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Lattices have two facets in cryptography: for a while, they have been mainly used for cryptanalysis (1), and
recently they have also become a versatile tool for the construction secure cryptosystems (2). The topic of the
Bachelor Thesis may be chosen among this two facets.

Lattices are discrete subgroups of finite-dimensional euclidean vector spaces. In particular lattices have Z-bases
but unlike euclidean vector spaces, lattices do not necessary admit an orthogonal basis. A fundamental algorithmic
task is, given a basis of a lattice, to reduce it, i.e. finding a basis that is close to being orthogonal, in some
quantifiable sense.

The two metrics of interest for a reduction algorithm are its running time, and its quality, i.e. a measure of how
close to orthogonal the output basis is. Even though some reduction algorithms run time polynomial in the rank
d of the lattice, finding a very good basis requires exponential time. Once in possession of a good enough basis,
other algorithmic tasks of interest — such as CVP, the close vector problem — become solvable.

1) Lattice Reduction for Cryptanalysis

The famous LLL algorithm [1] was the first to provide bases of useful quality in polynomial time. Even though
LLL-reduced bases can remain quite far from orthogonal, they are good enough for many applications, including
cryptanalysis of various kind of cryptosystems (knapsack, RSA, elliptic curves ... ).

The LLL algorithm proceeds locally, namely by optimizing bases of 2-dimensional projected sub-lattices, and
repeating this subroutine until not much more progress can be achieved. The running time of LLL can be analyzed
using a so-called sandpile argument. More interestingly, the design of LLL can be seen as a (relaxed) algorithmic
version of the proof of Hermite’s inequality v4 < ’yZd_l, one of the earliest bounds on dense sphere packing.

The student is invited to get acquainted with the LLL algorithm and its properties [2]. From there, a possible
development is to study a generalization of LLL [3], where the local optimization is done on sub-lattice of dimension
k( > )2/.( A;gain7 a parallel is to be made with a bound on sphere packing, namely Mordell’s inequality 74 <

d—1)/(k—1
Yk .

The student may also explore applications of LLL in cryptanalysis, e.g. for factorization [4].

2) Sampling Discrete Gaussian over a Lattice

As mentioned earlier, knowing very good basis of a lattice allows to quickly solve CVP while it remains exponentially
slower knowing only a bad basis or even an LLL-reduced basis. This suggest the construction of asymmetric
cryptography protocols, where a very good basis can be chosen first and used as a secret key, and from which a bad
basis can be derived to be used as a public key.

Unfortunately, the standard algorithm to solve CVP — Babai’s nearest plane algorithm — is not suitable for all
cryptographic application because it reveals a good tiling of the lattice. Therefore a statistical learning attack [5)
can recover the secret key. To thwart learning attacks, a technique called Gaussian Sampling was developed. The
idea is to replace the deterministic rounding step of Babai by a discrete Gaussian distribution that smoothes out
the lattice tiles.

The project may start with the study of the learning attack, motivating the Gaussian Sampling technique. After
studying the Gaussian Sampling algorithm over general lattices, the student can also explore optimizations [6] of this
algorithm over the structured lattices which are used for cryptographic constructions. Typically, those structured
lattices are modules over some cyclotomic ring Z[¢,,]. This topic of research is relatively young, and there is certainly
room for new ideas.
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