Abelian groups of bounded exponent

All groups in this project description are abelian, and they will be written additively.

Let A be an abelian group. For each $n \in \mathbb{Z}$, the map $A \to A$ sending a to na is a group homomorphism, of which the kernel is denoted by A[n] and the image by nA; so if n > 0, then $A[n] = \{a \in A :$ the order of a is finite and divides $n\}$. We write $A_{\text{tors}} = \bigcup_{n \ge 1} A[n]$; it is a subgroup of A, called the *torsion subgroup*, and it consists of all elements of A of finite order. We say that A is a *torsion group* if $A = A_{\text{tors}}$, and that it has *bounded exponent* if there exists $n \in \mathbb{Z}_{>0}$ with A = A[n]; the least value of n with A = A[n] is then called the *exponent* of A.

The project is devoted to the structure of torsion groups, in particular in the case of groups of bounded exponents.

Let again A be an abelian group. For a prime number p we write $A[p^{\infty}] = \bigcup_{i\geq 0} A[p^i]$, which is a subgroup of A_{tors} , the *p*-primary part of A_{tors} ; we say that A is *p*-primary if $A = A[p^{\infty}]$. It is a basic theorem that the group homomorphism $\bigoplus_{p \text{ prime}} A[p^{\infty}] \to A_{\text{tors}}$, $(a_p)_{p \text{ prime}} \mapsto \sum_p a_p$, is an isomorphism. This isomorphism reduces most questions one may ask about torsion groups to the case that the group is *p*-primary for some prime number *p*. It also reduces most questions that one may ask about groups of bounded exponents to the case in which the exponent is a power of some prime number.

Let $n \in \mathbb{Z}_{>0}$. An abelian group has exponent dividing n if and only if it can be viewed as a module over the ring $\mathbb{Z}/n\mathbb{Z}$. The most important result about groups of bounded exponent states that any $\mathbb{Z}/n\mathbb{Z}$ -module can be written as the direct sum of a collection of modules each of which is *cyclic* of order dividing n.

Let us now fix a prime number p and $k \in \mathbf{Z}_{>0}$, and let A be an abelian group of exponent dividing p^k or, equivalently, a $\mathbf{Z}/p^k\mathbf{Z}$ -module. Then one can write $A \cong \bigoplus_{i=1}^k (\mathbf{Z}/p^i\mathbf{Z})^{(a(i))}$ for certain cardinal numbers $a(1), a(2), \ldots, a(k)$, and one can in fact show that these cardinal numbers are uniquely determined by A. We call $(\mathbf{Z}/p^k\mathbf{Z})^{(a(k))}$ the *free* part of A (notation: A_{free}), and $\bigoplus_{i=1}^{k-1} (\mathbf{Z}/p^i\mathbf{Z})^{(a(i))}$ the *non-free* part (notation: A_{nf}); we have $A \cong A_{\text{nf}} \oplus A_{\text{free}}$, but this isomorphism is not necessarily unique, and A_{free} and A_{nf} are in general not uniquely defined as subgroups of A.

Let p and k be as above. Then for each abelian group A, the groups $A[p^k]$ and $A/p^k A$ are groups of exponent dividing p^k ; it is apparently true that their non-free parts $A[p^k]_{nf}$ and $(A/p^k A)_{nf}$ are isomorphic, and that an isomorphism between these two groups is induced by the homomorphism $A[p^k] \to A/p^k A$ that is the composition of the inclusion map $A[p^k] \to A$ and the canonical map $A \to A/p^k A$. It is also reasonable to expect that a converse is true: if B and C are $\mathbf{Z}/p^k \mathbf{Z}$ -modules with $B_{nf} \cong C_{nf}$, then there exists an abelian group A with $B \cong A[p^k]$ and $A/p^k A \cong C$; and that the composed map $B \cong$ $A[p^k] \subset A \to A/p^k A \cong C$ can be made equal to a given group homomorphism $g: B \to C$ if and only if g induces, in a sense to be made precise, an isomorphism from B_{nf} to C_{nf} . It would be nice if the student could formulate all of this rigorously and provide proofs.

Supervisors: a subset of Mima Stanojkovski, Bart de Smit, and Hendrik Lenstra.