Exercises Reading course Algebraic Topology - Singular homology, Fall 2013

In the following exercises X is a topological space.

Exercise 1. Let X be a path-connected space. Prove that $H_0(X) \cong \mathbb{Z}$.

Exercise 2. Let X_1, \ldots, X_n be the path-connected components of the space X. Prove that $H_k(X) \cong \bigoplus_{i=1}^n H_k(X_i)$ for all $k \in \mathbb{Z}$.

Exercise 3. Let \mathcal{C}'_{\bullet} be a subcomplex of a complex \mathcal{C}_{\bullet} . Let $k \in \mathbb{Z}$. Show that

$$d_{k+1}(\mathcal{C}_{k+1}) + \mathcal{C}'_k \subset d_k^{-1}(\mathcal{C}'_{k-1})$$

and that $H_k(\mathcal{C}_{\bullet}/\mathcal{C}'_{\bullet})$ can be identified with the quotient $d_k^{-1}(\mathcal{C}'_{k-1})/(d_{k+1}(\mathcal{C}_{k+1})+\mathcal{C}'_k)$.

Exercise 4. Prove that $\langle e_1, e_0 \rangle + \langle e_0, e_1 \rangle$ is a boundary in $\mathcal{C}_1(\Delta^1)$. Let $\sigma \colon \Delta^1 \to X$ be a singular 1-simplex given by $(1-t)e_0 + te_1 \mapsto s(t), t \in [0,1]$, and let $\sigma' \colon \Delta^1 \to X$ be given by $(1-t)e_0 + te_1 \mapsto s(1-t)$. Prove that $\sigma + \sigma'$ is a boundary in $\mathcal{C}_1(X)$.

Exercise 5. A singular 1-simplex $\sigma: \Delta^1 \to X$ is called a *loop* if $\sigma(e_0) = \sigma(e_1)$.

(a) Prove that a loop is a 1-cycle.

(b) Two loops σ_0 and σ_1 are called *freely homotopic* if there is a continuous map $F: [0,1] \times [0,1] \to X$ such that $F(0,t) = \sigma_0((1-t)e_0 + te_1)$ and $F(1,t) = \sigma_1((1-t)e_0 + te_1)$ and each F(s,t) is a loop. Prove that free homotopy defines an equivalence relation on the set of loops in X.

(c) Prove that two freely homotopic loops are homologous.

(d) Choose a basepoint $x \in X$. Give a natural map $\rho: \pi_1(X, x) \to H_1(X)$ and prove that it is a homomorphism. So we have a natural map $\bar{\rho}: \pi_1(X, x)^{ab} \to H_1(X)$.

(e) A 1-chain $\sigma_0 + \cdots + \sigma_{r-1}$ with $\sigma_i(e_0) = \sigma_{i-1}(e_1)$ for all $i \in \mathbb{Z}/r\mathbb{Z}$ is called an *elementary* 1-cycle. Prove that an elementary 1-cycle is a 1-cycle, homologous to a loop.

(f) Prove that the classes of loops generate $H_1(X)$.

(g) Assume that X is path-connected. Show that ρ is surjective.

Remark: it can be proved that $\bar{\rho}$ is an isomorphism.

Exercise 6. Let A be a subspace of X.

(a) Assume there exists a map $r: X \to A$ which is the identity on A (in that case we call r a retraction map and A a retract of X). Let $k \in \mathbb{Z}$. Show that $H_k(X) \cong H_k(A) \oplus \operatorname{Ker} r_k$.

(b) Assume there exists a map $R: X \times [0,1] \to X$ such that R(a,t) = a for all $a \in A$ and all t, and R(x,0) = x and $R(x,1) \in A$ for all x in X (in that case we call R a *deformation* retraction map and A a *deformation* retract of X). Show that for each subspace $B \subset A$ the inclusion $(A, B) \subset (X, B)$ induces isomorphisms on homology.

Exercise 7. (a) Let $\phi: \mathcal{C}_{\bullet} \to \mathcal{D}_{\bullet}$ be a chain map of exact complexes. Suppose there exist two distinct residue classes modulo 3 such that ϕ_k is an isomorphism whenever k belongs to one of these two residue classes. Prove that ϕ_k is an isomorphism for all $k \in \mathbb{Z}$.

(b) Let $\phi: \mathcal{C}_{\bullet} \to \mathcal{D}_{\bullet}$ be a chain map of complexes. Assume $\mathcal{C}'_{\bullet} \subset \mathcal{C}_{\bullet}$ and $\mathcal{D}'_{\bullet} \subset \mathcal{D}_{\bullet}$ are sbucomplexes such that $\phi_k(\mathcal{C}'_k) \subset \mathcal{D}'_k$ for all $k \in \mathbb{Z}$. So we have chain maps $\phi': \mathcal{C}'_{\bullet} \to \mathcal{D}'_{\bullet}$ and $\bar{\phi}: \mathcal{C}_{\bullet}/\mathcal{C}'_{\bullet} \to \mathcal{D}_{\bullet}/\mathcal{D}'_{\bullet}$. Prove that if two of ϕ, ϕ' and $\bar{\phi}$ induce an isomorphism on homology, then

so does the third.

(c) Let $f: (X, Y, Z) \to (X', Y', Z')$ be a map of triads. In particular we have three maps of topological pairs $(X, Y) \to (X', Y')$, $(X, Z) \to (X', Z')$ and $(Y, Z) \to (Y', Z')$. Prove that if two of these inclusions induce isomorphisms on homology, then so does the third.

Exercise 8. Let $\phi, \phi' \colon \mathcal{C}_{\bullet} \to \mathcal{D}_{\bullet}$ be chain maps. A *chain homotopy* from ϕ to ϕ' is a collection homomorphisms $(P_k \colon \mathcal{C}_k \to \mathcal{D}_{k+1})_{k \in \mathbb{Z}}$ such that $\phi'_k - \phi_k = P_{k-1}d_k + d_{k+1}P_k$ for all $k \in \mathbb{Z}$.

(a) Prove that chain homotopy defines an equivalence relation on the set of chain maps from \mathcal{C}_{\bullet} to \mathcal{D}_{\bullet} .

(b) Let $\phi, \phi' \colon \mathcal{C}_{\bullet} \to \mathcal{D}_{\bullet}$ and $\psi, \psi' \colon \mathcal{D}_{\bullet} \to \mathcal{E}_{\bullet}$ be chain homotopic. Prove that $\psi\phi, \psi'\phi' \colon \mathcal{C}_{\bullet} \to \mathcal{E}_{\bullet}$ are chain homotopic.

(c) Prove that chain homotopic maps induce the same maps on homology.

Exercise 9. The cone CX over a non-empty space X is obtained from $[0, 1] \times X$ by identifying the subspace $\{0\} \times X$ to one point v, the vertex of CX.

(a) Show that CX is contractible.

Let $\{x\}$ be a one point space and let $\epsilon: X \to \{x\}$ be the unique map. Let $k \in \mathbb{Z}$. We define the k-th reduced homology group $\tilde{H}_k(X)$ to be the kernel of the map $\epsilon_k: H_k(X) \to H_k(\{x\})$. (b) Prove that $H_k(CX, CX - \{v\}) \cong \tilde{H}_{k-1}(X)$.

Exercise 10. Visualize the first barycentric subdivision of Δ^3 and count the number of 3-simplices in it.

Exercise 11. The suspension ΣX of a non-empty space X is obtained from $[0,1] \times X$ by identifying each of the subsets $\{0\} \times X$ and $\{1\} \times X$ to a point.

(a) Prove that the projection $[0,1] \times X \to [0,1]$ defines a continuous map $h: \Sigma X \to [0,1]$.

(b) Compute the homology of ΣX by applying Mayer-Vietoris to the open sets $h^{-1}(0, 1]$ and $h^{-1}[0, 1)$.

(c) Let S^n for $n \in \mathbb{Z}_{\geq 0}$ be the *n*-sphere. Prove that ΣS^n and S^{n+1} are homeomorphic and compute the homology groups of S^n from this.

Exercise 12. Let p_1, \ldots, p_n be distinct points in the plane \mathbb{R}^2 . Compute the homology of $\mathbb{R}^2 \setminus \{p_1, \ldots, p_n\}$.

Exercise 13. Let S^2 be the 2-sphere and let D_1, \ldots, D_n be n small open discs on S^2 with disjoint boundaries. Let X^+, X^- be two copies of $S^2 \setminus (D_1 \cup \ldots \cup D_n)$ and let X be the space obtained by identifying, for each $i = 1, \ldots, n$, the boundary of D_i on X^+ with the boundary of D_i on X^- , using the identity map. Thus, X is a "sphere with n - 1 handles". Compute the homology of X.

Exercise 14. Each graph has the homotopy type of a bouquet of circles. Suppose that X is a graph, with the homotopy type of a bouquet of n circles. Prove that n is a homotopy-invariant of X. We call n the *Betti number* of X.

Exercise 15. Suppose that X is the union of open sets U_0, \ldots, U_n such that all homology groups $H_k(Y)$ vanish for any intersection $Y = U_{i_0} \cap \ldots \cap U_{i_r}$ of these open sets and all k > 0 (we call the open cover $\{U_0, \ldots, U_n\}$ an *acyclic* cover in this case).

(a) Show that $H_k(X) = 0$ for k > n.

(b) If, in addition, each intersection Y is path-connected or empty, and $n \ge 1$, show that $H_n(X) = 0$.

Exercise 16. Let $f: X \to Y$ be a map between non-empty spaces.

(a) Prove that f induces a natural map $\Sigma f \colon \Sigma X \to \Sigma Y$ between the suspensions of X and Y (see Exercise 11).

(b) Let $f: S^n \to S^n$ be a map and let $\Sigma f: S^{n+1} \to S^{n+1}$ be the map induced from a homeomorphism $\Sigma S^n \cong S^{n+1}$. Prove that f and Σf have the same degree.

(c) In particular, for each n > 0 there exist maps $S^n \to S^n$ of arbitrary degree.

Exercise 17. In class we have seen that for any $n \ge 1$ and any $k \in \mathbb{Z}$ we have natural isomorphisms

$$\mathrm{H}_{k}(\Delta^{n},\partial\Delta^{n})\cong\mathrm{H}_{k-1}(\Delta^{n-1},\partial\Delta^{n-1}).$$

Let Y be a non-empty space. By sticking in Y as a 'dummy' variable, we have natural isomorphisms

$$\mathrm{H}_{k}((\Delta^{n},\partial\Delta^{n})\times Y)\cong\mathrm{H}_{k-1}((\Delta^{n-1},\partial\Delta^{n-1})\times Y)$$

as well.

- (a) Prove, by iteration, that $H_k((\Delta^n, \partial \Delta^n) \times Y) \cong H_{k-n}(Y)$.
- (b) Hence we have $H_k(B^n \times Y, S^{n-1} \times Y) \cong H_{k-n}(Y)$.
- (c) Let x be a point on S^n . Prove that $H_k(S^n \times Y, \{x\} \times Y) \cong H_{k-n}(Y)$.
- (d) Prove that there is a natural isomorphism

$$\mathrm{H}_k(S^n \times Y) \cong \mathrm{H}_{k-n}(Y) \oplus \mathrm{H}_k(Y)$$

Hint: the projection $S^n \times Y \to Y \cong \{x\} \times Y$ is a retraction. (e) Compute the homology groups of $S^1 \times \ldots \times S^1$ (*n* factors).

Exercise 18. If $m, n \ge 0$ then every point z of $S^{m+n+1} \subset \mathbb{R}^{m+n+2} = \mathbb{R}^{m+1} \times \mathbb{R}^{n+1}$ can be represented in the form $z = \cos(t) \cdot x + \sin(t) \cdot y$ with $x \in S^m$, $y \in S^n$, and $t \in [0, \pi/2]$, and this representation is unique except that x resp. y is undetermined when $t = \pi/2$ resp. t = 0. Given $f: S^m \to S^m$ and $g: S^n \to S^n$ we define their join $f * g: S^{m+n+1} \to S^{m+n+1}$ by $(f * g)(z) = \cos(t) \cdot f(x) + \sin(t) \cdot g(y)$.

(a) Prove that $\deg(f * g) = \deg(f) \cdot \deg(g)$. Hint: first prove that f * g = (f * id)(id * g) and prove $\deg(f * id) = \deg(f)$ by induction on n. You may want to use the results of Exercise 16.

(b) Show that if both f and g are homotopic to the identity, then so is f * g.

(c) Exhibit a homotopy from id to -id on S^1 .

(d) Prove that the antipodal map on an odd-dimensional sphere is homotopic to the identity.

Exercise 19. In this exercise we prove the Main Theorem of Algebra. Let $p(z) = z^k + c_1 z^{k-1} + \cdots + c_k$ with k > 0 be a non-constant polynomial with complex coefficients. We view S^1 as the unit circle in \mathbb{C} . Assume p has no zeroes. We can then define a map $\hat{p}: S^1 \to S^1$ via

$$\hat{p}(z) = \frac{p(z)}{|p(z)|}$$

(a) Exhibit a homotopy from \hat{p} to a constant map. Hint: use that p has no zero z with $|z| \leq 1$. (b) Exhibit a homotopy from \hat{p} to the map $z \mapsto z^k$. Hint: use the identity

$$t^{k}p(\frac{z}{t}) = z^{k} + t(c_{1}z^{k-1} + tc_{2}z^{k-2} + \dots + t^{k-1}c_{k})$$

and the fact that \hat{p} has no zero z with $|z| \ge 1$. (c) Finish the proof of the Main Theorem of Algebra.

Exercise 20. In this exercise we prove that a sphere of positive even dimension cannot be given the structure of a topological group. Given a group G acting as a group of homeomorphisms of a space X, we say that G acts *freely* if the only element from G which has any fixed points is the identity element. Let g, h be two elements, unequal to the identity element, from a group G acting freely on S^n , where n > 0 is even.

- (a) Prove that both g and h have degree -1.
- (b) Prove that gh is the identity element.
- (c) Conclude that G is either $\mathbb{Z}/2\mathbb{Z}$ or the trivial group.
- (d) Prove that S^n is not a topological group.

Exercise 21. Prove that S^3 is a topological group. Hint: identify \mathbb{R}^4 with the Hamilton quaternions.

Exercise 22. Let $\mathbb{P}^n(\mathbb{R}) = \mathbb{P}(\mathbb{R}^{n+1})$ be the *n*-dimensional real projective space. Prove that any map $\mathbb{P}^n(\mathbb{R}) \to \mathbb{P}^n(\mathbb{R})$ has a fixed point if *n* is even. Describe a map $\mathbb{P}^n(\mathbb{R}) \to \mathbb{P}^n(\mathbb{R})$ without fixed points for each odd *n*.

Exercise 23. For each $n \in \mathbb{Z}_{>0}$ construct a surjective map $S^n \to S^n$ that has degree 0.

Exercise 24. Let $n \in \mathbb{Z}_{>0}$. Prove that every map $S^n \to S^n$ is homotopic to one that has a fixed point.