Exercises Reading course Algebraic Topology - Covering spaces III, Fall 2013

Let X be a path connected and locally simply connected topological space, $x \in X$ a point.

Exercise 1. Assume the equivalence of categories in Theorem 2.3.4, and the construction of a connected cover $\tilde{X}_x \to X$ as in Construction 2.4.1.

(i) What is the isomorphism type of $\operatorname{Fib}_x(\tilde{X}_x)$ as a transitive $\pi_1(X, x)$ -set?

(ii) Compute $\operatorname{Aut}_{\pi_1(X,x)}(\operatorname{Fib}_x(X_x))$.

(iii) Describe an isomorphism $\operatorname{Aut}(\tilde{X}_x/X) \xrightarrow{\sim} \pi_1(X, x)$ using the equivalence and (ii).

Exercise 2. Let $Y = \mathbb{R}^2$, let $X = S^1 \times S^1$ and consider the (universal) cover $p: Y \to X$ given by $(u, v) \mapsto (\exp(2\pi i u), \exp(2\pi i v))$. Let $x \in X$ be the point (1, 1).

(i) Describe the monodromy action of $\pi_1(X, x)$ on $F = p^{-1}(x) \subset Y$.

For integers a, b, c, d, let $q: X \to X$ be the map given by $(z, w) \mapsto (z^a w^b, z^c w^d)$. Assume that $ad - bc \neq 0$.

(ii) Show that $q: X \to X$ lifts to a map $\tilde{q}: Y \to Y$.

(iii) Show that q is a cover of X, and compute the number of points in a fiber of q.

Exercise 3. Take the notations from the previous exercise. Let $a \in X$ be the point (-1, -1). (i) Describe a connected cover of the connected space $X' = X \setminus \{a\}$ with fiber F over x.

(ii) Let $i_1: S^1 \to X'$ be the inclusion given by $y \mapsto (y, 1)$ and $i_2: S^1 \to X'$ the inclusion given by $y \mapsto (1, y)$. Let γ be a generator of $\pi_1(S^1)$ and let $\alpha = i_{1*}(\gamma)$ and $\beta = i_{2*}(\gamma)$. Show that $\alpha\beta \neq \beta\alpha$ in $\pi_1(X', x)$ by considering the monodromy action on F.

Exercise 4. For each $n \in \mathbb{Z}_{>0}$ let $\mathbb{P}^n(\mathbb{R})$ be the *n*-dimensional real projective space.

(i) Exhibit a cover $S^n \to \mathbb{P}^n(\mathbb{R})$.

(ii) Compute the fundamental group of $\mathbb{P}^n(\mathbb{R})$.

Exercise 5. (Base change) Let $f: (Z, z) \to (X, x)$ be a map of pointed spaces, where Z is path connected and locally simply connected.

(i) Using the text in Szamuely's book between Example 2.4.12 and Construction 2.4.13, give a natural functor $F: \operatorname{Cov}(X) \to \operatorname{Cov}(Z)$ induced by f. Prove/verify the functoriality of your choice of F.

(ii) Describe a natural functor $G: \pi_1(X, x) - \mathbf{Sets} \to \pi_1(Z, z) - \mathbf{Sets}$. Prove/verify the functoriality of your choice of G.

(iii) Show that $\operatorname{Fib}_z \circ F \cong G \circ \operatorname{Fib}_x$.