 0 0]

Z*+— [0 0 0|+ (0,0,1)
1 0 0

Here the square brackets remind us to consider the matrices up to upper-diagonal elements. We

1 a ¢
thus compute the orbit of (z,y, z) by conjugation of a general element [ 0 1 b | as the collection
0 0 1



strict lower-triangular entrees of

1 a ¢\ [0 0 O /1 —a (ab—¢) [az +cz cy—a(axr+cz) —cby— (c—ab) (azx + cz)
01 bf|xz 0 of|l0 1 —b =|bz+ax by—abz+z) —by— (bz+x)(c— ab)
0 0 1 z y 0] \0O O 1 | = y—az —by — z (c— ab)
[0 0 0
= |bz+z 0 0
z y—az 0

Thus
Qg = {(@+bz,y — az,2) | a,b € R*}.

If z = 0, the orbit is just a point:
(xay7 0) = Q(av,y,O) = Qw,y-
If z # 0, the orbit is the plane given by the value of z = z:

Qs Q..

W) T
(For later use we mention that the symplectic form on €. is w, := 1dz A dy [Kirl5, p.62]).

Example 3 (SL). Its Lie algebra sly = R? in an intertwining way. The coadjoint orbits are the
connected components of {(z,y,2) | % +y? — 2% = C} \ {0} for some C € R, and the origin. For
C > 0 we get hyperboloids, C' < 0 gives paraboloids, and C' = 0 gives the cone. We note that
in the Iwasawa decomposition SLy = ANK [DE14, thm 11.1.1], the stabilisers of points of the
hyperboloids correspond to A, for paraboloids to K, and for the cone minus the origin to N.

Example 4 (SU(2)). The coadjoint orbits will be concentric spheres, including the origin. We
note that the stabiliser of a sphere corresponds to the maximal torus S C SU(2). Indeed Qp =
SU(2)/Stabp = S3/S' 2 52 referencing the Hopf-fibration in [DE14, lem 7.5.6].

Now that we know what the orbits in the orbit method are, we look at some general constructions
in the harmonic analysis of locally compact groups, that appear in the rules 1 and 2 in table 1.

3 Part II: Induced Representations and Topology

Consider now just locally compact groups. In this section we extend the induction procedure for
compact groups in [DE14, chapter 7.4], and introduce a topology on the unitary dual.

3.1 Induced representations

The general reference for this subsection is [Kanl3, chapter 2].Note that this book takes the L,
point of view of induced representations, for right actions, and assumes f(xh) = w(h)~!f(x) as

the equivariance condition, which we keep for convenient theoretical reference. At the end of this

subsection we translate it to the convention we have seen?.

Let a locally compact group G, closed subgroup H and unitary representation (m, Vy) of H be
given. We discuss three incarnations of induced representations®, the first of which might be the
most intuitively comparable with what we have seen for compact groups.

Recall that for compact groups, the irreducible representations are finite dimensional, continuous
functions are integrable, and the modular function is 1. In general, define on H the 'mismatch’ in

modular functions: §(h) := 4/ iggg

4As does [DE14] in the compact case, [Kirl5] uses equivariance condition f(hx) = 7(h)f(x) in the function space,
and represents by right regular representation. Then [Kirl5] creates a section induced representation in solving
the equation v(yH)x = h(yH,z)y(yzH) for h and representing G by [z - fl(yH) = n(h(yH,z))f(yzH) on a space
L?(G/H, py) for a measure p associated to the section ~, which is assumed to exists on a certain subset of G/H,
and continuous.

5The equivariance condition on the functions can be understood as requiring the functions to be basic with respect
to the representation 7, in the sense of vector-valued sections of principal bundles, so that these equivariant functions
G — V correspond to sections of the associated vector bundle G/H — G X V. In this sense the induction
procedure can be interpreted as an ’extension of scalars’ from V' to (sections of) G X V, and in fact for finite groups,
the Frobenius reciprocity theorem (induction-restriction adjunction) is the extension-of-scalars adjunction for modules
(by viewing G-representations as C[G]-modules).




Definition 8. The (intrinsic) Induced representation Indfﬂr is the completion of the space
Fy(G,m) == {f € C(G,Vz) | supp f/H compact , f(xh)=n(h)~"f(x)i(h)},

with innerproduct

(f.g) = /G B f (@), (@) v, d,

o H
for any ¢ € C.(G) : @bsuwHHUsumWH

[Indr(z) f] (y) == f(z™"y).

The independence of such a function v can be shown by (even more intrinsically) equating this
innerproduct with the volume of G/H with respect to a complex Radon measure depending only on
f,g as in [Kan13, prop 2.20]. The unitarity of this representation is saved by the twisting by ¢ in
the function space Fs(G, 7).

Recall that for subgroups such that 6 = 1, and only for those, there exists an invariant Radon
measure on the quotient, and we have the Quotient Integral Formula as in [DE14, thm 1.5.3]. One
can extend also this (with some work):

= 1. Represent GG unitarily on this space by

Definition 9. A quasi-invariant measure on G/H is a regular Borel measure p, such that
ue > > u”.
Here p*(A) := p(zA).

It is an invariant measure according to the null-sets, in that translates of null-set are null-sets
still.

Proposition 4 (Quotient Integral Formula). There exists a quasi-invariant regular Borel measure®

w on G/H, such that the Radon-Nikodym derivative gives a continuous function

GxG/H —s C,
(o yH) = 0 ).

Furthermore, there exists a continuous, strictly-positive function p such that Vf € C.(G):

/G o /H F(ah)dhdp(eH) = /G (@) p(a)d.

[Kanl13, thm 1.18, cor 1.21]

Using the existence of such measures and fixing one, defines the second incarnation, where the
twist by § is now hidden in the action and we integrate over the quotient instead of G. Different
choices of p lead to unitarily isomorphic representations:

Definition 10. The (measure) Induced representation U ;; is the completion of the space
F(G,m):={f € C(G,Vx)| supp f/H compact , f(zh)=n(h)""f(9)},
with innerproduct

(f. g = /G @@,

Represent G unitarily on this space by

[Un (@) f] (y) =4/ dzz_l (yH) - f(z™'y).

Kanl3, thm 1.18] states this as only a regular Borel measure, although it seems to be induced by the Riesz-
representation theorem, and thus Radon. The proof of this, as well as the isomorphism between the first and second
version of induced representations, use a so-called p-function inducing the measure, behaving nice w.r.t. §. It is
appearing as the extra factor in the QIF.

o



Note that by the unitarity of 7 and equivariance of the functions, the map x — (f(z), g(x))v, on
G descends to the quotient. The Radon-Nikodym factor makes sure we get a unitary representation.

The third incarnation requires an additional (non-canonical) choice, if it exists, namely a mea-
surable section” 7 of the quotient map ¢ : G — G/H, i.e., a measurable functions such that
q oy = Id; it gives a preferred choice of representative. This will realise the induced representation
concretely as an L?-space on the quotient, if such a section exists.

Definition 11. The (section) Induced representation Ind, ,7 is the Hilbert space®
L*(G/H, u;Vy) :={f : G/H — V| f measurable , / I|f||2dp < o0}/ ae.
G/H

with innerproduct
()= [ (faH). o))y, du(oH).
G/H

Represent G unitarily on this space by the elegant formula®

[Ind, .7 (z) f] (yH) := 7 (y(yH) "oy (z~ 'y H)) - d/Z; (yH)- f(z~'yH).

We will see an example showing how much this expression can simplify.

Theorem 1. The three incarnations are unitarily isomorphic, requiring existence of a measurable
section for the second isomorphism: Ind§m i> Uy AN L2(G/H, ; Vy).

The first isomorphism is multiplication with square of the p-function associated to the quasi-
invariant measure p, the second by precomposition with the section ~.

I Intrinsic | Measure | Section (if 3y) |
IndGn A L(G/H, 11 Vr)
(f,9) = Jav@){f@), 9(@Dv.de | (f,0)u = [o,u(f(2),9(2))v, dp(zH) (£, = Jo ulf(@H), g(xH))v, dp(zH)
[Indn () f] (y) = f(=™"y) Uz (@) f] (v) = /B2 () - f(@Yy) | [Indy m(@) f] (yH) = 7 (v(yH) " ay(a yH)) -/ L2 (yH) - f(a~ 'y H)

Tracing back the definitions, in conventions of [Kirl5] and [DE14] and our example, for H acting
on the left on G, we rephrase the action of the section induced representation L?(G/H,u;Vy),
assuming G/H has invariant measure:

Ind" 7 (z)f] (yH) := 7 (y(yH)ay(yzH) ") - f(yaH).

3.2 Imprimitivity

Rule 2 of the orbit method states that the unitary dual should consist of induced representations.
The following general concept for locally compact groups G aids determining if a representation is
induced. See the reference [Kanl13, chapter 3] for more on this, again in the left-regular convention.

Definition 12 (SOI). Let G act continuously on a LCH X. A System Of Imprimitivity for the
action of G on X is a pair

(m:G—UV),P:Cy(X) — B(V)),

with 7 unitary G-representation and P a non-degenerate #-representation on the same Hilbert space
V', such that:

(@) P(¢)m(z™") = P(Ly ).
The big theorem about SOI [Kanl3, thm 3.17] for (G,G/H) with H a closed subgroup, has as
important corollary that

Corollary 1. The existence of a SOI for a G-representation 7 implies that it is induced by one of
H.

This theorem is used in the background for the proofs of the orbit methods.

"Note that a continuous section would imply that the principal H-bundle G — G/H is trivial, so that G =
H xG/H.

8Completeness might be proven analogous to the Vx = C case, or arguing (analogous to [DE14] for the compact
case) that L2(G/H,V) = L%(G/H)®V [Kanl3, p.74]. For our purposes we look at 1-dimensional representations Vi,
and completeness is clear.

9Note that this expression only needs to be measureable in yH, and continuity in z follows from the second
isomorphism in the theorem 1, and continuity for U, "



3.3 Fell topology

There exists a topology on the unitary dual of a locally compact group G that has properties relating
to group C*-algebras, and should relate via the orbit method to the topology on the set of orbits as
in rule 1 of table 1.

Definition 13. ([Kirl5, p.106]) The Fell topology on the space of unitary G-representations
modulo equivalence, G, is generated by the following neighbourhoods of a representation m:

Uk ez, .an ‘=10 € G|3I,...yn €V, :Vge K : [(m(g)xs, z5) — (o(9)yi, yj)| < €},
for some compact set K C G, e > 0 and finite z; € V.

Then we equip G with the subspace topology. Note that this topology need not be Hausdorff,
and thus limits need not be unique.

Proposition 5. Induction is continuous as map IndS, : H — G [Kirl5, p.107].

The Fell topology should make G homeomorphic to C’*A(G) [Kan13, def 1.67], where the latter
topology is in terms of primitive ideals of C*-algebras [htt]'°. We list some properties:

Proposition 6. e For LCA groups A, the Fell topology coincides with the LCA topology on the
characters. Also, the Fell topology is discrete for compact groups K [Foll6, prop 7.4]

o If G is second countable, TFAE: G is type I, the Fell topology is Tj
e If G is a connected nilpotent Lie group, the Fell topology is T1 (points are closed)

Now back to the orbit method.

4 Part III: Heisenberg

For simply-connected nilpotent Lie groups, [94, thm 7.2] states that rule 2 gives all unirreps, and
that different points in the same orbit induce equivalent unirreps. We illustrate rules 1, 2 and 10.

Q2.

(0,0, z)

(z, y,0)

x,Y

Consider the Heisenberg group H, and use the basis X, Y, Z with [X,Y] = Z for . Every element
of H 3 (a, b, ¢) can be written as eaX 0¥ +¢'Z for ¢/ — ¢— 40 Identify a functional zX* +yY* 422" €
h* with (z,7,2) € R3 as at the end of Part I. Its orbits are planes Q. parameterised by z € R*,
and points ©, , parameterised by (z,y) € R

4.1 Unitary dual

The recipe for describing the unitary dual is as follows!!:
e Represent some orbit 2 by F' € h*,
e find a polarisation a for F' (i.e. a subalgebra with F'([a, a]) = 0 of maximal dimension),
e take the representation pp o of A := expa, and

e realise the induced representation 7 := Indg pF.a on some L?-space.

10A better reference is to be found.
11t deviates slightly from the recipe in [Kirl5] in how we compute the section induced action.



1. For the singleton orbit €, ,, the functional F' = (x,y,0) vanishes on [h, h] = ZR, so that b is
a polarisation. We get the unirrep

Tay(a,b,¢) = pry(expaX +bY + cZ) = e¥rilaz+by),

2. For the planes ., take the functional F' = (0,0,z # 0). Looking at the commutators of
the Lie algebra, we notice that a subalgebra containing X and Y will not be a polarisation, as the
commutator Z will be present, and F(Z) = z. Then consider the polarisation

a=YR+ ZR,

and write A := expa. Define the continuous section

v:HJA — H,y(e** A) := e,
Note that by nilpotency, H/A has an invariant measure p, and we claim!?

(H/A, 1) = (R, ),
e A a.

So, the section induced representation acts on

md pr. = L2(H/A, 1) = L*(R).

We now compute how it acts using BCH, [X,Y] = Z and the fact that we look up to A, writing
T, 1= Indfppva:

[7Tz (eaX+bY+c Z)f](eacXA) = pF,A(’Y(exXA) . eaX+bY+c 4 _,y(eachaX+bY+c ZA)—I) A f(eeraX+bY+c ZA)

(1)

_ pFA(emX . eaX+bY+c'Z . e—(m+a)X) . f(e(az+a)X) (2)
_ prA(ebY-i-(c-‘ra:b)Z) . f(e(w-i-a)X) (3)
~ eZTri(cha:b)ch(Jj + a) (4)

We conclude that the orbit method agrees with the Stone-von Neumann theorem [DE14, thm
10.2.1].

4.2 Topology

We reference [94]. For any simply-connected nilpotent Lie group, rule 1 holds perfectly [94, thm
7.3]. For the Heisenberg group, R
H=>~p*"/H=RU.R?

T, = Q, 2,
Ty = Qay > (2, 9).

This space has the topology of R, but the origin is removed, and we attach a R? to it. The topology
is such that that taking a sequence of planes 2, with z, — 0, results in the limit-set

Q.. — {Q%y}ey =R? x 0.
A representation theoretic interpretation of this is the following, with [my(a,b,c)f](z) := f(x + a):

Proposition 7. Take z —> 0, then m, — mg in fI, and so w, converges to

/ Wzt’ytdA(t), (Vm, y S R)
R

This means that, as z goes to zero, the corresponding class 7, degenerates into all representations
in the plane of singleton orbits. The direct integral is over all lines through the origin in this
degenerate plane, and each line defines an equivalent unitary representation.

12Using QIF and exp preserving measures.

10



Proof. WLOG we prove that

(mo, L*(R)) = (/ m,odA(x),/ CdA(;v)) .
R R
Explicitly, we have the Hilbert bundle
Uz (C,me0) — (R, N),

with quasi-ONB {1}. Then by [DE14, p.159], [ Cd\(z) = L?(R) and the direct integral represen-
tation acts by

[/R e, 0dA(x)(a, b, c) - f] (y) = my0la.b,c) f(y) = ™Y f(y).

The isomorphism is then the Fourier transform, mapping translations to phases:

(mo, L*(R)) = ( /R MOdA(m),LQ(RO :

4.3 Plancherel

Using rule 10 via the formula
[ swar = [ [ eacaw)] ap

in [Kir15, p.100] and the Liouville measure L induced by the symplectic form w on the orbits (Q,w),
one deduces the Plancherel formula in [DE14, thm 10.3.1] for the Plancherel measure P, which is
supported on the orbits of maximal dimension (2, %dx Ady):

dP(£,) = |z|dz

5 Part IV: Nilpotent Proof and other Lie Groups

See blackboard and [Kirl5, p.95].

Exercise 2. Compute the orbits for your favourite (non- simply-connected nilpotent) Lie group,
and figure out where the orbit method breaks down and how to fix it.

11
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