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Section D:  Fairly general properties

d-17 TheCech-Stone Compactification

1. Constructions

In [11] Tychonoff not only proved th&ychonoff Product
Theorem(for powers of the unit interval), he also showed
that everycompletely regulaispace ofveightx can be em-
bedded into the spacg0, 1]. This inspiredCech, in [1], to
construct for every completely regular spase compact
Hausdorff spaces (S) that containsS as adense subspace
acompactification of S—and such that every bounded real-
valued continuous function ddcan be extended to a contin-
uous function org(S). The construction amounts to taking
the family C of all continuous functions frons to [0, 1],
the correspondingliagonal mape= A¢cc f : S— [0, 1]°
and obtainings(S) as the closure og[S] in [0, 11€. Cech
also proved that for any other compactificatiBrof Sthere

is a continuous map: B(S) — B with h(x) =xforxe S
andh[g(S) \ S] = B\ S. From this he deduced that B

is a compactification ofs in which functionally separated
subsets irS have disjoint closures iB then the magh is a
homeomorphism, whendg = f(S).

Somewhat earlier, in [10], M.H. Stone applied his the-
ory of representations dBoolean algebra to various to-
pological problems. One of the major applications is the
construction, using the rin@*(X) of bounded real-valued
continuous functions, of a compactificatioti of X with

the same extension property as the compactification that

all of gX (the extension off : X — K is denotedsf). Of
the many other constructions X that have been devised
we mention two. First, in [6], Gelfand and Kolmogoroff
showed that théull-kernel topologyon the set of maximal
ideals ofC*(X) immediately gives ug X and that one may
also use the rin@ (X) of all real-valued continuous func-
tions onX. Second, in [7], Gillman and Jerison gave what
for many is the definitive construction gfX: the Wallman
compactificationof X with respect to the familyg (X) of all
zero ses of X. This meang X is the set of all ultrafilters on
the family Z(X) — thez-ultrafilter s orzero-set ultrafilters

— with the family{Z: Z € Z(X)} as a base for the closed
sets, wher&Z = {u € fX: Z € u}. One identifies a poink

of X with the z-ultrafilteruy = {Z: x € Z}.

Property 2 above is usually reformulated as) (@sjoint
zero sets ofX have disjoint closures i X. For normal
spacene can obtaig X asthe Wallman compactification
of X, i.e., using the family of all closed sets; property)(2
then becomes (2 disjoint closed sets iiX have disjoint clo-
sures ing X. The equalityp X = K should be taken to mean
thatK is compact and there is an embeddingX — K, for
which f[X] is dense inK and for which the extensiofif
is @ homeomorphism — especiallyXfis dense irK. In this
sense the notatigff is unambiguous: the graph gf is the
Cech-Stone compactification of the graphfof

The assignmenX +— £ X is a covariant functor from

Cech would construct. The construction proceeds by taking the categoryof Tychonoff spaces to the category of com-

the Boolean algebr& generated by altozero set@nd all
nowhere densesubsets oiX. As a first step Stone took the
representing spad8(B) — theStone space- of B. Next, to
every maximal ideam of C*(X) he associated the ideh},

of B consisting of those setB in B for which there are

f e C*(X) anda,b,ceR suchthatAC f<[(a,b)]; f=c
(modm) andc < a orb < c. Finally Fy, is the closed sub-
set of G(B) determined by the filter that is dual tg,. The
spaced’ is the quotient space ab(B) by the decompo-
sition consisting of the setf,,. One obtains an embed-
ding of X into X by associating« with the maximal ideal
my = {f: f(X) =0}. Stone also proved that every continu-
ous map onX with a compact co-domain can be extended
to X.

The compactification constructed tPech and Stone
is nowadays called th€ech—Stone compactlflcanoﬁr
Cech'sp is still used, we write X (without Cech’s paren-
theses). The properties ¢fX that Cech and Stone estab-
lished each characterize it among all compactifications:of
(1) it is the maximal compactification; (2) functionally sepa-
rated subsets ok have disjoint closures i X; and (3) ev-
ery continuous map fronx to a compact space extends to

1in Europe; elsewhere one speaks of 8tene-Cech compactification
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pact Hausdorff spaces, both with continuous mapsas
phisms It is in fact the adjoint of théorgetful functor from
compact Hausdorff spaces to Tychonoff spaces. This gives
another way of proving thats'X exists”: because the cate-
gory of compact Hausdorff spaces is closed under products
and closed subsets. In faCech’s construction of X may

be construed as a forerunner of the Adjoint Functor Theo-
rem.

2. Properties

We say that a subspack is C-embedded (C*-embed-
ded) in a spaceX if every (bounded) real-valued continuous
function on A can be extended to a continuous real-valued
function on X. Thus a completely regular spaéeis C*-
embedded in it€ech—Stone compactificatighX and any
compactification ofX in which X is C*-embedded must
be #X. These remarks help us to recognize sofexh—
Stone compactifications: A € X then cgx A= SAiff Ais
C*-embedded inX and Y = X wheneverX C Y C gX.

If X'is normal then ¢gJx A= A wheneverAis closed inX
(by theTietze—Urysohn theorejn
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One can us€*-embedding to calculatg X explicitly for can be factored into two subproducts without isolated points
a few X, by which we mean thagf X is an already famil-  then even the homeomorphyof; #Xi andg []; X; implies
iar space. The well-known fact that every continuous real- []; Xi is pseudocompact.
valued function on therdinal spacew; is constant on a tail If X is hot compact then no point &f* = X\ X is aGy-

implies thatfw1 = w1+ 1 — the same holds for every ordinal  set, in fact aGs-set of £ X that is a subset oK* contains a

of uncountable cofinality. Other examples are provided by copy of N*. This implies that nice properties like metrizabil-
2 -producs: if x is uncountable an& = {x: {a: X, # 0} is ity, and second- or first-countability do not carry ovepts.
countabl¢ as a subspace 610, 1] (or ©2) then every con-  Of course separability carries over frokto X, but not
tinuous real-valued function oiX depends on countably conversely: a¥-product in‘2 is not separable bi® is.

many coordinates and hence can be extended to the ambient Properties that are carried over both ways are usually of
product so thap X = [0, 1] (or X =*2). Note that these  a global nature. Examples atennectednessxtremal dis-
spaces, with an easily identifial®ch—Stone compactifica- connectednes®asic disconnectednessd the values of the
tion, arepseudocompactn fact if X is not pseudocompact large inductive dimensiorffor normal spaces) antbvering

then it contains &-embedded copy df, whences X con- dimension These properties have in common that they can
tains a copy ofgN. The spacefN is, in essence, hard to  be formulated using the families of (co)zero sets and/or the
describe: ifu is a point ingN \ N and so a frealtrafilter ring C*(X), which makes it almost automatic for each that

on N then the se{> ., 27" U e u} is a non-Lebesgue X satisfies it iff X does. Interestinglyy X is locally con-
measurable set of reals. This illustrates that the constructionnectediff X is locally connected and pseudocompact; so,
of #X requires a certain amount of Choice, indeed, the exis- e.g.,fR is connected but not locally connected.
tence ofg X is equivalent to the Tychonoff Product Theorem A particularly interesting class of spaces in this context is
for compact Hausdorff spaces, which, in turn, is equivalent that of theF-spaces; it can be defined topologically (cozero
to the Boolean Prime Ideal Theorem. sets areC*-embedded) or algebraically (every finitely gener-
The mapf — gf from C*(X) to C(fX) is an isomor- ated ideal inC*(X) is principal). The algebraic formulation
phism of rings (or lattices, or Banach spaces ...); this ex- shows thatX is an F-space iff X is, because&€ (5 X) and
plains why very often investigations in@*(X) assume that  C*(X) are isomorphic. AlsoX* is an F-space whenever
X is compact; this gives the advantage that ideals are fixed, X is locally compact and -compact. Neither property by

i.e., if | is an ideal ofC*(X) then there is a point with itself guarantees tha&* is F-spaceQ* is not anF-space,
f(x) =0forall f el.Furthermore the maximal ideals are nor is(wy x [0, 1])* (which happens to b, 1]).
precisely the ideals of the forff: f (x) = 0} for somex. This result shows thaf-spaces are quite ubiquitous;

A perfect map is one which is continuous, closed and for example, N*, R*, and (R™* are F-spaces, as well as
with compact fibers. A mag : X — Y between completely (€, Xn)* for any topological sum of countably many com-
regular spaces is perfect iff iéech-extensioqﬁf satisfies pact spaces. ArF-space imposes some rigidity on maps
BEIBX\ X]C BY \Y or equivalentlyX = f ~1[Y]. One having it for its range: iff : X* — Z is a continuous map
can use this, for instance, to show that complete metrizabil- from a power of the compact spageto anF-spaceZ then
ity is preserved by perfect maps (also inversely if the domain X* can be covered by finitely many clopen sets such that
is metrizable). A metrizable spacedsmpletely metrizable f depends on one coordinate on each of them. This im-
iff it is a Gg-setin its Cech—Stone compactification; the lat- plies, e.g., that a continuous map from a powef@bo)*
ter property is then easily seen to be preserved both waysto [0, co)* itself depends on one coordinate only.

by perfect maps. One calls a spacéech—complete space Some of the properties mentioned above have relation-
(sometimesgopologically completg if it is a Gs-set in its ships beyond the implications between them. Evergpace
Cech-Stone compactification. This is an exampléXfpro- is basically disconnected. But an extremally disconnected

viding a natural setting for defining or characterizing topo- P-space that is not of emeasurable cardinahumber is dis-
logical properties ofX — the best-known example being of crete (the converse is clearly also true). As noted aboi®
course local compactness: a spactdally compactiff it extremally (or basically) disconnected iffX is but there
is open in itsCech—Stone compactification. Other properties is more: if X is extremally disconnected orR-space then
that can be characterized yiX are: theLindel6f property S X can be embedded infD for a large discrete spade.
(X is normally placed in X, which means that for every  Every compact subset gfD is an F-space but a charac-

open setJ DO X there is anF,-setF with X € F CU) and terization of the compact subspaces/dd is not known.

paracompactnesgX x S X is normal). In the special case @#N there is a characterization under
The productfN x SN is not #(N x N): the characteris-  the assumption of th€ontinuum Hypothesisbut it is also

tic function of the diagonal oN witnesses thalN x N is consistent that not all basically disconnected spaces embed

notC*-embedded ifN x gN. The definitive answer to the into fN and that not every-space embeds into a basically
question wherg [ =[] £ was given in [8]: if bothX andY disconnected space.

are infinite thenp X x BY = (X x Y) iff X x Y is pseu- As seen above, pseudocompactness is a property that
docompact and the same holds for arbitrary products, with helps give positive structural results ab@X; this happens

a similar proviso:[[; fX;i = g [1]; Xi iff []; Xi is pseudo- again in the context of topological groups.Xfis a topo-
compact, provided [; 2o Xi is never finite. If the product logical group then the operations can be extendegt X
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makingf X into a topological group, if and only X is pseu- not an accumulation point of any countable set. Their advan-
docompact. tage overP-points is that their existence is provableziRC,
first for N*, later for more spaces. The final word has not
been said, however. The weakest property that has not been

3. Special points ruled out by counterexamples is ‘not an accumulation point
of a countable discrete set'.
It is a general theorem that* = X \ X is nothomoge- Further reading

neouswheneverX is not pseudocompact [5]. This in itself  Walker’'s book [12] gives a good survey of work @¢X up
very satisfactory result prompted further investigation into to the mid 1970s. Van Douwen’s [4, 2, 3] and van Mill's [9]
the structure of remainders and a search for more reasons fotaid the foundations for the work o X in more recent
this nonhomogeneity. Many special points were defined that years.
would exhibit different topological behaviour M* or g X.
The best known are the remote points: a pgndf X* is
aremote point of X if p ¢ clgx N for all nowhere dense
subsetdN of X. If pis a remote point oX thengX is ex- References
tremally disconnected ai. 5
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