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1 Introduction

In this paper we survey some aspects of the theory of non-commutative Banach
function spaces, that is, spaces of measurable operators associated with a semi-
�nite von Neumann algebra. These spaces are also known as non-commutative
symmetric spaces. The theory of such spaces emerged as a common generaliza-
tion of the theory of classical (�commutative�) rearrangement invariant Banach
function spaces (in the sense of W.A.J. Luxemburg and A.C. Zaanen) and of the
theory of symmetrically normed ideals of bounded linear operators in Hilbert
space (in the sense of I.C. Gohberg and M.G. Krein). These two cases may be
considered as the two extremes of the theory: in the �rst case the underlying
von Neumann algebra is the commutative algebra L1 on some measure space
(with integration as trace); in the second case the underlying von Neumann al-
gebra is B (H), the algebra of all bounded linear operators on a Hilbert space H
(with standard trace). Important special cases of these non-commutative spaces
are the non-commutative Lp-spaces, which correspond in the commutative case
with the usual Lp-spaces on a measure space, and in the setting of symmetrically
normed operator ideals they correspond to the Schatten p-classes Sp.
In the present paper we take the Banach function spaces as our point of de-

parture. As will become clear, there are many results in the general theory which
are direct analogues of the corresponding results in the classical theory. But,
we hasten to say that the proofs are quite di¤erent in most cases (partly due to
the lack of lattice structure in the non-commutative situation). However, there
are also many instances where the non-commutative situation essentially di¤ers
from the commutative setting (this is in particular illustrated by some of the
results in Section 8, concerning the continuity of so-called operator functions).
De�nitions and results are stated in detail, but most of the proofs are omitted

(with references to the relevant literature). Some proofs have been included, in
particular of results which have not yet appeared in print, as well as some
relatively short arguments.
In the Section 2 we review some of the basic features of the classical (that

is, commutative) Banach function spaces associated with a measure space. We
assume that the reader is familiar with the terminology of the theory of Riesz
spaces and Banach lattices (as may be found in e.g. [1], [40]). In particular
we discuss rearrangement invariant spaces and the so-called Köthe duality. In
Section 3 we review some basic facts concerning von Neumann algebras and
in Section 4 we discuss in some detail the � -measurable operators (associated
with a semi-�nite von Neumann algebraM equipped with trace �). Particular
attention will be given to the properties of the order structure of the (self-
adjoint part of the) space S (�) of all such � -measurable operators. The measure
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topology on the space S (�) is introduced and its properties are discussed in
Section 5. Again we will digress somewhat on the interplay between the order
structure and the topology.
An important role in the theory of non-commutative spaces is played by

the generalized singular value function (of a � -measurable operator). In the
commutative theory this corresponds to the so-called decreasing rearrangement
of a function and, in the setting of compact operators in Hilbert space, to the
sequence of singular values of an operator. The properties of the generalized
singular value function are discussed in Section 6.
Non-commutative Banach function spaces are de�ned in Section 7 and some

of their basic properties are reviewed and some aspects of the duality theory are
discussed (in particular, trace duality and the Köthe dual). We end the paper
with a brief introduction to the study of so-called operator functions in Section
8.

2 Banach Function Spaces

Let (X;�; �) be a measure space. We always assume that (X;�; �) is Maharam,
that is, it has the �nite subset property (i.e., for every A 2 � with � (A) > 0
there exists B 2 � such that B � A and 0 < � (B) <1) and is localizable (i.e.,
the measure algebra is a complete Boolean algebra; recall that the measure
algebra of (X;�; �) is obtained from � by identifying sets which are �-almost
equal). Note that any �-�nite measure space is a Maharam measure space.
The complex Riesz space of all complex valued measurable �-measurable

functions on X (with identi�cation of �-a.e. equal functions) is denoted by
L0 (�). Since we assume (X;�; �) to be Maharam, L0 (�) is Dedekind complete.

De�nition 2.1 A Banach function space on (X;�; �) is an ideal E � L0 (�)
(that is, E is a linear subspace of L0 (�) with the additional property that f 2
L0 (�), g 2 E and jf j � jgj imply f 2 E) equipped with a norm k�kE such that
(E; k�kE) is a Banach lattice.

Evidently, any Banach function space is Dedekind complete. We may, and
shall, always assume that the carrier of E is equal to X (that is, for every A 2 �
with � (A) > 0 there exists B 2 � such that B � A, � (B) > 0 and �B 2 E).
Examples of Banach function spaces are the Lp-spaces (1 � p � 1), Orlicz
spaces, Lorentz spaces, and Marcinkiewicz spaces. A concise introduction in
the theory of Banach function spaces can be found in Chapter 15 of the book
[39] (as in most of the literature on Banach function spaces, the underlying
measure space is assumed to be �-�nite; for a treatment in the setting of more
general measure spaces, we refer the reader to [17]). In this paper we will be
interested mainly in a special class of Banach function spaces, the so-called
rearrangement invariant Banach function spaces.

2.1 Rearrangements

For f 2 L0 (�) its distribution function df : [0;1)! [0;1] is de�ned by

df (�) = � (fx 2 X : jf (x)j > �g) ; � � 0.
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Note that df is decreasing and right-continuous. We are interested only in those
functions f 2 L0 (�) for which there exists �0 � 0 such that df (�0) <1, which
implies that lim�!1 df (�) = 0. We de�ne

S (�) = ff 2 L0 (�) : 9 �0 � 0 s.t. df (�0) <1g . (1)

If f 2 L0 (�), then f 2 S (�) if and only if f is bounded except on a set of �nite
measure. Evidently, S (�) is an ideal in L0 (�).
For f 2 S (�) the decreasing rearrangement � (f) : [0;1) ! [0;1] of jf j is

de�ned by
� (f ; t) = inf f� � 0 : df (� � t)g ; t � 0.

Observe the following simple properties of the function � (f).

Lemma 2.2 If f 2 S (�), then

(i). � (f ; t) <1 for all t > 0;

(ii). � (f) is decreasing and right-continuous;

(iii). � (f ; 0) <1 if and only if f 2 L1 (�) and in this case � (f ; 0) = kfk1;

(iv). the functions f and � (f) have the same distribution function, that is,
d�(f) = df on [0;1) (where d�(f) is computed with respect to Lebesgue
measure on [0;1)).

For a detailed account of the properties of decreasing rearrangements of func-
tions we refer the reader to the books [3] and [24]. The decreasing rearrangement
of jf j is frequently denoted by f�. However, in the setting of the present paper
we prefer the notation � (f), in particular since the � will be used later on to
indicate the adjoints of Hilbert space operators.
Furthermore, we note thatZ

X

jf j d� =
Z 1

0

� (f ; t) dt

for all f 2 S (�). If f 2 S (�) and if ' : [0;1) ! [0;1) is continuous
and increasing, then � (' � jf j) = ' � � (jf j), which implies in particular that
� (jf jp) = � (f)

p, 1 � p <1. Consequently,Z
X

jf jp d� =
Z 1

0

� (f ; t)
p
dt; 1 � p <1; (2)

for all f 2 S (�).

2.2 Rearrangement invariant Banach Function Spaces

Let E be a Banach function space on the Maharam measure space (X;�; �).

De�nition 2.3 The Banach function space E � S (�) is called rearrangement
invariant if f 2 E, g 2 S (�) and � (g) = � (f) imply that g 2 E and kgkE =
kfkE.
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Rearrangement invariant spaces are discussed in e.g. [3], [24] or [27] (how-
ever, the results in [3] should be handled with some care, as the class of Banach
function spaces considered is more restrictive: the so-called Fatou property is
included in their de�nition of a Banach function space!). For rearrangement
invariant function spaces on non-�-�nite measure spaces, see [17].
It follows from (2) and Lemma 2.2, (iii) that Lp-spaces are rearrangement

invariant Banach function spaces. Other examples are Orlicz spaces, Lorentz
spaces and Marcinkiewicz spaces.
The following two examples are of particular interest. The space

(L1 \ L1) (�) = L1 (�) \ L1 (�)

equipped with the norm given by

kfkL1\L1 = max (kfk1 ; kfk1)

is a rearrangement Banach function space. An alternative expression for the
norm is given by

kfkL1\L1 = sup
t>0

1

min (t; 1)

Z t

0

� (f ; s) ds.

The other example is the space

(L1 + L1) (�) = L1 (�) + L1 (�) ,

where the norm is de�ned by

kfkL1+L1 = inf fkgk1 + khk1 : f = g + h; g 2 L1 (�) ; h 2 L1 (�)g .

This norm is also given by

kfkL1+L1 =

Z 1

0

� (f ; s) ds; f 2 (L1 + L1) (�) .

If E is an rearrangement invariant Banach function space on (0;1) (with respect
to Lebesgue measure), then

(L1 \ L1) (0;1) � E � (L1 + L1) (0;1) ; (3)

with continuous embeddings (see e.g. [24], Theorem II.4.1). Actually, these
inclusions hold whenever the measure space (X;�; �) is non-atomic or, is atomic
with all atoms having equal measure.

2.3 Submajorization

Most of the classical rearrangement invariant Banach function spaces satisfy
a stronger condition than just being rearrangement invariant. To discuss this
stronger property we introduce the following notion. As before, (X;�; �) is a
Maharam measure space.
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De�nition 2.4 Given f; g 2 S (�) we say that f is submajorized by g (in the
sense of Hardy, Littlewood and Polya), denoted by

f �� g,

if Z t

0

� (f ; s) ds �
Z t

0

� (g; s) ds; t � 0.

De�nition 2.5 A Banach function space E � S (�) is called symmetric if it
satis�es the following three conditions:

(a). E is rearrangement invariant;

(b). L1 \ L1 (�) � E � (L1 + L1) (�) with continuous embeddings;

(c). if f; g 2 E and f �� g then kfkE � kgkE.

As we have already observed before, any rearrangement invariant Banach
function space on the interval (0;1) automatically satis�es condition (b) of
the above de�nition. The following theorem exhibits a large class of symmetric
Banach function spaces. Recall that the norm k�kE on a Banach function space
E is called a Fatou norm if 0 � f� " f 2 E implies that kf�kE " kfkE .

Theorem 2.6 (Luxemburg) ([27])If E is a rearrangement invariant Banach
function space on (0;1) with a Fatou norm, then E is a symmetric Banach
function space.

For simplicity, we have formulated the above result only for the measure
space (0;1). Actually, this result holds for any measure space which is either
non-atomic or is atomic with all atoms having equal measure. However, the
result of the theorem is not valid for any measure space, as is illustrated by the
following simple example.

Example 2.7 Let X = f1; 2g and de�ne the measure � by � (f1g) = 2 and
� (f2g) = 1. For E we take CX = C2, equipped with the norm given by
k(f1; f2)kE = jf1j+ jf2j.

The importance of the class of symmetric Banach function spaces is already
indicated by the following result: any symmetric Banach function space on
(0;1) has o¤spring on every Maharam measure space. For convenience, we
denote a Banach function space E on the interval (0;1) explicitly by E (0;1).
The following theorem has been obtained by W.A.J. Luxemburg ([27]) under
the assumption that the norm on E (0;1) is Fatou.

Theorem 2.8 Let E (0;1) be a symmetric Banach function space on (0;1)
and let (X;�; �) be a Maharam measure space. If we de�ne

E (�) = ff 2 S (�) : � (f) 2 E (0;1)g

and
kfkE(�) = k� (f)kE(0;1) ; f 2 E (�) ,

then
�
E (�) ; k�kE(�)

�
is a symmetric Banach function space on (X;�; �).
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Another important property which is stronger than symmetry is presented
in the next de�nition.

De�nition 2.9 A Banach function space E � S (�) is called fully symmetric if
it follows from f 2 S (�), g 2 E and f �� g that f 2 E and kfkE � kgkE.

It is easily veri�ed that any fully symmetric Banach function space is sym-
metric in the sense of De�nition 2.5, but not conversely. As was shown by
A.P. Calderón ([6]), the fully symmetric Banach function spaces are precisely
the exact (L1; L1)-interpolation spaces (cf. also [3], Chapter 5). In connection
with Theorem 2.6, we mention that any rearrangement invariant Banach func-
tion space on (0;1) with the Fatou property (that is, 0 � f� " f in L0 (0;1),
f� 2 E and sup� kf�kE < 1 imply that f 2 E and kf�kE " kfkE) is fully
symmetric, as was shown by Luxemburg ([27]).

2.4 Köthe duality

Next we discuss some aspects of the duality theory for Banach function spaces.
Given a Banach function space E on a Maharam measure space (X;�; �), the
Köthe dual space E� of E is de�ned by

E� =

�
g 2 L0 (�) :

Z
X

jfgj d� <1 8 f 2 E
�
.

Evidently, E� is an ideal in L0 (�) and it can be shown that the carrier of E�

is equal to X. For g 2 E� we de�ne the linear functional 'g : E ! C by

'g (f) =

Z
X

fgd�; f 2 E.

The functional 'g is bounded, that is, 'g 2 E� and the map g 7�! 'g is linear
and injective. Hence, we may identify E� with a subspace of E�. If we de�ne

kgkE� =


'g

E� = sup

�����Z
X

fgd�

���� : f 2 E; kfkE � 1�
for all g 2 E�, then (E�; k�kE�) is a Banach function space on (X;�; �).
Denoting by E�n the band in E

� consisting of all order continuous (or, nor-
mal) functionals on E, the following result shows the importance of the Köthe
dual space (see e.g. [39], Chapter 15).

Theorem 2.10 If E is a Banach function space, then

E�n =
�
'g : g 2 E�

	
In particular, the norm on E is order continuous if and only if

E� =
�
'g : g 2 E�

	
.

If E is a rearrangement invariant Banach function space and if the measure
space (X;�; �) is either non-atomic or is atomic with all atoms having equal
measure, then it can be shown that (E�; k�kE�) is also a rearrangement invariant
(and, actually, fully symmetric) Banach function space (cf. [3], Section 2.4). For
general measure spaces the following result may be obtained.

Theorem 2.11 If E is a symmetric Banach function space, then E� is a fully
symmetric Banach function space.
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3 Von Neumann Algebras

In this section we review some relevant notions related to von Neumann algebras.
For the details we refer the reader to any of the books [9], [21], [22] or [34]. Given
a complex Hilbert space (H; h�; �i), we denote by B (H) the algebra of all bounded
linear operators on H equipped with the operator norm. The identity operator
on is denoted by 1. For any operator x 2 B (H) we denote by x� its adjoint.
Recall that an operator a 2 B (H) satisfying a� = a is called self-adjoint (or,
hermitian); the real subspace of B (H) consisting of all self-adjoint operators is
denoted by B (H)h. An operator a 2 B (H)h is said to be positive if ha�; �i � 0
for all � 2 H. The collection of all positive operators onH is denoted by B (H)+,
which is a proper closed generating cone in B (H)h.

De�nition 3.1 A von Neumann algebraM on H is a subalgebra of B (H) such
that:

(i). M is �-closed (that is, x 2M implies that x� 2M) and 1 2M;

(ii). M is closed in B (H) for the weak operator topology.

For any non-empty subset A � B (H) we denote by A0 the commutant of
A, that is,

A0 = fy 2 B (H) : xy = yx 8x 2 Ag .
If A is �-closed, then A0 is a von Neumann algebra. We denote A00 = (A0)0,
the double commutant of A. The following fundamental result provides an
alternative de�nition of von Neumann algebras.

Theorem 3.2 (Von Neumann�s Double Commutant Theorem) A
�-subalgebraM of B (H) is a von Neumann algebra if and only ifM =M00.

Evidently, M = B (H) is a von Neumann algebra. Suppose that (X;�; �)
is a Maharam measure space and consider the Hilbert space H = L2 (�). For
f 2 L1 (�) de�ne the multiplication operator

Mf : L2 (�)! L2 (�) ; Mf (g) = fg; g 2 L2 (�) .

Then Mf 2 B (L2 (�)) and kMfk = kfk1. The mapping f 7�! Mf is an
algebraic isomorphism and isometry from L1 (�) into B (L2 (�)). Moreover,
M�
f =M �f , where �f is the complex conjugate of f .

Proposition 3.3 De�ning

M = fMf : f 2 L1 (�)g ,

M is a commutative von Neumann algebra on the Hilbert space H = L2 (�).

Actually, every commutative von Neumann algebra is of this form (see e.g.
[9], Chapter I.7). Frequently, the von Neumann algebraM = fMf : f 2 L1 (�)g
is identi�ed with the algebra L1 (�).
Given a von Neumann algebra M � B (H) we de�ne Mh =M\ B (H)h,

which is a real linear subspace ofM, andM+ =M\B (H)+, which is a proper
closed and generating cone inMh. We considerMh as an ordered vector space
withM+ as its positive cone.
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De�nition 3.4 A trace � on M is a map � :M+ ! [0;1] which is additive,
positive homogeneous and unitarily invariant, that is,

� (uau�) = � (a)

for all a 2M+ and all unitary u 2M.

De�nition 3.5 A trace � :M+ ! [0;1] is called:

(i). faithful if � (a) > 0 whenever 0 < a 2M;

(ii). semi-�nite if for every a 2M+ with � (a) > 0 there exists 0 � b � a such
that 0 < � (b) <1;

(iii). normal if � (a�) " � (a) whenever a� " a inM+.

A von Neumann algebra equipped with a semi-�nite faithful normal trace is
called a semi-�nite von Neumann algebra.

Example 3.6 (i). Let H be a Hilbert space and M = B (H). Given a maxi-
mal orthonormal system fe�g in H we de�ne

� (a) =
X
�

hae�; e�i ; a 2 B (H)+ .

The value of � (a) does not depend on the particular choice of the maximal
orthonormal system in H and � : B (H)+ ! [0;1] is a semi-�nite faithful
normal trace on B (H). This is called the standard trace on B (H).

(ii). Let H = L2 (�), where (X;�; �) is a Maharam measure space. On L2 (�)
we consider the von Neumann algebraM = L1 (�) (see Proposition 3.3).
If we de�ne � : L1 (�)

+ ! [0;1] by

� (f) =

Z
X

fd�; 0 � f 2 L1 (�) ,

then � is a semi-�nite faithful normal trace on L1 (�).

An important object in the study of von Neumann algebras is the collec-
tion of all orthogonal projections in M, which is denoted by P (M). It is the
analogue in non-commutative integration theory of the underlying �-algebra in
classical integration theory. The partial ordering inMh induces a partial order
in P (M). If p; q 2 P (M), then p � q if and only if Ran (p) � Ran (q). For
any p; q 2 P (M) the in�mum p ^ q 2 P (M) and supremum p _ q 2 P (M)
exists (and are given by the orthogonal projections onto Ran (p) \ Ran (q) and
Ran (p) + Ran (q), respectively). Actually, P (M) is a complete lattice, that is,
for each collection fp�g in P (M), the supremum

W
� p� and in�mum

V
� p�

exist (and are given by the projections onto span� fRan (p�)g and
T
�Ran (p�),

respectively). Every p 2 P (M) has a complement, given by p? = 1� p, which
satis�es p ^ p? = 0 and p _ p? = 1. Two projections p; q 2 P (M) are called
equivalent (with respect toM), denoted by p s q, if there exist a partial isom-
etry v 2 M such that p = v�v and q = vv� (that is, p and q are the initial and
�nal projection of v, respectively). If � is a trace onM, then p s q implies that
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� (p) = � (q). Furthermore, p is said to be majorized by q (relative to M, de-
noted by p - q, if there exists r 2 P (M) such that r � q and p s r. Note that
p - q implies that � (p) � � (q). A detailed account of this so-called comparison
of projections can be found e.g. in [9], Chapter III.1 or [22], Chapter 6). An
important fact is that p� p ^ q s p _ q � q for all p; q 2 P (M), which implies
in particular that p - q? whenever p ^ q = 0.

4 Measurable operators

As is clear from the de�nitions, the space of all measurable functions on a mea-
sure space provides the general framework for the theory of Banach function
spaces. Analogously, the space of all measurable operators is the setting for
theory of non-commutative Banach function spaces and non-commutative inte-
gration. These measurable operators are in general unbounded linear operators
(think of unbounded measurable functions acting via multiplication on the space
L2 (�)). Therefore we �rst recall some facts about unbounded linear operators
in Hilbert space (see e.g. [4] or [21], [22]).
A linear operator in a Hilbert space H is a linear map x : D (x)! H, where

the domain D (x) is a linear subspace of H. If D (x) is dense in H, then we say
that x is densely de�ned. The operator x is called closed whenever its graph
is a closed subspace of H �H. Any closed and densely de�ned linear operator
has a closed and densely de�ned adjoint x� : D (x�) ! H, which is uniquely
determined by the relation hx�; �i = h�; x��i, � 2 D (x), � 2 D (x�). Note that
x�� = x.
A closed densely de�ned linear operator a : D (a)! H is called self-adjoint

if a� = a (meaning that also the domains coincide). If in addition ha�; �i � 0 for
all � 2 D (H), then a is said to be positive (which is also denoted by a � 0). For
every self-adjoint operator a there exists a unique spectral measure ea : B (R)!
B (H) (that is, ea takes its values in the orthogonal projections and is �-additive
with respect to the strong operator topology) such that

a =

Z
R
�dea (�) (4)

as a spectral integral. Here, B (R) is the Borel �-algebra of R. The spectral
measure ea is actually supported on the spectrum � (a) of a. In particular, if
a � 0, then ea is supported on [0;1). Using the spectral measure of a we may
de�ne the Borel functional calculus for a: for any Borel function f : � (a)! C
the operator f (a) is de�ned by

f (a) =

Z
�(a)

f (�) dea (�) , (5)

which is normal operator on H (recall that the closed and densely de�ned op-
erator x is called normal whenever xx� = x�x, with equality of domains). In
particular, if a � 0, then the (positive) square root of a is given by a1=2 =R
[0;1)

�1=2dea (�). It can be shown that a1=2 is the unique positive operator

satisfying
�
a1=2

�2
= a.

If x : D (x) ! H is a closed densely de�ned linear operator, then it can be
shown that the operator x�x is self-adjoint and actually, positive. The modulus
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jxj of x is de�ned by
jxj = (x�x)1=2 ,

that is,

jxj =
Z
[0;1)

p
�dex

�x (�) .

The operator x can be written as

x = v jxj ,

where v is a partial isometry. This is called the polar decomposition of x.

Now we are ready to introduce the notion of measurable operator (the details
may be found in e.g. [36] or [35], Chapter IX). We assume that (M; �) is a semi-
�nite von Neumann algebra on the Hilbert space H, with a �xed faithful normal
semi-�nite trace � . A linear operator x : D (x)! H is called a¢ liated with M,
if ux = xu for all unitary u 2 M0. This is denoted by x�M. Note that the
equality ux = xu involves in particular equality of the domains of the operators
ux and xu, that is, D (x) = u�1 (D (x)). If x 2 B (H), then x is a¢ liated with
M if and only if x 2 M (as follows from Von Neumann�s Double Commutant
Theorem; see Theorem 3.2). A useful characterization of a¢ liated operators is
presented in the next proposition.

Proposition 4.1 If x : D (x)! H is a closed and densely de�ned linear oper-
ator with polar decomposition x = v jxj, then x is a¢ liated with M if and only
if:

(i). ejxj (B) 2M for all B 2 B (R);

(ii). v 2M.

If M = B (H), then it is clear that every closed and densely de�ned linear
operator x in H is a¢ liated with B (H). Hence, the a¢ liated operators do not
have any reasonable algebraic structure in general. To obtain this we further
restrict the class of operators to be considered.

De�nition 4.2 A closed and densely de�ned linear operator x : D (x) ! H is
called � -measurable if:

(a). x�M;

(b). there exists � � 0 such that �
�
ejxj (�;1)

�
<1.

Condition (b) in the above de�nition guarantees that the domain of the
operator x is �reasonably large� (with respect to the trace �). In fact, if a
closed operator x : D (x) ! H is a¢ liated with M, then x is � -measurable if
and only if its domain D (x) is � -dense in H (that is, there exists a sequence
fpng1n=1 of orthogonal projections in M such that pn (H) � D (x) for all n,
pn " 1 and � (1� pn) # 0 as n!1).
The collection of all � -measurable operators is denoted by S (�). If x; y 2

S (�), then the algebraic sum x+ y and product xy need not be � -measurable:
these may fail to be closed. However, it can be shown that the operators x+ y
and xy are closable and that there closures, x+̂y and x̂�y (called the strong sum
and strong product, respectively) are � -measurable. Moreover, if x 2 S (�), then
x� 2 S (�). All this leads to the following result.
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Theorem 4.3 The set S (�) is a complex �-algebra with unit element 1, with
respect to the operations of strong sum and strong product and the �-operation
of taking adjoints. The von Neumann algebraM is a �-subalgebra of S (�).

From now on we denote the strong sum x+̂y and product x̂�y of two elements
x; y 2 S (�) simply by x+ y and xy, respectively.

Example 4.4 (i). IfM = B (H) with standard trace � (see Example 3.6 (i)),
then S (�) = B (H).

(ii). If H = L2 (�), M = L1 (�) and � (f) =
R
X
fd�, 0 � f 2 L1 (�) (see

Example 3.6 (ii)), then S (�) = S (�) (see (1)), where the functions in
S (�) are identi�ed with (in general unbounded) multiplication operators
on L2 (�).

The real subspace of S (�) consisting of all self-adjoint elements is denoted by
Sh (�). Note that S (�) = Sh (�)� iSh (�). Indeed, any x 2 S (�) can be written
as x = Re (x)+i Im (x), where Re (x) = 1=2 (x+ x�) and Im (x) = 1=2i (x� x�).
The set of all positive elements in Sh (�), denoted by Sh (�)

+, is a proper cone
in Sh (�). For a; b 2 Sh (�) we de�ne a � b whenever b � a 2 Sh (�)

+. With
respect to this ordering, Sh (�) is a partially ordered vector space. Evidently,
this partial ordering is an extension of the ordering inMh. For every a 2 Sh (�)
the operators a+ =

R
R �

+dea (�) and a� =
R
R �

�dea (�) belong to Sh (�)
+ and

satisfy a = a+ � a�. Consequently, the positive cone Sh (�)
+ is generating in

Sh (�). In the next proposition we collect some simple properties of the partial
ordering in Sh (�) (cf. [12]).

Proposition 4.5 (i). If a; b 2 Sh (�)
+, then a � b if and only if D

�
b1=2

�
�

D
�
a1=2

�
and



a1=2�

H � 

b1=2�

H for all � 2 D
�
b1=2

�
.

(ii). If a; b 2 Sh (�)
+, then a � b if and only if there exists x 2 M such that

a1=2 = xb1=2 and kxkB(H) � 1.

(iii). If a � b in Sh (�) and x 2 S (�), then x�ax � x�bx.

(iv). If a 2 Sh (�)+ is invertible in S (�), then a�1 � 0.

(v). If 0 � a � b in Sh (�) and a is invertible in S (�), then b is invertible in
S (�) and 0 � b�1 � a�1.

As (i) of the above proposition shows, on Sh (�)
+ the partial ordering in

Sh (�) coincides with the usual quadratic form ordering of positive operators
(see e.g. [23], Section VI.2.5). Statement (ii) follows almost immediately from
(i) and (iii), (vi) are more or less evident. Let us indicate a proof of (v). Since
a�1 � 0, it follows that a�1=2 2 Sh (�)

+ and so, 1 � a�1=2ba�1=2. By (i),

there exists x 2 M such that 1 = x
�
a�1=2ba�1=2

�1=2
=
�
a�1=2ba�1=2

�1=2
x�.

This shows that
�
a�1=2ba�1=2

�1=2
, and hence, b is invertible in S (�) with

b�1 � 0. Now, it follows from 0 � a � b that 0 � b�1=2ab�1=2 � 1. Since
b�1=2ab�1=2 =

�
a1=2b�1=2

�� �
a1=2b�1=2

�
, this implies that



a1=2b�1=2


B(H) � 1

and so,



�a1=2b�1=2��




B(H)
� 1, which implies that 0 � a1=2b�1a1=2 � 1. Using

(iii) once again (with x = a�1=2), we may conclude that 0 � b�1 � a�1.
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Using (i) of Proposition 4.5, one may prove that Sh (�) is Dedekind complete
in the following sense (see Proposition 1.1 in [12]).

Proposition 4.6 If fa�g is an increasing net in Sh (�) and there exists b 2
Sh (�) such that a� � b for all �, then sup� a� exists in Sh (�).

Another, related property of the ordering in Sh (�) is exhibited in the fol-
lowing proposition (see Proposition 1.3 in [12]).

Proposition 4.7 If fa�g is an increasing net in Sh (�) such that a� " a 2
Sh (�), then x�a�x " x�ax for all x 2 S (�).

Next we discuss the Borel functional calculus (given by (5)) for operators a 2
Sh (�). For this purpose, we denote by Bbc (� (a)) the �-algebra (with respect to
complex conjugation) of all complex valued Borel functions on � (a) which are
bounded on all compact subsets of � (a). The proof of the �rst statement of the
next proposition may be found in [31], Proposition 3.5; the second statement
follows immediately from the properties of the functional calculus.

Proposition 4.8 If a 2 Sh (�), then f (a) 2 S (�) for all f 2 Bbc (� (a)).
Moreover, the map f 7�! f (a) is a �-homomorphism from Bbc (� (a)) into S (�)
(so, in particular, this map is positive).

5 The measure topology in S (�)

The �-algebra S (�) of all � -measurable operators carries an important and useful
vector space topology, the so-called (� -) measure topology, which is Hausdor¤,
metrizable and complete (but, not locally convex in general).
As before, (M; �) is a �xed semi-�nite von Neumann algebra on a Hilbert

space H. For convenience, we denote the set of all orthogonal projections inM
by P (M). Given 0 < "; � 2 R we de�ne V ("; �) to be the set of all x 2 S (�)
for which there exists p 2 P (M) such that kxpkB(H) � " and � (1� p) � �. An
alternative description of this set is given by

V ("; �) =
n
x 2 S (�) : �

�
ejxj (";1)

�
� �

o
. (6)

It can be shown that V ("; �) is balanced and absorbing. Furthermore, for
"j ; �j > 0 (j = 1; 2) we have V ("1; �1) + V ("2; �2) � V ("1 + "2; �1 + �2) and
V ("; �) � V ("1; �1) \ V ("2; �2), where " = min ("1; "2) and � = min (�1; �2).
These properties imply that the collection fV ("; �)g";�>0 is a neighbourhood
base at 0 for a vector space topology Tm on S (�). Since

T
";�>0 V ("; �) = f0g,

this topology is Hausdor¤. Moreover, V ("1; �1)V ("2; �2) � V ("1"2; �1�2) for all
"j ; �j > 0 and V ("; �)� = V ("; �), and so, S (�) is also a topological �-algebra
with respect to Tm. The countable subcollection fV (1=n; 1=n)g1n=1 is also a
base at 0 for Tm and hence, Tm is metrizable. Furthermore, it can be shown
that S (�) is complete with respect to Tm. We collect these results (and some
more) in the next theorem (for a proof, see e.g. [36]).

Theorem 5.1 The collection fV ("; �)g";�>0 is a neighbourhood base at 0 for a
metrizable complete Hausdor¤ vector space topology Tm on S (�). With respect
to this topology, S (�) is a topological �-algebra. Moreover,M is dense in S (�)
and the inclusion ofM (with its norm topology) into S (�) is continuous.

12



The topology Tm is called the measure topology on S (�) and convergence

with respect to Tm is called convergence in measure (denoted by xn
Tm! x). If

fxng1n=1 is a sequence in S (�), then it is immediately clear from (6) that

xn
Tm! 0 () lim

n!1
�
�
ejxnj (";1)

�
= 0 9" > 0.

Furthermore, it is of some interest to note that the neighbourhoods V ("; �)
are actually closed for the measure topology.

Example 5.2 (a). Let (X;�; �) be a Maharam measure space. Let M =
L1 (�), acting via multiplication on H = L2 (�), equipped with the trace
given by � (f) =

R
X
fd�, f 2 L1 (�)

+ (see Example 3.6 (ii)). As we
have mentioned in Example 4.4, the algebra S (�) may be identi�ed with
the space S (�). Via this identi�cation, the measure topology in S (�)
corresponds to the usual topology of convergence in measure in S (�), a
neighbourhood base at 0 of which is given by the sets

ff 2 S (�) : � (x 2 X : jf (x)j > ") � �g ; "; � > 0.

(b). Let H be any Hilbert space andM = B (H), equipped with standard trace
� (see Example 3.6 (ii)). As observed in Example 4.4 (ii), S (�) = B (H)
in this case. If e is an orthogonal projection with � (1� e) < 1, then e = 1
and so,

V ("; �) =
n
x 2 B (H) : kxkB(H) � "

o
for all " > 0 and 0 < � < 1. Hence, the measure topology in S (�) = B (H)
coincides with the operator norm topology in B (H).

Next we discuss the relation between the partial ordering in Sh (�) and the
measure topology. First observe that the map x 7�! Re (x) is (uniformly)
continuous (as Re (x) = 1=2 (x+ x�)) and so, Sh (�) is a closed real subspace of
S (�). Another relevant observation in this respect is that the sets V ("; �) are
absolutely solid : if x 2 V ("; �) and y 2 S (�) with jyj � jxj, then y 2 V ("; �).
In the next proposition we collect some elementary properties (for the proof of
(i) see [12], Proposition 1.4; the other statements follow immediately).

Proposition 5.3 (i). The positive cone Sh (�)
+ is closed in Sh (�).

(ii). If fang1n=1 is a sequence in Sh (�) and a; b 2 Sh (�) are such that an
Tm! a

and an � b for all n, then a � b.

(iii). If fang1n=1 is an increasing sequence in Sh (�) and an
Tm! a 2 Sh (�), then

a = supn an in Sh (�).

(iv). If fxng1n=1 and fyng
1
n=1 are two sequences in S (�) such that yn

Tm! 0 and

jxnj � jynj for all n, then xn
Tm! 0.

In some sense, (iii) of the above proposition states that for increasing se-
quences, measure convergence implies order convergence. What about the con-

verse: does an " a in Sh (�) imply that an
Tm! a? In general not (not even in
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the commutative situation). However, a restricted version is true. To formulate
this result, we introduce the subspace S0 (�) of S (�) de�ned by

S0 (�) =
n
x 2 S (�) : �

�
ejxj (�;1)

�
<1 8� > 0

o
. (7)

In connection with de�nition (7), recall that for an operator x 2 S (�) we only
know that �

�
ejxj (�;1)

�
< 1 for some � > 0 (see De�nition 4.2). It can be

shown that S0 (�) is actually a two-sided closed ideal in S (�). Moreover, S0 (�)
is absolutely solid in S (�), that is, if y 2 S0 (�), x 2 S (�) and jxj � jyj, then
x 2 S0 (�). The self-adjoint and positive elements in S0 (�) are denoted by
S0;h (�) and S0 (�)

+ respectively. This notation introduced, we can formulate
the following �Lebesgue property�of the measure topology.

Proposition 5.4 If fa�g is a decreasing net in S+h (�) such that a� # 0 and if
there exists a 2 S0 (�)+ such that a� � a for all �, then a�

Tm! 0.

In the sense of the above proposition, one might say that the measure topol-
ogy on S0;h (�) is a �Lebesgue topology� (that is, order convergence implies
topological convergence). Next we would like to discuss in some detail some
�Fatou type�properties of the measure topology.

Theorem 5.5 Suppose that "; � > 0, a 2 Sh (�)
+ and that fa�g is a net in

Sh (�)
+ such that 0 � a� " a in Sh (�). If a� 2 V ("; �) for all �, then a 2

V ("; �).

We shall indicate the proof of this result, which is based on the following
two technical lemmas. For the notation used we refer to the end of Section 3.

Lemma 5.6 If a 2 Sh (�)+, 0 < " 2 R and p 2 P (M) such that p � ea (";1),
then p - epap (";1).

Proof. For notational convenience, put b = pap and observe that b =�
a1=2p

�� �
a1=2p

�
and so, b1=2 =

��a1=2p��. Hence, D
�
b1=2

�
= D

���a1=2p��� =
D
�
a1=2p

�
. We �rst show that p ^ eb [0; "] = 0. To this end, let q = p ^ eb [0; "]

and suppose that q 6= 0. Take � 2 H such that q� = � 6= 0. This implies that
� = eb [0; "] � = eb

1=2 �
0; "1=2

�
� and so, � 2 D

�
b1=2

�
= D

�
a1=2p

�
. Since � = p�

and the algebraic product of a1=2 and p is already closed, it follows that � 2
D
�
a1=2

�
. Furthermore, p � ea (";1) and so, � = ea (";1) � = ea

1=2 �
"1=2;1

�
�.

Using the properties of spectral measures, it is not di¢ cult to show that this
implies that



a1=2�

H > "1=2 k�kH. Hence,

"1=2 k�kH <



a1=2�




H
=



a1=2p�




H
=



���a1=2p��� �




H
=



b1=2�




H

=



b1=2eb1=2 h0; "1=2i �




H
� "1=2 k�kH ,

which is a contradiction. Therefore, we may conclude that p ^ eb [0; "] = 0 and
this implies that p - eb [0; "]

?
= eb (";1).

Using this observation we can show that the neighbourhoods V ("; �) are
�locally determined�in the following sense.

14



Lemma 5.7 Let "; � > 0 be given. If x 2 S (�), then x 2 V ("; �) if and only if
p jxj p 2 V ("; �) for all p 2 P (M) with � (p) <1.

Proof. If x 2 V ("; �), then it is easy to see that p jxj p 2 V ("; �) for all
p 2 P (M) (with � (p) <1). For the proof of the converse implication, suppose
that x =2 V ("; �), that is, �

�
ejxj (";1)

�
> �. Since the trace is semi-�nite, there

exists p 2 P (M) such that p � ejxj (";1) and � < � (p) < 1. By Lemma
5.6, p - epjxjp (";1) and so, �

�
epjxjp (";1)

�
� � (p) > �, which shows that

p jxj p =2 V ("; �).

Now we can provide the proof of Theorem 5.5.
Proof. (of Theorem 5.5) Suppose that p 2 P (M) with � (p) <1. It follows

from Proposition 4.7 that 0 � pa�p " pap in Sh (�). Since � (p) < 1, we have
pap 2 S0 (�)+, and so, it follows from Proposition 5.4 that pa�p

Tm! pap. Since
pa�p 2 V ("; �) for all � and V ("; �) is closed for the measure topology, we �nd
that pap 2 V ("; �). Via Lemma 5.7 we may conclude that a 2 V ("; �).

Recall that a subsetW of a topological vector space (V; T ) is called bounded
if for every neighbourhood U of 0 there exists 0 < � 2 R such that W � �U .
Specializing this notion to the measure topology, we get the following de�nition.

De�nition 5.8 A subset W of S (�) is called bounded in measure if for all
"; � > 0 there exists � > 0 such that W � �V ("; �).

Using that �V ("; �) = V (�"; �) for all �; "; � > 0 and the de�nition of the
neighbourhoods V ("; �) we immediately obtain the following characterization
of bounded sets in S (�).

Proposition 5.9 For a subset W of S (�) the following statements are equiva-
lent:

(i). W is bounded in measure;

(ii). for every � > 0 there exists R > 0 such that W � V (R; �);

(iii). for every � > 0 there exists R > 0 such that �
�
ejxj (R;1)

�
� � for all

x 2W .

As an example, let us call a set W � S (�) order bounded if there exists
a 2 Sh (�)

+ such that jxj � a for all x 2 W . We claim that W is bounded in
measure. Indeed, let "; � > 0 be given. Since V ("; �) is absorbing, there exists
� > 0 such that a 2 �V ("; �) = V (�"; �). Since the set V (�"; �) is absolutely
solid (that is, y 2 V (�"; �), x 2 S (�) and jxj � jyj imply x 2 V (�"; �)), it
is clear that W � �V ("; �). Hence, W is bounded in measure. As the next
theorem shows, for increasing nets in Sh (�)

+, the converse also holds.

Theorem 5.10 If fa�g is an increasing net in Sh (�)
+ which is bounded in

measure, then sup� a� exists in Sh (�).

Proof. First we consider a special case. Suppose that fbkg1k=1 is an increas-
ing sequence of mutually commuting operators (that is, bkbl = blbk for all k
and l) in Sh (�)

+ which is bounded in measure. We claim that supk bk exists in
Sh (�). Indeed, let qk be the quadratic form corresponding to the operator bk,
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that is, D (qk) = D
�
b
1=2
k

�
and qk (�) =




b1=2k �



2
H
for all � 2 D (qk). De�ning

q : D (q)! [0;1) by

D (q) =

(
� 2

1\
k=1

D (qk) : sup
k
qk (�) <1

)
;

q (�) = sup
k
qk (�) = lim

k!1
qk (�) ; � 2 D (q) ,

it is easily veri�ed that q is a closed quadratic form (in the sense of [23], Section
VI.2). The domain D (q) is � -dense (see Section 4) in H. To prove this, we
have to show that, given � > 0, there exists p 2 P (M) such that p (H) � D (q)
and �

�
p?
�
� �. Since fbkg1k=1 is bounded in measure, there exists R > 0 such

that �
�
ebk (R;1)

�
� � for all k. Using that bkbk+1 = bk+1bk and bk � bk+1,

it is easily veri�ed that ebk (R;1) � ebk+1 (R;1). Therefore, the projection
q =

W1
k=1 e

bk (R;1) satis�es � (q) � �. De�ning p = 1� q =
V1
k=1 e

bk [0; R] we
have �

�
p?
�
� � and for � 2 p (H) we �nd that

qk (�) =



b1=2k �




2
H
=



b1=2k ebk [0; R] �




2
H
=



b1=2k eb

1=2
k

h
0; R1=2

i
�



2
H
� R k�k2H

and so, supk qk (�) � R k�k2H < 1. Hence, p (H) � D (q), which shows that
D (q) is � -dense (and so, norm dense in H). Therefore, there exists a unique
positive self-adjoint operator a in H such that D

�
a1=2

�
= D (q) and



a1=2�

2H =
q (�). Now it is readily veri�ed that a 2 Sh (�)+ and that bk " a in Sh (�).
Now we turn to the general case, where fa�g is an increasing net in Sh (�)+

which is bounded in measure. For k = 1; 2; : : : we de�ne

Yk (a�) = ka� (a� + k1)
�1 .

The sequence fYk (a�)g1k=1 is called the Yosida approximation of the operator
a� . Note that

Yk (a�) = k
�
1� k (a� + k1)�1

�
= a� � a2� (a� + k1)

�1 .

It is not di¢ cult to show that: (i) Yk (a�) 2 M and 0 � Yk (a�) � k1 for all

k; (ii) 0 � Yk (a�) � Yk+1 (a�) for all k; (iii) Yk (a�)
Tm! a� as k ! 1; (iv)

Yk (a�) " a� in Sh (�); (v) for �xed k we have Yk (a�) "� inM.
Since 0 � Yk (a�) "� k1 in M, there exists bk 2 M such that Yk (a�) "�

bk and Yk (a�) !� bk with respect to the strong operator topology (that is,
Yk (a�) � ! bk� for all � 2 H). It is clear that bk � bk+1 for all k. We claim
that bkbl = blbk for all k; l � 1. Indeed, the nets fYk (a�)g� and fYl (a�)g� are
uniformly bounded (by k and l, respectively) and converge strongly to bk and bl,
respectively. This implies that Yk (a�)Yl (a�) !� bkbl and Yl (a�)Yk (a�) !�

blbk strongly. Since Yk (a�)Yl (a�) = Yl (a�)Yk (a�) for all �, we may conclude
that bkbl = blbk. Next we show that fbkg1k=1 is bounded in measure. Let
� > 0 be given. Since fa�g is bounded in measure, there exists R > 0 such
that a� 2 V (R; �) for all �. Using that 0 � Yk (a�) � a� , this implies that
Yk (a�) 2 V (R; �) for all k � 1 and all �. Since Yk (a�) "� bk in Sh (�), it
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follows from Theorem 5.5 that bk 2 V (R; �) for all k � 1. Hence, fbkg1k=1 is
bounded in measure.
From the �rst part of the proof it now follows that there exists a 2 Sh (�)+

such that bk " a in Sh (�). It is easily veri�ed that also a� " a in Sh (�), which
completes the proof of the theorem.

We end this section mentioning some results concerning the continuity of
the functional calculus. It follows from Proposition 4.8 that, for any a 2 Sh (�),
the map f 7�! f (a) is a �-homomorphism from Bbc (R) into S (�) (here Bbc (R)
denotes the �-algebra of all complex valued Borel functions which are bounded
on compact subsets of R). The following result is relatively easy to prove.

Theorem 5.11 If f 2 Bbc (R) and ffng1n=1 is a sequence in Bbc (R) such that
fn ! f uniformly on compact subsets of R, then fn (a)

Tm! f (a) for all a 2
Sh (�).

The next theorem is less trivial. It is actually a special case of a more general
result due to O.Ye. Tikhonov ([37]).

Theorem 5.12 If f 2 C (R) and an
Tm! a in Sh (�), then f (an)

Tm! f (a).

Note that this theorem implies in particular that the absolute value map
x 7�! jxj is continuous on S (�) with respect to the measure topology. Indeed,
if xn

Tm! x in S (�), then x�nxn
Tm! x�x and now apply the above theorem with

f (�) =
p
j�j.

6 Generalized singular value functions

In the setting of � -measurable operators, the generalized singular value functions
are the analogue (and actually, generalization) of the decreasing rearrangements
of functions in the classical setting. As before, we assume that (M; �) is a semi-
�nite von Neumann algebra on a Hilbert space H. For x 2 S (�) the distribution
function dx : [0;1)! [0;1] is de�ned by

dx (�) = �
�
ejxj (�;1)

�
; � � 0.

Note that it follows from the de�nition of � -measurability that for each x 2 S (�)
there exists �0 � 0 such that dx (�) < 1 for all � > �0. Furthermore, the
function dx is decreasing and right-continuous and lim�!1 dx (�) = 0.
For x 2 S (�) the generalized singular value function � (x) : [0;1)! [0;1]

is de�ned by
� (x; t) = inf f� � 0 : dx (�) � tg ; t � 0.

Since lim�!1 dx (�) = 0, it is clear that � (x; t) < 1 for all t > 0 (and note
that � (x; 0) <1 if and only if x 2 M, in which case � (x; 0) = kxkB(H)). The
function � (x) is decreasing and right-continuous. The notion of generalized
singular value function for operators x 2 M goes back to A. Grothendieck
([19]). A useful alternative description of the function � (x) is the following.
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Theorem 6.1 (see [15])If x 2 S (�), then

� (x; t) = inf
n
kxpkB(H) : p 2 P (M) ; p (H) � D (x) ; � (1� p) � t

o
for all t � 0.

Let us consider two simple examples.

Example 6.2 (i). Let H = L2 (�), where (X;�; �) is a Maharam measure
space, andM = L1 (�), equipped with the trace � given by � (f) =

R
X
fd�

for 0 � f 2 L1 (�) (see Example 3.6 (ii)). For any f 2 S (�) = S (�)
the generalized singular value function coincides with the decreasing re-
arrangement as de�ned in Section 2.1.

(ii). Let H be any Hilbert space and M = B (H) equipped with the standard
trace � . If x 2 B (H) is a compact operator, then jxj = (x�x)1=2 is com-
pact and self-adjoint. The eigenvalues of jxj are called the singular values
of x, denoted by f�n (x)g

1
n=0. Here the numbers �n (x) are arranged in

decreasing order and repeated according to multiplicity, so

kxkB(H) = �0 (x) � �1 (x) � �2 (x) � � � � # 0.

It follows from the min-max formulas for the eigenvalues of self-adjoint
compact operators (see e.g. [32], Section 95) in combination with Theorem
6.1 that the generalized singular value function of x is given by � (x; t) =
�n (x) whenever n � t < n+1 and n = 0; 1; : : :.This example explains why
in the general setting the function � (x) is called the generalized singular
value function.

There is a close connection between the measure topology and generalized
singular value functions. Recall that the neighbourhood base fV ("; �)g";�>0 at
zero for the measure topology is given by

V ("; �) =
n
x 2 S (�) : �

�
ejxj (";1)

�
� �

o
,

that is,
V ("; �) = fx 2 S (�) : dx (") � �g ,

which implies that

� (x; t) = inf f" > 0 : x 2 V ("; t)g (8)

for all t > 0. Conversely, for all "; � > 0 we have

V ("; �) = fx 2 S (�) : � (x; �) � "g . (9)

Indeed, if x 2 V ("; �), then it is clear from (8) that � (x; �) � ". Conversely, if
� (x; �) � ", then it follows from the de�nition of � (x; �) and the right-continuity
of dx that dx (") � � and so, x 2 V ("; �). Note that this implies in particular
that x 2 V (�0; t) for all x 2 S (�), t > 0 and �0 > � (x; t) (and x 2 V (� (x; t) ; t)
whenever � (x; t) > 0). These simple observations provide a way to transfer
properties of the measure topology to properties of the generalized singular value
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function, and visa versa. For example, in the remarks preceding Proposition
5.3 it has been observed that the sets V ("; �) are absolutely solid, that is,
x 2 V ("; �), y 2 S (�) and jyj � jxj, imply that y 2 V ("; �). Using (8), we
see that, if x; y 2 S (�) and jyj � jxj, then � (y) � � (x). As another example,
the property V ("; �)� = V ("; �) immediately implies that � (x�) = � (x) for
all x 2 S (�). It is not di¢ cult to show that yV ("; �) z � V (kyk kzk "; �) for
all y; z 2 M. Consequently, � (yxz) � kyk kzk� (x) for all x 2 S (�) and
y; z 2M. We present some other examples. In the next proposition we denote
lims"t � (x; s) = � (x; t� 0) for t > 0.

Proposition 6.3 (cf. [15], Lemma 3.4) If x 2 S (�) and fxng1n=1 is a sequence
in S (�) such that xn

Tm! x, then

� (x; t) � lim inf
n!1

� (xn; t) � lim sup
n!1

� (xn; t) � � (x; t� 0)

for all t > 0. In particular, � (x; t) = limn!1 � (xn; t) for any t > 0 where
� (x; t) is continuous (and hence, � (xn)! � (x) a.e. on [0;1)).

Proof. Since xn
Tm! x, there exist "n > 0 and �n > 0 such that "n # 0, �n # 0

and x� xn 2 V ("n; �n) for all n. From the above observations it follows that

x = xn + (x� xn) 2 V (� (xn; t) + "n; t) + V ("n; �n)
� V (� (xn; t) + 2"n; t+ �n)

and so, � (x; t+ �n) � � (xn; t) + 2"n. Since � (x) is right-continuous, this
implies that � (x; t) � lim infn!1 � (xn; t). Take 0 < s < t and let N 2 N be
such that s+ �n � t for all n � N . We �nd that

xn = x+ (xn � x) 2 V (� (x; s) + "n; s) + V ("n; �n)
� V (� (x; s) + 2"n; s+ �n) � V (� (x; s) + 2"n; t)

and hence, � (xn; t) � � (x; s) + 2"n for all n � N . This implies that

lim sup
n!1

� (xn; t) � � (x; s) :

Letting s " t, we get lim supn!1 � (xn; t) � � (x; t� 0).

Corollary 6.4 (see e.g. [12], Lemma 3.5) If fa�g is a net in Sh (�)+ such that
a� # 0 in Sh (�) and there exists a 2 S0 (�)

+ such that 0 � a� � a for all �,
then � (a� ; t) # 0 for all t > 0.

Proof. From Proposition 5.4 we know that a�
Tm! 0. Since the measure

topology is metrizable, there exists a decreasing subsequence
�
a�n

	1
n=1

such

that a�n
Tm! 0. It follows from Proposition 6.3 that �

�
a�n ; t

�
# 0 as n!1 for

all t > 0, which implies that � (a� ; t) # 0 for all t > 0.

In connection with the above result we mention that the elements in S0 (�)
may be characterized in terms of the generalized singular value function by

S0 (�) = fx 2 S (�) : � (x; t)! 0 as t!1g , (10)

as follows easily from the de�nition (see (7)).
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Proposition 6.5 (see e.g. [12], Proposition 1.7) If 0 � a� " a in Sh (�), then
� (a� ; t) " � (a; t) for all t � 0.

Proof. First we consider the case that t > 0. Since � (a� ; t) � � (a; t) for
all �, it is clear that � = sup� � (a� ; t) � � (a; t). Suppose that � < � (a; t) and
take �1 2 R such that � < �1 < � (a; t). By (9), � (a� ; t) � �1 implies that
a� 2 V (�1; t) for all �. Hence, it follows from Theorem 5.5 that a 2 V (�1; t).
Using (9) once again, we �nd that � (a; t) � �1, which is a contradiction.
Using that � (a; 0) = supt>0 � (a; t) and � (a� ; 0) = supt>0 � (a� ; t), the case

t = 0 is now an immediate consequence of the above.

Using the generalized singular value function we may also introduce the
notion of submajorization (cf. De�nition 2.4) for elements of S (�). If x; y 2
S (�), then we say that x is submajorized by y, denoted by x �� y, whenever
� (x) �� � (y), that is,Z t

0

� (x; s) ds �
Z t

0

� (y; s) ds; t � 0.

There are many useful submajorization inequalities involving the generalized
singular value functions of element of S (�), analogous to the classical inequal-
ities for functions. We will not even try to list them all here but, we mention
two of them for later reference.

Theorem 6.6 If x; y 2 S (�), then:

(i). � (x+ y) �� � (x) + � (y);

(ii). � (x)� � (y) �� � (x� y).

Inequality (i) for the case of functions is classical and may probably be
traced back to Hardy. Littlewood and Polya. For singular values of compact
operators in Hilbert space, (i) was obtained by K. Fan ([16]). The general form
for � -measurable operators is due to Th. Fack and H. Kosaki ([15], Theorem
4.4). For the case of functions, inequality (ii) goes back to G.G. Lorentz and T.
Shimogaki ([25]) and for singular values of compact operators in Hilbert space
this inequality was obtained by A.S. Markus ([28]). The general case of (ii) was
proved in [10].

7 Non-commutative Banach function spaces

As before, we assume that (M; �) is a semi-�nite von Neumann algebra on a
Hilbert space H. Let E = E (0;1) be a symmetric Banach function space
(see De�nition 2.5) on (0;1) (with respect to Lebesgue measure). With these
ingredients we introduce

E (�) = fx 2 S (�) : � (x) 2 E (0;1)g ;
kxkE(�) = k� (x)kE(0;1) ; x 2 E (�) .

The following result has been obtained in [10], [11]. We shall indicate the main
steps of its proof.
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Theorem 7.1 With the above de�nitions we have:

(i). E (�) is a linear subspace of S (�) and k�kE(�) is a norm on E (�);

(ii). the embedding of
�
E (�) ; k�kE(�)

�
into (S (�) ; Tm) is continuous;

(iii). E (�) is complete with respect to k�kE(�).

Proof. (i). If x; y 2 E (�), then it follows from Theorem 6.6 (i), that
� (x+ y) �� � (x) + � (y), which implies that x+ y 2 E (�) and

kx+ ykE(�) = k� (x+ y)kE(0;1) � k� (x) + � (y)kE(0;1)

� k� (x)kE(0;1) + k� (y)kE(0;1) = kxkE(�) + kykE(�) .

Now it is clear that k�kE(�) is a norm on E (�).
(ii). It is su¢ cient to show that the closed unit ball BE(�) of E (�) is bounded

in measure, that is, for every � > 0 there exists R > 0 such that � (x; �) � R
whenever x 2 BE(�) (see Proposition 5.9 and (9)). Given � > 0 and x 2 BE(�),
it follows from the inequality 0 � � (x; �)�[0;�] � � (x) (as � (x) is decreasing on

[0;1)) that � (x; �) �



�[0;�]


�1

E(0;1)
. Hence, we may take R =




�[0;�]


�1
E(0;1)

.

(iii). To show that E (�) is complete with respect to k�kE(�), suppose that
fxng1n=1 is a Cauchy sequence in E (�). It follows from (ii) that fxng1n=1 is
Cauchy for the measure topology and so, there exists x 2 S (�) such that xn

Tm! x
(see Theorem 5.1). Moreover, it follows from Theorem 6.6 (ii), that

� (xm)� � (xn) �� � (xm � xn)

and so, k� (xm)� � (xn)kE(0;1) � k� (xm � xn)kE(0;1) = kxm � xnkE(�) for all
m and n. Hence, f� (xn)g1n=1 is a Cauchy sequence in E (0;1). Hence, there
exists f 2 E (0;1) such that k� (xn)� fkE(0;1) ! 0. Furthermore, it follows

from Proposition 6.3 that xn
Tm! x implies that � (xn) ! � (x) a.e. on (0;1)

and so, � (x) = f 2 E (0;1), that is, x 2 E (�). Applying the same argument
to the Cauchy sequence fx� xng1n=1 (which converges to 0 in measure), we �nd
that k� (x� xn)kE(0;1) ! 0, that is, kx� xnkE(�) ! 0. The proof is complete.

The space E (�) is called the non-commutative Banach function space cor-
responding to E (0;1) and associated with (M; �). From the de�nition it is
clear that x 2 E (�) if and only if jxj 2 E (�), if and only if x� 2 E (�) and that
kxkE(�) = kjxjkE(�) = kx�kE(�). Furthermore we note that E (�) is symmetric,
that is, if x 2 S (�), y 2 E (�) and x �� y, then x 2 E (�) and kxkE(�) � kykE(�)
(and so, in particular, E (�) is an absolutely solid subspace of S (�)).
The real linear subspace of all self-adjoint elements in E (�) is denoted by

Eh (�). The collection of all positive elements in Eh (�) is denoted by Eh (�)
+,

that is, Eh (�)
+
= E (�) \ Sh (�)+, which is a proper cone in Eh (�). Hence,

Eh (�) has the structure of a partially ordered vector space with Eh (�)
+ as

its positive cone. Since the embedding of
�
E (�) ; k�kE(�)

�
into (S (�) ; Tm) is

continuous and Sh (�)
+ is closed in Sh (�) (see Proposition 5.3), it is clear that
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Eh (�)
+ is closed in Eh (�). Therefore,

�
Eh (�) ; k�kE(�)

�
is an ordered Banach

space (for an exposition of the theory of ordered Banach spaces we refer the
reader to e.g. [2]; see also Chapter V in the book [33]). The positive cone
Eh (�)

+ is generating (indeed, each a 2 Eh (�) can be decomposed as a = a+ �
a�, where a+ and a� belong to Eh (�)

+ with ka+kE(�), ka�kE(�) � kakE(�)).
Furthermore, the norm in Eh (�) is monotone, that is, 0 � a � b in Eh (�)
implies that kakE(�) � kbkE(�). This implies in particular that Eh (�)

+ is a
normal cone. Consequently, any ' in the (real) Banach space dual Eh (�)

� can
be decomposed as ' = '1 � '2, with '1; '2 � 0. In other words, the dual cone
of Eh (�)

+ is generating in Eh (�)
�. Moreover, a standard argument shows that

any positive linear functional on Eh (�) is automatically bounded.
Note that E (�) is the complexi�cation of Eh (�), that is, E (�) = Eh (�) �

iEh (�). Indeed, any x 2 E (�) can be written as x = Rex + i Imx, with
Rex, Imx 2 Eh (�) (and kRexkE(�), kImxkE(�) � kxkE(�)). This implies that
Eh (�)

� may be identi�ed with a closed real subspace of E (�)�. Indeed, let us
call a functional ' 2 E (�)� self-adjoint (or, hermitian) whenever ' (x�) = ' (x)
for all x 2 E (�) and denote by E (�)�h the closed real subspace of E (�)

� consist-
ing of all self-adjoint functionals. It is easy to verify that the map ' 7�! ' jEh(�)
de�nes an isometric isomorphism form E (�)

�
h onto Eh (�)

�. Via this isomor-
phism we may identify E (�)�h with Eh (�)

�. Furthermore, with this identi�-
cation, we have E (�)� = Eh (�)

� � iEh (�)
�. Indeed, any ' 2 E (�)

� can be
written as ' = '1 + i'2, where '1; '2 2 Eh (�)

� are given by

'1 (x) =
1

2

�
' (x) + ' (x�)

�
; '1 (x) =

1

2i

�
' (x)� ' (x�)

�
; x 2 E (�)� .

This implies in particular that every ' 2 E (�)� is a linear combination of four
positive linear functionals.
As speci�c examples we mention the non-commutative Lp-spaces associated

with (M; �), that is, the spaces Lp (�) corresponding to Lp (0;1), for 1 �
p � 1. The norm in Lp (�) is usually denoted simply by k�kp. In particular,
L1 (�) =M and kxk1 = kxkB(H) for all x 2 L1 (�) (see the remarks preceding
Theorem 6.1).
If we takeM = B (H) with standard trace, then the spaces E (�) correspond

to the so-called symmetrically normed ideals of compact operators, the theory
of which is developed in detail in the book [18]. In particular, in this case
Lp (�) = Sp for 1 � p <1, the p-Schatten ideals of compact operators.
It follows from (3) that any non-commutative Banach function space satis�es

(L1 \ L1) (�) � E (�) � (L1 + L1) (�)

with continuous embeddings. It is clear that (L1 \ L1) (�) = L1 (�) \ L1 (�)
and it can be shown that (L1 + L1) (�) = L1 (�) + L1 (�). The restriction of
the trace � to (L1 \ L1)+h (�) is a positive linear functional and can be extended
to a linear functional _� on (L1 \ L1) (�), satisfying _� (jxj) = kxk1 for all x 2
(L1 \ L1) (�). Using that (L1 \ L1) (0;1) is dense in L1 (0;1), it follows that
(L1 \ L1) (�) is dense in L1 (�) (see e.g. Proposition 2.8 in [12]) and hence, _�
extends uniquely to a linear functional _� : L1 (�)! C. Moreover, _� (jxj) = kxk1
for all x 2 L1 (�) and _� is a positive functional on L

+
1 (�). For the details of

this construction and further properties of this extended trace, which will be
denoted again by � , we refer the reader to Section 3 of [12].
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Next we discuss some aspects of the duality theory of these non-commutative
spaces. As above, we assume that E (0;1) is a symmetric Banach function space
on (0;1).

De�nition 7.2 The Köthe dual space E (�)� of E (�) is de�ned by

E (�)
�
=
�
y 2 S (�) : xy 2 L1 (�) 8x 2 E (�)

	
.

It is clear that E (�)� is a linear subspace of S (�). It is not di¢ cult to
verify that y 2 E (�)

� if and only if yx 2 L1 (�) for all x 2 E (�). Moreover,
if y 2 E (�)

� and x 2 E (�), then � (xy) = � (yx). If, in addition, x � 0 and
y � 0, then � (xy) � 0 (all these statements, and much more, can be found in
Proposition 5.2 of [12]). For y 2 E (�)�, we de�ne the linear functional

'y : E (�)! C; 'y (x) = � (xy) ; x 2 E (�) . (11)

If y 2 E (�)
� and y � 0, then 'y is a positive functional, that is, 'y (x) � 0

for all x 2 E+h (�). This observation can be used to show that the functional 'y
is bounded for every y 2 E (�)

�. The map � : E (�)� ! E (�)
� is linear and

injective (which follows from (L1 \ L1) (�) � E (�)). Now we de�ne a norm
k�kE(�)� on E (�)

� by

kykE(�)� =


'y

E(�)� ; y 2 E (�)� .

We say that E (�)� may be identi�ed with a subspace of E (�)� via trace duality
(which is given by (11). In the analysis of Köthe dual E (�)� the following result
plays a crucial role (see [11], Proposition 5.3).

Proposition 7.3 If y 2 S (�), then y 2 E (�)� if and only if

sup

�Z 1

0

� (x; t)� (y; t) dt : x 2 E (�) ; kxkE(�) � 1
�
<1

and in this case we have

kykE(�)� = sup
�Z 1

0

� (x; t)� (y; t) dt : x 2 E (�) ; kxkE(�) � 1
�
.

Using these observations, it can be shown that the normed linear space�
E (�)

�
; k�kE(�)�

�
has the following properties (see [12], Proposition 5.4):

(a). (L1 \ L1) (�) � E (�)
� � (L1 + L1) (�), with continuous embeddings;

(b). the embedding of
�
E (�)

�
; k�kE(�)�

�
into (S (�) ; Tm) is continuous;

(c). if x 2 S (�), y 2 E (�)
� and x �� y, then x 2 E (�)

� and kxkE(�)� �
kykE(�)� ;

(d). if fy�g is a net of positive elements in E (�)� such that 0 � y� " and
sup� ky�kE(�)� <1, then there exists a positive element y 2 E (�)� such
that y� " y and ky�kE(�)� " kykE(�)� ;
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(e). E (�)� is complete with respect to k�kE(�)� .

The important result for the identi�cation of the Köthe dual E (�)� is the
following theorem (see [12], Theorem 5.6).

Theorem 7.4 If E = E (0;1) is a symmetric Banach function space on (0;1)
with Köthe dual space E�, then E (�)� = E� (�) (with equality of norms).

The linear functionals ' 2 E (�)� which correspond to elements y 2 E (�)�
via trace duality (11) have a characterization which is analogous to the commu-
tative case (see Theorem 2.10).

Theorem 7.5 ([12], Theorem 5.11) Suppose that E = E (0;1) is a symmetric
Banach function space on (0;1). For ' 2 E (�)

� the following conditions are
equivalent:

(i). ' is normal, that is, x� # 0 in Eh (�) implies that ' (x�)! 0;

(ii). ' is completely additive, that is, p� # 0 in P (M) implies that ' (xe�)! 0
and ' (e�x)! 0 for all x 2 E (�);

(iii). there exists y 2 E (�)� such that ' (x) = � (xy) for all x 2 E (�) (that is,
' = 'y in the notation of (11)).

Via the same argument as used in the case of Banach lattices, it is easily
see that every ' 2 E (�)

� is normal (brie�y, E (�)� = E (�)
�) if and only if

the norm in E (�) is order continuous, that is, x� # 0 in Eh (�) implies that
kx�kE(�) # 0. Another relevant observation in this connection is the following
(see [12], Proposition 3.6, and [7]).

Proposition 7.6 If the symmetric Banach function space E = E (0;1) has
order continuous norm, then the norm in E (�) is also order continuous.

Proof. The order continuity of the norm in E (0;1) implies that � (f ; t)!
0 as t ! 1 and so, E (�) � S0 (�) (see (10)). Consequently, if x0 � x� # 0
in Eh (�), then it follows from Corollary 6.4 that � (x�; t) # 0 for all t > 0 and
hence, kx�kE(�) = k� (x�)kE(0;1) # 0.

We illustrate the above results with some explicit examples. If we take for
example E = Lp (0;1), with 1 � p <1, the E has order continuous norm and
so,

Lp (�)
�
= Lp (�)

�
= L�p (�) = Lq (�)

(identi�cation via trace duality), where p�1 + q�1 = 1. Similarly, M� =
L1 (�)

�
= L1 (�). Other examples are

(L1 (�) + L1 (�))
�

= (L1 + L1)
�
(�) = (L1 \ L1) (�) = L1 (�) \ L1 (�) ;

(L1 (�) \ L1 (�))� = (L1 \ L1)� (�) = (L1 + L1) (�) = L1 (�) + L1 (�) .

Of course, similar examples may be given using Orlicz spaces, Lorentz and
Marcinkiewicz spaces.
We end this section with an interesting decomposition theorem for func-

tionals in the Banach space dual E (�)�, as was obtained in [14]. Let us �rst
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consider the situation for a Banach function space E on a (Maharam) measure
space (X;�; �). As before, we denote by E�n the collection of all normal (that
is, order continuous) linear functionals on E, which is a band in the Banach
space dual E� (and may be identi�ed with the Köthe dual E�). The disjoint
complement of E�n in E

� will be denoted by E�s (sometimes this band is also
denoted by E�sn) and the elements of E

�
s are termed singular (normal) linear

functionals. Since E� = E�n � E�s , every ' 2 E� has a unique decomposition
' = 'n+'s, where 'n 2 E�n and 's 2 E�s (and so, 'n?'s). This decomposition
can be viewed as an analogue of the so-called Yosida-Hewitt decomposition of
measures). For the details we refer the reader to e.g. Chapter 12 in [40] or
Chapter 1 in [1]. From the de�nition it is clear that a functional ' 2 E� is
singular if and only if it follows from j j � j'j and  2 E�n that  = 0. An-
other useful characterization of singular functionals is that they vanish on large
(order) ideals in E. To be more precise, an ideal (that is, absolutely solid linear
subspace) A � E is called order dense in E if for every 0 < u 2 E there exists
v 2 A such that 0 < v � u. With this terminology, a linear functional ' 2 E�
is singular if and only ' = 0 on some order dense ideal in E (see [26], Theo-
rem 50.4; this result also follows from Theorem 90.5 in [40]). We note that for
this characterization it is essential that E�n separates the points of the Banach
function space E (for example, on the Banach lattice C [0; 1] the functional of
integration is singular and strictly positive).
Now we consider such a decomposition for functionals on a space E (�), where

(M; �) is a semi-�nite von Neumann algebra and E = E (0;1) is a symmetric
Banach function space on (0;1). The concept of normal functional was already
introduced in Theorem 7.5. A linear subspace A � E (�) is called an order ideal
if A is generated by its positive elements and if it follows from 0 � b � a, a 2 A
and b 2 Eh (�) that b 2 A. Such an ideal A is called order dense in E (�) if for
every 0 < b 2 Eh (�) there exists a 2 A such that 0 < a � b. A linear functional
' 2 E (�)� is said to be singular whenever ' vanishes on some order dense ideal
in E (�). Evidently, this notion of singularity agrees with the one for Banach
function spaces, as follows from the above discussion. If E = L1 (0;1), and
so E (�) =M, it also agrees with the usual de�nition of a singular functional
on a von Neumann algebra (see e.g. [34], Section III.2 or [22], Section 10.1),
as follows from [14], Proposition 2.1, in combination with [34], Theorem III.3.8.
Now we are in a position to formulate the decomposition theorem for elements
of E (�)�.

Theorem 7.7 ([14], Corollary 2.5) If (M; �) is a semi-�nite von Neumann
algebra and E = E (0;1) is a fully symmetric Banach function space on (0;1),
then every ' 2 E (�)

� has a unique decomposition ' = 'n + 's, where 'n is
normal and 's is singular.

For further details and interesting applications of this result, we refer the
reader to [14].

8 Operator functions

As we have seen in the previous section, there are many results concerning
non-commutative Banach function spaces which are analogous to the commu-
tative theory (although most of the proofs are quite di¤erent!). However, there
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are some aspects of the non-commutative theory which are essentially di¤erent
from the commutative situation. We shall illustrate this with some results con-
cerning so-called operator functions. By an operator function we mean a map
a 7�! f (a), where f : R ! R is an appropriate Borel function and the (non-
commutative) variable a belongs to Eh (�). If f : R ! R is continuous, then
we know by Theorem 5.12 that the map a 7�! f (a) from Sh (�) into itself, is
continuous with respect to the measure topology. But, here we will be interested
in Lipschitz-type norm estimates. To be more precise, we consider the following
problem: under which assumptions, on the Banach function space E = E (0;1)
and on the function f , does there exists a constant C > 0 (depending on E and
f) such that kf (a)� f (b)kE(�) � C ka� bkE(�) for all a; b 2 Eh (�)?
Let us say �rst a few words about the commutative situation. Suppose that

E is any Banach function space on a (Maharam) measure space (X;�; �) and
let a 2 E be real valued (we use here the symbol a for a function to keep the
analogy with the above discussion). We may represent a by its spectral integral
a =

R
R �de

a (�) as in (4). Note that we may consider a as a self-adjoint operator
on the Hilbert space L2 (�), acting via multiplication. The spectral measure of
a is then given by ea (B) = �a�1(B) for all Borel sets B � R. If f : R! R is a
Borel function, then f (a) is de�ned by

f (a) =

Z
R
f (�) dea (�)

(see (5)). Approximating f by simple functions, it is not di¢ cult to see that
f (a) = f � a, the composition of f and a). Now suppose that the function
f is Lipschitz continuous, that is, there exists a constant C > 0 such that
jf (�)� f (�)j � C j�� �j for all �; � 2 R. If a; b 2 E are real valued, then

jf (a) (x)� f (b) (x)j = jf (a (x))� f (b (x))j � C ja (x)� b (x)j ; x 2 X;

and hence,
jf (a)� f (b)j � C ja� bj : (12)

Since E is an ideal in L0 (�) and the norm on E is absolutely monotone, it
follows that f (a) � f (b) 2 E and kf (a)� f (b)kE � C ka� bkE . This argu-
ment shows that in the commutative situation, it is more or less evident that
Lipschitz continuity of f implies that the corresponding �operator function�
is also Lipschitz continuous (with the same constant, independent of E). The
crucial estimate is of course inequality (12). In the non-commutative situation,
inequalities like (12) are not valid in general (if a and b do not commute) and,
as it turns out, a Lipschitz continuity of f is in general not enough to guarantee
that the corresponding operator function satis�es a Lipschitz estimate.
As a special case, let us �rst consider the absolute value mapping corre-

sponding to the function f (�) = j�j. In [13] the following result has been
obtained.

Theorem 8.1 Suppose that 1 < p < 1 and let (M; �) be a semi-�nite von
Neumann algebra. If x; y 2 S (�) such that x�y 2 Lp (�), then jxj�jyj 2 Lp (�)
and

kjxj � jyjkp � Cp kx� ykp , (13)

where Cp > 0 is a constant only depending on p.
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In the case M = B (H), with standard trace (and so, Lp (�) = Sp, the
p-Schatten ideal), the above result was obtained by E.B. Davies in [8] (see also
[5]). Moreover, it was shown in [8] that an estimate like (13) fails for p = 1;1.
We like to point out that it is su¢ cient to prove the above theorem for self-
adjoint elements x and y only. Indeed, the general case is then obtained from
this special case by considering the von Neumann algebra M2 (C) 
M, of all
2 � 2-matrices with entries in M, and applying the result to the self-adjoint
operators �

0 x�

x 0

�
;

�
0 y�

y 0

�
.

We leave the veri�cation to the reader.
Furthermore, the result of Theorem 8.1 can be extended via interpolation

techniques to a much larger class of spaces than the Lp-spaces. In fact, in
[13], Theorem 3.4, it was shown that, if E = E (0;1) is a symmetric Banach
function space which is an (Lp; Lq)-interpolation space for some 1 < p � q <1,
then there exists a constant CE > 0 (only depending on the space E) such
that kjxj � jyjkE(�) � kx� ykE(�) for all x; y 2 E (�) with x � y 2 E (�),
for all semi-�nite von Neumann algebras (M; �) (and actually, this property
characterizes the Banach function spaces which are (Lp; Lq)-interpolation space
for some 1 < p � q <1).
Finally we say a few words about more general operator functions a 7�!

f (a), a 2 Eh (�). For sake of simplicity we shall not state the results in full
generality, but single out some important special cases (which follows from [29],
Corollary 7.5 in combination with Proposition 8.5).

Theorem 8.2 Suppose that 1 < p < 1, let (M; �) be a semi-�nite von Neu-
mann algebra and f : R ! R be a function with weak derivative f 0 which is of
bounded variation. There exists a constant Cp;f > 0 (only depending on p and
the function f), such that

kf (a)� f (b)kp � Cp;f ka� bkp

for all a; b 2 Sh (�) with a� b 2 Lp (�).

The function f (�) = j�j satis�es the conditions of the above theorem and so,
the result of Theorem 8.1 may be obtained via Theorem 8.2. Furthermore, also
Theorem 8.2 actually holds for (Lp; Lq)-interpolation spaces with 1 < p; q <1.
In the paper [30] several results concerning the (Gâteaux) di¤erentiability of
operator functions have been obtained. All these results depend on the theory
of so-called double operator integrals, originated by Birman and Solomyak in the
setting of trace ideals and extended in [29] to the general setting of semi-�nite
von Neumann algebras. These double operator integrals and their relation to
the UMD-property and R-bounded collections of operators, have been discussed
also in detail in [38].
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