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d-17 TheČech–Stone Compactification

1. Constructions

In [11] Tychonoff not only proved theTychonoff Product
Theorem(for powers of the unit interval), he also showed
that everycompletely regularspace ofweightκ can be em-
bedded into the spaceκ [0,1]. This inspiredČech, in [1], to
construct for every completely regular spaceS a compact
Hausdorff spaceβ(S) that containsSas adense subspace–
acompactificationof S– and such that every bounded real-
valued continuous function onScan be extended to a contin-
uous function onβ(S). The construction amounts to taking
the family C of all continuous functions fromS to [0,1],
the correspondingdiagonal mape= 4 f ∈C f :S→ [0,1]C

and obtainingβ(S) as the closure ofe[S] in [0,1]C . Čech
also proved that for any other compactificationB of S there
is a continuous maph :β(S)→ B with h(x) = x for x ∈ S
and h[β(S) \ S] = B \ S. From this he deduced that ifB
is a compactification ofS in which functionally separated
subsets inS have disjoint closures inB then the maph is a
homeomorphism, whenceB= β(S).

Somewhat earlier, in [10], M.H. Stone applied his the-
ory of representations ofBoolean algebras to various to-
pological problems. One of the major applications is the
construction, using the ringC∗(X) of bounded real-valued
continuous functions, of a compactificationX of X with
the same extension property as the compactification that
Čech would construct. The construction proceeds by taking
the Boolean algebraB generated by allcozero setsand all
nowhere densesubsets ofX. As a first step Stone took the
representing spaceS(B) – theStone space– of B. Next, to
every maximal idealm of C∗(X) he associated the idealIm
of B consisting of those setsB in B for which there are
f ∈ C∗(X) anda,b,c ∈ R such thatA⊆ f←[(a,b)]; f ≡ c
(modm) andc < a or b < c. Finally Fm is the closed sub-
set ofS(B) determined by the filter that is dual toIm. The
spaceX is the quotient space ofS(B) by the decompo-
sition consisting of the setsFm. One obtains an embed-
ding of X into X by associatingx with the maximal ideal
mx = { f : f (x) = 0}. Stone also proved that every continu-
ous map onX with a compact co-domain can be extended
toX .

The compactification constructed by̌Cech and Stone
is nowadays called thěCech–Stone compactification;1

Čech’sβ is still used, we writeβX (without Čech’s paren-
theses). The properties ofβX that Čech and Stone estab-
lished each characterize it among all compactifications ofX:
(1) it is the maximal compactification; (2) functionally sepa-
rated subsets ofX have disjoint closures inβX; and (3) ev-
ery continuous map fromX to a compact space extends to

1In Europe; elsewhere one speaks of theStone–̌Cech compactification.

all of βX (the extension off : X→ K is denotedβ f ). Of
the many other constructions ofβX that have been devised
we mention two. First, in [6], Gel’fand and Kolmogoroff
showed that thehull-kernel topologyon the set of maximal
ideals ofC∗(X) immediately gives usβX and that one may
also use the ringC(X) of all real-valued continuous func-
tions onX. Second, in [7], Gillman and Jerison gave what
for many is the definitive construction ofβX: theWallman
compactificationof X with respect to the familyZ(X) of all
zero sets of X. This meansβX is the set of all ultrafilters on
the familyZ(X) – thez-ultrafilter s orzero-set ultrafilters
– with the family {SZ: Z ∈ Z(X)} as a base for the closed
sets, whereSZ = {u ∈ βX: Z ∈ u}. One identifies a pointx
of X with thez-ultrafilter ux = {Z: x ∈ Z}.

Property 2 above is usually reformulated as: (2′) disjoint
zero sets ofX have disjoint closures inβX. For normal
spacesone can obtainβX astheWallman compactification
of X, i.e., using the family of all closed sets; property (2′)
then becomes (2′′) disjoint closed sets inX have disjoint clo-
sures inβX. The equalityβX = K should be taken to mean
thatK is compact and there is an embeddingf : X→ K , for
which f [X] is dense inK and for which the extensionβ f
is a homeomorphism – especially ifX is dense inK . In this
sense the notationβ f is unambiguous: the graph ofβ f is the
Čech–Stone compactification of the graph off .

The assignmentX 7→ βX is a covariant functor from
the categoryof Tychonoff spaces to the category of com-
pact Hausdorff spaces, both with continuous maps asmor-
phisms. It is in fact the adjoint of theforgetful functor from
compact Hausdorff spaces to Tychonoff spaces. This gives
another way of proving that “βX exists”: because the cate-
gory of compact Hausdorff spaces is closed under products
and closed subsets. In factČech’s construction ofβX may
be construed as a forerunner of the Adjoint Functor Theo-
rem.

2. Properties

We say that a subspaceA is C-embedded (C∗-embed-
ded) in a spaceX if every (bounded) real-valued continuous
function on A can be extended to a continuous real-valued
function on X. Thus a completely regular spaceX is C∗-
embedded in itšCech–Stone compactificationβX and any
compactification ofX in which X is C∗-embedded must
be βX. These remarks help us to recognize someČech–
Stone compactifications: ifA⊆ X then clβX A= β A iff A is
C∗-embedded inX andβY = βX wheneverX ⊆ Y ⊆ βX.
If X is normal then clβX A= β A wheneverA is closed inX
(by theTietze–Urysohn theorem).
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One can useC∗-embedding to calculateβX explicitly for
a few X, by which we mean thatβX is an already famil-
iar space. The well-known fact that every continuous real-
valued function on theordinal spaceω1 is constant on a tail
implies thatβω1= ω1+1 – the same holds for every ordinal
of uncountable cofinality. Other examples are provided by
Σ -products: if κ is uncountable andX = {x: {α: xα 6= 0} is
countable} as a subspace ofκ

[0,1] (or κ2) then every con-
tinuous real-valued function onX depends on countably
many coordinates and hence can be extended to the ambient
product so thatβX = κ

[0,1] (or βX = κ2). Note that these
spaces, with an easily identifiableČech–Stone compactifica-
tion, arepseudocompact. In fact if X is not pseudocompact
then it contains aC-embedded copy ofN, whenceβX con-
tains a copy ofβN. The spaceβN is, in essence, hard to
describe: ifu is a point inβN \ N and so a freeultrafilter
on N then the set{

∑
n∈U 2−n

: U ∈ u} is a non-Lebesgue
measurable set of reals. This illustrates that the construction
of βX requires a certain amount of Choice, indeed, the exis-
tence ofβX is equivalent to the Tychonoff Product Theorem
for compact Hausdorff spaces, which, in turn, is equivalent
to the Boolean Prime Ideal Theorem.

The map f 7→ β f from C∗(X) to C(βX) is an isomor-
phism of rings (or lattices, or Banach spaces . . . ); this ex-
plains why very often investigations intoC∗(X) assume that
X is compact; this gives the advantage that ideals are fixed,
i.e., if I is an ideal ofC∗(X) then there is a pointx with
f (x)= 0 for all f ∈ I . Furthermore the maximal ideals are
precisely the ideals of the form{ f : f (x)= 0} for somex.

A perfect map is one which is continuous, closed and
with compact fibers. A mapf : X→ Y between completely
regular spaces is perfect iff itšCech-extensionβ f satisfies
β f [βX \ X] ⊆ βY \ Y or equivalentlyX = β f −1

[Y]. One
can use this, for instance, to show that complete metrizabil-
ity is preserved by perfect maps (also inversely if the domain
is metrizable). A metrizable space iscompletely metrizable
iff it is a Gδ-setin its Čech–Stone compactification; the lat-
ter property is then easily seen to be preserved both ways
by perfect maps. One calls a space aČech-complete space
(sometimestopologically complete) if it is a Gδ-set in its
Čech–Stone compactification. This is an example ofβX pro-
viding a natural setting for defining or characterizing topo-
logical properties ofX – the best-known example being of
course local compactness: a space islocally compactiff it
is open in itsČech–Stone compactification. Other properties
that can be characterized viaβX are: theLindelöf property
(X is normally placed in βX, which means that for every
open setU ⊇ X there is anFσ -setF with X ⊆ F ⊆U ) and
paracompactness(X × βX is normal).

The productβN× βN is not β(N× N): the characteris-
tic function of the diagonal ofN witnesses thatN × N is
not C∗-embedded inβN× βN. The definitive answer to the
question whenβ

∏
=

∏
β was given in [8]: if bothX andY

are infinite thenβX × βY = β(X × Y) iff X × Y is pseu-
docompact and the same holds for arbitrary products, with
a similar proviso:

∏
i βXi = β

∏
i Xi iff

∏
i Xi is pseudo-

compact, provided
∏

i 6=i0 Xi is never finite. If the product

can be factored into two subproducts without isolated points
then even the homeomorphy of

∏
i βXi andβ

∏
i Xi implies∏

i Xi is pseudocompact.
If X is not compact then no point ofX∗ = βX \X is aGδ-

set, in fact aGδ-set ofβX that is a subset ofX∗ contains a
copy ofN∗. This implies that nice properties like metrizabil-
ity, and second- or first-countability do not carry over toβX.
Of course separability carries over fromX to βX, but not
conversely: aΣ -product inc2 is not separable butc2 is.

Properties that are carried over both ways are usually of
a global nature. Examples areconnectedness, extremal dis-
connectedness, basic disconnectednessand the values of the
large inductive dimension(for normal spaces) andcovering
dimension. These properties have in common that they can
be formulated using the families of (co)zero sets and/or the
ring C∗(X), which makes it almost automatic for each that
X satisfies it iffβX does. InterestinglyβX is locally con-
nectediff X is locally connected and pseudocompact; so,
e.g.,βR is connected but not locally connected.

A particularly interesting class of spaces in this context is
that of theF -spaces; it can be defined topologically (cozero
sets areC∗-embedded) or algebraically (every finitely gener-
ated ideal inC∗(X) is principal). The algebraic formulation
shows thatX is an F -space iffβX is, becauseC(βX) and
C∗(X) are isomorphic. Also,X∗ is an F -space whenever
X is locally compact andσ -compact. Neither property by
itself guarantees thatX∗ is F -space:Q∗ is not anF -space,
nor is(ω1× [0,1])∗ (which happens to be[0,1]).

This result shows thatF -spaces are quite ubiquitous;
for example,N∗, R∗, and (Rn)∗ are F -spaces, as well as
(
⊕

n Xn)
∗ for any topological sum of countably many com-

pact spaces. AnF -space imposes some rigidity on maps
having it for its range: if f : Xκ

→ Z is a continuous map
from a power of the compact spaceX to anF -spaceZ then
Xκ can be covered by finitely many clopen sets such that
f depends on one coordinate on each of them. This im-
plies, e.g., that a continuous map from a power of[0,∞)∗

to [0,∞)∗ itself depends on one coordinate only.
Some of the properties mentioned above have relation-

ships beyond the implications between them. EveryP-space
is basically disconnected. But an extremally disconnected
P-space that is not of ameasurable cardinalnumber is dis-
crete (the converse is clearly also true). As noted aboveX is
extremally (or basically) disconnected iffβX is but there
is more: if X is extremally disconnected or aP-space then
βX can be embedded intoβD for a large discrete spaceD.
Every compact subset ofβD is an F -space but a charac-
terization of the compact subspaces ofβD is not known.
In the special case ofβN there is a characterization under
the assumption of theContinuum Hypothesis, but it is also
consistent that not all basically disconnected spaces embed
into βN and that not everyF -space embeds into a basically
disconnected space.

As seen above, pseudocompactness is a property that
helps give positive structural results aboutβX; this happens
again in the context of topological groups. IfX is a topo-
logical group then the operations can be extended toβX,
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makingβX into a topological group, if and only ifX is pseu-
docompact.

3. Special points

It is a general theorem thatX∗ = βX \ X is not homoge-
neouswheneverX is not pseudocompact [5]. This in itself
very satisfactory result prompted further investigation into
the structure of remainders and a search for more reasons for
this nonhomogeneity. Many special points were defined that
would exhibit different topological behaviour inX∗ or βX.
The best known are the remote points: a pointp of X∗ is
a remote point of X if p /∈ clβX N for all nowhere dense
subsetsN of X. If p is a remote point ofX thenβX is ex-
tremally disconnected atp.

Many spaces have remote points, e.g., spaces of count-
ableπ -weight (or even with aσ -locally finite π -base) and
ω × κ2. If X is nowhere locally compact, i.e., whenX∗ is
dense inβX, thenX∗ isextremally disconnectedat every re-
mote point ofX. This gives another reason for the nonhomo-
geneity of, for example,Q∗, as this space is not extremally
disconnected.

UnderCH all separable spaces have remote points but in
the side-by-side Sacks model there is a separable space with-
out remote points. Many spaces with thecountable chain
condition have remote points and it is unknown whether
there is such a space without remote points. Proofs that cer-
tain spaces have remote points have generated interesting
combinatorics; the proof forω× κ2 contains a crucial ingre-
dient for one proof of the consistency of theNormal Moore
Space Conjecture.

Further types of points are obtained by varying on the
theme of ‘not in the closure of a small set’. Thus one obtains
far point s: not in the closure of any closed discrete subset
of X; requiring this only for countable discrete sets defines
ω-far points – anear point is a point that is not far.

Of earlier vintage areP-points, points for which the fam-
ily of neighbourhoods is closed under countable intersec-
tions. They occured in the algebraic context: a point is a
P-point iff every continuous function is constant on a neigh-
bourhood of it. This means that for aP-point x the ideals
{ f : f (x) = 0} and { f : x ∈ int f←( f (x))} coincide. Un-
der CH or evenMA one can prove that many spaces of the
form X∗ haveP-points, thus obtaining witnesses to the non-
homogeneity ofX∗. Many of these results turned out to be
independent ofZFC. The search for a general theorem that
would, once and for all, establish nonhomogeneity ofX∗ by
means of a ‘simple’ topological property of some-but-not-all
points lead to weakP-points. Aweak P-point is one that is

not an accumulation point of any countable set. Their advan-
tage overP-points is that their existence is provable inZFC,
first for N∗, later for more spaces. The final word has not
been said, however. The weakest property that has not been
ruled out by counterexamples is ‘not an accumulation point
of a countable discrete set’.
Further reading
Walker’s book [12] gives a good survey of work onβX up
to the mid 1970s. Van Douwen’s [4, 2, 3] and van Mill’s [9]
laid the foundations for the work onβX in more recent
years.
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