Exercises Reading course Algebraic Topology - Covering spaces III, Fall 2013

Let X be a path connected and locally simply connected topological space, $x \in X$ a point.
Exercise 1. Assume the equivalence of categories in Theorem 2.3.4, and the construction of a connected cover $\tilde{X}_{x} \rightarrow X$ as in Construction 2.4.1.
(i) What is the isomorphism type of $\operatorname{Fib}_{x}\left(\tilde{X}_{x}\right)$ as a transitive $\pi_{1}(X, x)$-set?
(ii) Compute $\operatorname{Aut}_{\pi_{1}(X, x)}\left(\operatorname{Fib}_{x}\left(\tilde{X}_{x}\right)\right)$.
(iii) Describe an isomorphism $\operatorname{Aut}\left(\tilde{X}_{x} / X\right) \xrightarrow{\sim} \pi_{1}(X, x)$ using the equivalence and (ii).

Exercise 2. Let $Y=\mathbb{R}^{2}$, let $X=S^{1} \times S^{1}$ and consider the (universal) cover $p: Y \rightarrow X$ given by $(u, v) \mapsto(\exp (2 \pi i u), \exp (2 \pi i v))$. Let $x \in X$ be the point $(1,1)$.
(i) Describe the monodromy action of $\pi_{1}(X, x)$ on $F=p^{-1}(x) \subset Y$.

For integers a, b, c, d, let $q: X \rightarrow X$ be the map given by $(z, w) \mapsto\left(z^{a} w^{b}, z^{c} w^{d}\right)$. Assume that $a d-b c \neq 0$.
(ii) Show that $q: X \rightarrow X$ lifts to a map $\tilde{q}: Y \rightarrow Y$.
(iii) Show that q is a cover of X, and compute the number of points in a fiber of q.

Exercise 3. Take the notations from the previous exercise. Let $a \in X$ be the point $(-1,-1)$.
(i) Describe a connected cover of the connected space $X^{\prime}=X \backslash\{a\}$ with fiber F over x.
(ii) Let $i_{1}: S^{1} \rightarrow X^{\prime}$ be the inclusion given by $y \mapsto(y, 1)$ and $i_{2}: S^{1} \rightarrow X^{\prime}$ the inclusion given by $y \mapsto(1, y)$. Let γ be a generator of $\pi_{1}\left(S^{1}\right)$ and let $\alpha=i_{1 *}(\gamma)$ and $\beta=i_{2 *}(\gamma)$. Show that $\alpha \beta \neq \beta \alpha$ in $\pi_{1}\left(X^{\prime}, x\right)$ by considering the monodromy action on F.

Exercise 4. For each $n \in \mathbb{Z}_{>0}$ let $\mathbb{P}^{n}(\mathbb{R})$ be the n-dimensional real projective space.
(i) Exhibit a cover $S^{n} \rightarrow \mathbb{P}^{n}(\mathbb{R})$.
(ii) Compute the fundamental group of $\mathbb{P}^{n}(\mathbb{R})$.

Exercise 5. (Base change) Let $f:(Z, z) \rightarrow(X, x)$ be a map of pointed spaces, where Z is path connected and locally simply connected.
(i) Using the text in Szamuely's book between Example 2.4.12 and Construction 2.4.13, give a natural functor $F: \operatorname{Cov}(X) \rightarrow \operatorname{Cov}(Z)$ induced by f. Prove/verify the functoriality of your choice of F.
(ii) Describe a natural functor $G: \pi_{1}(X, x)-$ Sets $\rightarrow \pi_{1}(Z, z)$-Sets. Prove/verify the functoriality of your choice of G.
(iii) Show that $\mathrm{Fib}_{z} \circ F \cong G \circ \operatorname{Fib}_{x}$.

