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Introduction.

Let k Dbe a field, A a finite group and {xg: g € Al a set of in-
determinates. We make A act on the field of rational functions

k(§xg] g € Al) by g(xh) = Xy g(c) = ¢ (for g,h € A, c € k).

The subfield of A - invariants is denoted by kA“ It is an old
question of E. Fischer |7] whether k, 1is a purely transcendental field
extension of k. R.G. Swan [12] proved that this is not true for

k = and A =%/47% . 1In this report we give a complete solution for
the case A is abelian. Before stating our main result we introduce

some notatinns.

Let p ©be a finite cyclic group of order n with generator =t , and let
®n‘EZZ[X], be the n - th cyclotomic polynomial. The ideal

®n(f)§2[p] c Zlp] (= group ring of p over % ) does not depend on the

choice of T , and we define Z(p) = Zlpl/ i?n(r)ZZ[p] . Then

Z(p) = Zﬂtn] , with ¢~ a primitive n-th root of unity. Therefore

%(p) is a Dedekind domain, and p is in a natural way contained in the

group of units of 7%Z(¢) .

Let k be a separable closure of the field k. Consider a subfield

K ¢ k¥ for which

(1) k © K is finite cyclic with group ¢, generated by Ty,

and let ©p, o satisfy
(2) p prime, 2 £ p # char(k), s € Z, s > 1.

Then the Z(P) - ideal QK(pS) is defined by

s o . . : .t
a,(p7) = (Fp-t, p) ©Z(Py) if X = k(%ps,), Tf) =t tez,
s .
a (p”) = Z(p) if K %k(zp@
For a finite abelian group A, put mA(ps) = dimm,(psm1A/pSA) (here A
is written additively), and P
s
m, (p°)
_ L sy A
.E.B‘_K(A) - Py s _a_.K(p ) o %(pK) H

the ideal product ranging over all p and s satisfying (2).
Let 21‘(A> be the highest power of 2 dividing the exponent of 4.



Theorem.
Let k be a field and A a finite abelian group. Then kA is purely

transcendental over k if and only if the following two conditions are

satisfied :

(i) for every K C k satisfying (1), the EZ(PK)-—ideal gK(A) is
principal 3

(1i) if char(k) # 2 then k(g is a cyclic field extension of k.

oz (1))

Note that condition (ii) is satisfied if char(k) # O.

The proof of this theorem is outlined in §§ 1-5. Supplementary results

are given in § 6, and § 7 contains some applications.

Our notation and terminology is mostly standard. If a group = acts on

a set S, we put s = {sGS['Vo € n 3 08 = s§ . For the cohomology groups
ﬁ“1 and Hw, see [11]. The group of units of a ring R with 1 is de-
noted by R*. By én we mean a primitive mn - th root of unity. The
symbol [0 means that the remaining part of the proof is left to the

reader.
We write "pure" instead of "purely transcendental'. A field extension
k c L is called "stably pure" if there exists a field extension L < L'

such that L' is pure of finite transcendence degree over both L and k.

It seems to be unknown whether "stably pure" implies '"pure', cf. [10]o

§ 1. Permutation modules and rationality of tori.

Let n Dbe a finite group. A 7 -module N 1s called a permutation

module [12] if it is free as an abelian group and has a 7 - basis permuted
by m . For example, free = -modules are permutation modules, and Z 1is
a permutation module (%Z is a " -module by on =mn, for all o€n and

nex).

101 °
Let N be a permutation module over 7 . Then ﬁ_q(ﬂ’,N) = Hq(ﬂ', N) =0

for every subgroup n' C 7.

Proof : exercise. []



1.2 )0
Let N be a direct summand of a permutation module over n, d1.e. N & N
is a permutation module for some n - module N' ., Let M'! ©be a 7n-module
such that H1(n‘,M') = 0 for every subgroup =!' C n . Then every exact
sequence

O = ' » M - N - 0
of n- modules splits.

The proof is left to the reader. Actually, the stated property character-
izes direct summands of permutation modules, in the same way as the proper-

ty of being projective characterizes direct summands of free modules. [J

Let 1 be a field and M a free abelian group of finite Z - rank =,
written multiplicatively. Then the group ring 1[M] is a domain,

-1 -1 . ‘ . .
1{mM] = l[b,li,“\,9 bs By s ey b ] 1f” (D5 oces br} is a 7 - basis for
M, and the quotient field 1(M) of 1[M] is pure over 1 of trans-

cendence degree T .

Now suppose 71 acts faithfully on 1 as a group of field automorphisms,
and M has a 7 -module structure. We make 7 act on 1(M) by
“(Zmem Kmnm) = L Ot e0ms if el A, =0 for almost all
mel, and o(a"b) = o(a) ho(b), if a,be 1[M], af0. The field
1(1\/{)7r is pure over 1" if and only if a certain torus, defined over 1"
and splitting over 1, is rational over 1", vy [8].

In this section we give a necessary and sufficient condition, in terms of

M, that 1(M)" be stably pure over 1 .

(1.3).

If N is a finitely generated permutation module over T , then l(N)

. T

is pure over 1 .

Proof : use [4], or look at the torus corresponding to N. 0

(1:.4)-

If N is a direct summand of a permutation module over 7T , and
O » M - M - N - O

is an exact sequence of finitely generated 7% - free 7 - modules, then

the fields 1(M)" and 1('e N)" are isomorphic over 1 .

This is proved by showing that the corresponding exact sequence of tori
admits an " 1" - cross - section", cf. [9, Prop. 1,2,2]. Alternatively,

apply (1.2) to the sequence



0 - 10)* - 1)*.m 5§ - o0

f(Mom) = (mmod M') for » e 1(M)Y, me M;

here 1(1')* .M is the subgroup of 1(M)" generated by 1(M)* and M.
0

(1.5).

If O-»M!' =M —=N—=0 is an exact sequence of finitely generated Z -
free 7 -modules, and N is a permutation module, then l(M)n is pure

over 1(M)".

Proof : use (1.4) and (1.3). O

Theorem (1.6).
Let M Dbe a finitely generated % - free 7 -module. Then ZL(I\/I)TL is

stably pure over 1" if and only if there exists an exact sequence of

n—- modules

0 - M - N, » N -0

in which N1 and N2 are finitely generated permutation modules.

Proof. The "if" - part is obvious from (1.5). The "only if" - part follows
by the methods of R.G. Swan [12]. The case char(l) = 0 1is due %o
V.E. Voskresenskii [1%]. [

1.7
Let M Dbe a finitely generated % - free 1 -module, and suppose
Hqﬁi',M) - 0 for every subgroup 7! C n., Then 1(M)" is stably pure
over 1" if and only if W @ N1 = N2 for some finitely generated per-
mutation modules N1 and N2 over T .

Proof : clear from (1.6) and (1.2). O

§ 2. The projective cyclic case.

Let 1 ©be a field and n a finite abelian group of automorphisms of 1.

Put

s(n) ={n/m | nt cn  is a subgroup such that n/nt

is cyclic} .

For p € S(n) we have a canonical surjective ring homomorphism
7z[n] - Z(p) (see the introduction for the definition of w(p) )o It is

well known that the induced map Z[n] - Z(p) Tbecomes an iso-

IoeS(ﬂ)



morphism when tensored with &, and that :pES(ﬂ)iz(p) can be identified
with the integral closure Z[n]® of #Z[n] inside @[n]. If M is a

% -module, let M° be the %Z[n]°-module M © 0] z[n]%s +this is also
a T -module.

The following theorem is our key result.

Theorem (2.1).

Suppose T is cyclic and M is finitely generated - projective.

Then 1(m)" Z 1(M°) over 17.

The proof is not given here. It can roughly be described as a repeated
application of (1.4). Compare [15]. O

(2.2)-

Suppose © is cyclic and M is finitely generated n - projective. Then

1(M)" is pure over 1° if and only if u°  is ZZ[H]C— free.

Proof. The "only if" - part is easy from (1.7). The "if" - part follows
from (2.1) and (1.3). [

We will need a result which covers a more general situation than (2.2).
Let n be abelian and p € 5(n). For a m-module M, we put

Fﬂ,p (M) = [M ﬁ%[ﬂ] 7%(p)] /) {elements of additive finite order | . Then
FH’O is a functor from the category of 7 - modules to the category of
torsion-free %Z(p) - modules, left adjoint to an obvious functor -he other

way .

(2.3).

Suppose 7 is abelian. For every ¢ € S(n), let M<p) be a finitely
generated projective P - module ; consider M(p) as a 71 -module by the
natural map 7®n —p . Let M be the 7 -module ®pes(ﬂ) M(p), Then the
following three assertions are equivalent :

(i) I(M)TI is pure over ln;

(ii) 1(m)" is stably pure over 17,

(iii) for every p € 5(n), the #Z(p) -module F, p(M) is free.
3

The proof is analogous to the proof of (2.2). [J



§ %, The modules Jq and Iq,

Let 1 ©be a field and 7 a finite abelian group of automorphisms of 1.
In this section ¢ denotes a prime power > 1 such that 1 contains a
primitive q - th root of unity Ly (so char(l) [ q). Put

n(a) = {oen o) =z} snd pla) =7/"(a). The map

o @Z/qﬂﬂ*‘, 7+ (t mod q) if 'r(zq) zt, gives rise to an injective
group homomorphism 9 p(q) = (Z/qz)*. This induces a ¢(q) - module

I

@

structure on 7/qZ .
Put

W = § r € X ‘ r>1, T 1s a prime power, CT € 1, and p(r) is

non-cyclic | .

First suppose g % W Let ZZ[p(q)] - Z/QZZ be the ring homomorphism
induced by ch This 1is a p(q)-linear map, the kernel of which is

called Jq. So we have an exact sequence of p(q) - modules

0=, = zlel)] ~» #B/aZ - 0.

(3.1)

Let q ¢ W. Then Jq is a projective p(q) - module except if (3) holds :
(3) ¢ = Omod 4 and v [p(a)] - (1, -1} c (m/azm)* .

The proof is not given here. [

(3.2).

Let q ¢ W, q even. Then 1(Jq)7i is pure over 1 (here Jq is con-

sidered as a 7 - module by the natural map = - p(q) )

The proof uses (3.1) and (2.3), handling the case.(3) separately. U

(5.3)-

Suppose q is odd (then g % W automatically). Write k = 1ﬂ9 and let
Kcil, {3K be as in (1) of the introduction. Then :
Fn,pK (Jq) = _@_K(zz/qza) as Z(pK) - modules if X c k(rq) ;
’ /
Fn,pK (Jq) = 0 if K & 1«:(zq),

The proof of (3.3) is computational. [J

Secondly, consider the case q € W. Then q = 0 mod 8. Put C(q) =
= OZ/QZD - {O} , and let EZC<q) be a free abelian group of rank ¢ -1
with 7% - basis {ec ce c(g) . Make ZZC(q) into a p(q) - module by



o(e ) = e .1 for oce 0(q), c € C(q). Then the group homomorphism
QZC(€§~» Z /4%, e, ™ ¢ (for ¢ ¢ C(q) ), is p(q) - linear, and its kernel
is called Iq, So there is an exact sequence of p(g) - modules

0 - I, - 2C(2) - Z/qZ - 0.

(3.4).
H1(n',1q) = 0 for every subgroup 7' C T .
The proof of (%.4) is easy from the exact sequence defining Iq° ]

)
ﬁ—1(ﬂ', Iq) % 0 for some subgroup "' C T .

\ N

The proof of (3.5) is not given here. [

§ 4. Reduction to a problem of rationality of tori.

Let k be a field and A a finite abelian group, as in the introduction.
Write A = P @ A such that char(k) [ iAOI while |P| is a power of
char(k) .

(4.1).

kA ig k- isomorphic to a pure field extension of kA o
o)

The proof makes use of a theorem of W. Gaschutz [2]. [

Let e be the exponent of A , and 1 = k(z;e)° The Galois group of 1
over k is called m . As is well known, the character group B =

= Hom(Ao,]%) is, as an abelian group, isomorphic to A_ (non-canonically).
We make B inte a 7 -module by (ob)(a) = o(v(a)), for o em™, b e B,
a € A . TLet Z® be a free abelian group with {ebl b eBl asa %-
basis, and make Zﬂg into a permutation module over m by Oeb = Cqy
for cen, b€ B. The group homomorphism QZB-a B  sending ey to D
(for b € B) is m - linear, and its kernel is called J.

So we have an exact sequence of 7™ - modules

O = J = Z - B — 0.

T
(4.2). k, and 1(J) are isomorphic over k = 1 .
0

The proof of (4.2) is implicitly contained in the literature (1, 3, 4,
4], 0



Write A = A,®A, such that A, has odd order and ‘Agl is a power

of 2. Let

2, (a) n, (a)

by = 0 (%B/Z) , A, = 0 (z/aZ) ,

i

with non-negative integers nq(q)9 nz(q), and q ranging over the set

of prime powers > 1. The n - modules Iq, 12 and I are defined by

_ n,(q)
I, = Oy 7y
nz(q)
I, = Oy I,
I - 1,01,

(see § 3 for the definitions of Jq, Iq and W),

T

(4.3).

l(J)n is lﬂ-isomorphic to a pure extension of 1(I) .

Sketch of the proof :
Put
n,(a)
= @ J ©
3 afW “q

One constructs an exact sequence of finitely generated m - modules

T

0 - 16 I5 - J = N - 0

in which N is a permutation module. By (1.5) the field 1(J)" is pure
kY ™

over 1(14913) s and by (3.2) the field 1(11@13) is pure over

(™. 0O

(4e4).

T
kA is k- isomorphic to a pure field extemsion of 1(I) .

Preof : (4.1), (4.2) and (4.3). 0

§ 5. Proof of the main theorem.

(5.1)-

H1(ﬂ', I) = 0 for every subgroup n' C 7.

Proof : (%.1), (%3.4) and the definition of I . [



(5.2)

The following three assertions are equivalent

i

C (1) 1(11)ﬂ is pure over 1
(ii) 1(11)ﬂ is stably pure over 1" H

(iii) condition (i) of the main theorem is satisfied.

Proof.
By (%3.1) and the definition of I, we can apply (2.3) to M = I,-
Therefore it suffices to prove that condition (iii) of (2.3), with M = I
is equivalent to condition (i) of the main theorem. This follows easily
from (3.3) and the theory of finitely generated modules over a Dedekind

domain. [

We turn to the proof of the main theorem.

First suppose kA is pure over k. Then 1(I) is stably pure over k,
by (4.4). Using (5.1) and (1.7) we find IoN, = N,
modules N, and N, over 7. From (3.5) and (1.1) we conclude that
nz(q) =0 forall qe€ W, that is, we have proved (ii) of the main

theorem. It follows that I = I, and applying (5.2) we find that (i) is

for some permutation

also satisfied.

Secondly, assume that (i) and (ii) of the main theorem hold. Then I =T,
and (5.2) tells us that 1(I)" is pure over 1" - k. Application of
(4.4) concludes the proof. [J

§ 6. Supplementary results.

Two extension fields K and L of a field k are called stably iso-
morphic over k if there exist pure field extensions K < K' and L C L!

of finite transcendence degree, such that K!' and L' are k- isomorphic.

Let k ©be a field, and A and A' finite abelian groups. Write

n}(q)
by =0 (Z/aZ)

12 pt 1 vtz At !
A Pt o AO, AO A1 @ AZ’

just as we did for A in § 4.



Theorem (6.1).
Let k be a field and A, A' finite abelian groups. Then kA and kﬁ’

are stably isomorphic over k if and only if the following two conditions
are satisfied :
(1) for every K c k satisfying (1) of the introduction, the zz(pK) -
. , . .
ideals gK(A) and @K(A ) are in the same 1dea%yg%asso
(ii) if char(k) # 2, then ng(q) = né(q) for every/prime power gq for

which the Galois group of k({q) over k 1is noun-cyclice.

The proof of (6.1) is more complicated than the proof of the main theorem. []

Next we consider a generalization of the problem posed in the introduction
[1]. Let k be a field, A a finite group, and V a finitely generated
faithful k[A]-—module, The symmetric algebra of V over k is denoted
by sk(v)° The quotient field (V) of sk(v) is pure over k of
transcendence degree dimk(V) , and the A-action on V induces a
faithful action of A on k(V) as a group of field isomorphisms over k.
We ask whether k(V)A is pure over k. TFor V = k[A] (as k[A] - module)

this is the question of the introduction.

(6.2).

Let V be a finitely generated faithful k[A] - module, and WcC V a
faithful k[A]- sub-module. Then k(V)A is pure over k(W)A.

Proof : this is an easy generalization of a remark of T. Miyata [6]. O

(6.3).

Suppose A % P@A_, such that |P| is a power of char(k) and
char(k) [ KAoiq Let V be a finitely generated faithful k[A]-—moduie.
Then V' is a faithful kLAO]-module, and k(v)A is pure over k(VP) °,

The proof uses a theorem of W. Gaschutz [2]. (4.1) is a special case. [

Theorem (6.4).
Let k Dbe a field, A a finite abelian group and V a finitely generated

faithful k[A] - module. Then k(V)A is stably pure over k if and only
A

if k, is pure over k. lloreover, if dimk(V) > |A] s then k(V)* is

pure over k if and only if k(V)A is stably pure over k.

The proof consists mainly of a suitable application of (6.2). The bound

|A| is not best possible. []




§ 7. Applications.

This section contains some corollaries of the main theorem.

Theorem (7.1).
Let k Dbe a field and p a prime number., The splitting field of xP -1
over k is denoted by 1, and d = [1:k]. Then ‘gz/pzj is pure over

k if and only if the ring ZZ[Cd] contains a principal ideal of index p.

The proof uses the main theorem and the fact that any two ideals in
Z[Cdj of index p are conjugate over Z . [J
The case k = ® (so d=p-1) of (7.1) is due to V.BE. Voskresenskii [15].

Theorem (7.2).

Let k ©be a field which, as a field, is finitely generated over its prime

field. Then k%/pZ’ is not pure over k for infinitely many prime

numbers p.

The proof is an exercise in algebraic number theory. Strangely, (7.2)
(for k¥ = ®) is not mentioned by R.G. Swan [12] and V.E. Voskresenskif

[14]. O

Theorem (7:3)5
Let n > 1 be an integer. Then @

ZZ/nZS is pure over @ if and only if

the following two conditions are satisfied :

(i) n # 0 mod 8.

(ii) for every divisor g of n of the form q = p°, with p an odd
prime and s €%, s > 1, the ring 7Z[¢ ( )] contains a principal

ideal of index ©p ; here $(q) = ps—1(p-1)o

The proof is easy from the main theorem. For n = 8 this contradicts a
result of V.E. Voskresenskiy [14]. 0O

Theorem (7.4).

Let k ©be a field and A a finite abelian group such that the exponent

of A divides 22. §m. 52° 720 1M e 13 17.19.23.29.31. 37. 471, 43 for

some m €%, m > 0. Then kA is pure over k.

Proof ¢ exercise. []



Theorem (7.5).
Let k be a field and A a finite abelian group such that :

(i) for every odd prime 7D, dividing the exponent of A, the splitting
field of X°-1 over k has degree 1 or 2 over Kk j

(ii) if °% is the highest power of 2 dividing the exponent of A, then
the splitting field of X2r-1 over k is a cyclic extension of k.

Then kA is pure over k.

The proof uses the fact that the only prime ideal of 77 t] (p prime,
t €%, t>0) lying above p is principal. [0 2P

Theorem (7.5) confirms a conjecture of H. Kuniyoshi [5] for p # 2 (for
p = 2 the conjecture is false). Note that (i) and (ii) are satisfied

if k =1R.

Theorem (7.6).
Let k be a field and A a finite abelian group. Assume that condition

(1i) of the main theorem is satisfied. Then there exists a pure field
extension kX < L of finite transcendence degree, and a Galois extension

L ¢ L', such that the Galois group of L' over 1L is isomorphic to A

The proof uses finiteness of class numbers. [J
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