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Abstract. TWO theorems nre proved on perfect codes. The first cne states tk.at Lloyd’s theorem 
is true without tne assumption that the number of symbols in the alphabet is a prime power. 
The second thevrem asser?s the impossibility of perfect group codes over non-prime-pcwer- 
alphabets. 

$0. Introduction 

IA V be a finite set, I VI = q > 2, and let 1 <_ e 2 ye be Ia:ional inte- 

gers. We pu?iV= (1, 2, . . . . n). Forv=(Vi)~=l E P, u’= (r#_l E Vn we 
define d(v, ~1’) =: I {i E NI vi + ;:I) I. A perfect e-error-correcting ,code of 
bloc*k length JZ ovo V is a subset C c Vn suc3 that for every u E I/” 

thexe exists exactly oae c E C satisfying d(u, c) <_ e. 

If 4 is a primie powtir, a necessary condition for the existence of such 
a code is given by Lloyd’s theorem [t;] . This theorem has recently been 
used to determine all yt, e for which a perfect code over an alphabet V 

of q symbols, q a prime power, exists [ 5; 63. 

In $j 1 I show that Lloyd’s theorem holds for all q. The proof, which 
is modelled after [6, 5.41, makes use of some elementary notions from 
commutative algebra. A different proof has been obtained by I? Del- 
sarre 4] Z?] , It seems hard to use Lloyd ‘b theorem to prove non-existence 

theorems for perfect codes over non-prime-power-alphabets. 
’ In $2 I prove the following theorem: if Gi (1 5 i 5 12) is a group with 

u&,rlying set V, a& C c I$, Gi is a subgroup which as a subset of Vr? 
is a perfect e-error-correcting code, e < yt, then q is a prime power and 
each Gi is abeliian of type (p, p, .* ., p). A special case of this theorem 

was proved in [4]. 
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5 1. Lloyd’s theorem 

Theorem 1. If a perf&:t e-error-correcting code of block Zengrh n over 
V exists then thle pdynomial t . 

where 

a 0 a--i;+ 1 
i 

=rql --7 , 
P 

has e distinct integral zeros among 1 9 2, . . .: ~1. 

Roof. Ll;t K be a field of characteristic zero, and let M be a K-vector 
space of dimension qn with the elements of Vn as basis vectors: 

If D c Vn is a subset, ‘tie denote Z,,, u E II4 by CD. Define the K-endo- 
morphisms @, ( 1 <i<-n)ofMby 

#iQll) = Z (Vr = (uj>i”= 1 E Vn I uj = Us for all j f i} , * 

u = (v#& E V’? . One easily checks: 

Let K[X, , ..,., X, ] be the ‘commutative polvnomial ring in y2 symbols 
over K. The i&al generated by #[Xl? .- /IXiI ; C, i <_ n) is denoted by B, 
and R is the factor ring K[X, , . .., -71, ] /B. &y ( 1) Uteri exisOs a K-linear 
ring homomorphism K[X’, , . . . , X, I -+ EndK (M) (the ring of K-endo- 
morphisms of M) mapping 1 to the identity and Xi to “P,i ( 1 <, i I 1~2). 

The kernel of this ring homomorphism contains B, by (2), so’we obtain 
a ring homomorphism fi R + EndK (M), mappiing xii = (/T.. mod B) E R 

L 
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to Qii. Therefore we can make M l;rto dn R-module by defining P *“n = 
f(p)(mj(rER,mEM) [l,Il.~.i;3,III.l]. 

PUtyl=~j~~(Xj - ~)ER rorIC N. Then 

yp=Z{v’~ V”IifjWV, then: v&=+$1}, 

I c. N, v E P. Therefore, (yl l ul I c N} c M is linearly indeeendent 
over K, for v E V*: Then certainly ( y1 I d c N) c R is linearly indepen- 
dent over K. l@oreover, it is easily shown that {yl I4 i iV} generates R as 
a K-vector space. This proves: { yl I I c N] is a K-basis for R, and 
dimK (R) = 2&” (by dimK we mean dimension over K). 

The permutation group St* on n symbols acts as a group of K-linear 
ring automorphisms on R by permuting (.A+ I i E IV}. The set of invariants 

A = (r E R I a(r) = r for all 0 E S,) 

is a subring of R. Put 

Then it is easy to see that {zi IO 5 j <_ n) is a K-basis for A., and 

Since A is a subring of R, M is also an A -niodule. 
Choose u E P arbitrary but fixed, and define w(v) = cE(u, U) for 

UE VYLetSyn be the full pe:.mutation group of V”, and let G be the 
subgroup G = {u E S,, I a(:; j = u, and d(u, u’) = &J(U), I) for all v, 
V’ E Vn} . By permuting the basis vectors, G acts K-linearly on M. This 
action Is even A-linear, sine? for ci E if, G 5 j 5 ~1, u E vn we have: 

a(zj- I?)= cQ{u’l d(v, v’) = j}) = C(u(v’)l d& u') = j} 

2 2: {d I d(t), u-l (v’)) = j) = %~‘l d(a(v), u? = i) 

= Zj’ u(v) . 
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Therefore, MG = (m E MI o(m) = ,n for all CJ E G) is an A-submodule of 

M, and the map T: M -+ iVG , defined by 

is an A-homomorphism. 
an A -module. 

We wish LO detr:rmine the structure of MG as 

It is not h&i to see that the orbits of the G-action on Vn axe 
((u E Vn 1 w(u) =.j}I 0 5 j 52 n). Put 

then it: follows that {VZ~ I 0 5 j < y33 is a K-basis for MG . Define the A- 
homomorphism 

AsMG by $(a)=a-u 

(we considler A as an A-module by lert multiplication, [ 1; 31). Then 

SO fi maps a K-basis for A one to one onto a K-basis for RIG. This im- 
plies that 3/ is bijective. We have shown: 

8) . 4 = MC as A-modules . 

?Jow suppose that a perfect P-error-correcting code C C ‘c/‘” exists. 
Then one easily constructs e + I perfect e-error-correcting codes 
C() 9 ‘-0’) ce = Vn such that i E w[CJ (0 < i 5 e). We first prove: 

Roof of (5). Let r(ZCi) = Zy&, kijmj* (kii E IQ: since Ci is e-error-correc- 
ting, we have W[“Zi] PI (0, 4, . . . . es = {i); therefore, if 0 <, ii e, 01 j< e, 
the coeff‘kient kii is nonzero if and only if i = j* and (5 j follows. 
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Put 

By (IS), the perfectness of Ci implies 

Applying the A-linear map T lve find 

S* T(Xj)=T(L:Vn), 05 ii e. 

Using (5) we conclude dimK (m f MG I s- m = 0) > e,, and by (4) this is 
the same as 

(6) dimK{aEAis-a=@&. 

Therefore it seems useful to&tidy the structure of A. 
For I C .V we define the ring homomorphism x1: R + kc by 

Xl(k) = k, k E K , 

Xr(Xi) X 0 if i E I, 

Xl(Xj)=4 if i $1. 

The maximal ideals kcr[xI) of R are mutually different, so ker(X/) + 
ker(X !) = R for I# J. By the Chinese remainder theorem [3,II.2; 1, 

1.8.1 i ] it follaws thtlt the _Y-Iiiz!ar ring homomorphism 

is surjectivC7 (in lIIcnf K addition and multiplication are defined compo- 
nentwise); comparicon of K-dimension shows that x is injective, so x is 
a ring isomorphism. For 0 E Sfl $16 N, r E R: we have x,~I] (a(r)) = xi(r). 
This imp&: if I, J c lb' setisfy ill = IJI then x1 and ‘Q have the same . 

restriction tc ,4. The*:*efore 
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xb%i I= {(k,),,, e IlrcNKl kJ = kJt if IJI = IJ’I) , 

and count5qg dimension over K sho-ws that this inclusion is in fact an 
equality. Putting 

I, ={1,2,.4}, xx =X1 
x 

lA(OLxd-I?), 

we conclude that 

is a Y-linear ring isomorphism. 
Eo’* k = fk,,& E lI!&,K we have obvicilasly 

Putting k 

m 

From the 

(8) 

= x’(s) and using (6) we find: 

definitions we compute j 

= zql*(-- l>’ (“e--T). (“;I) (q- Ue-i 

= P(x) . 

Sirxe P(0) = zlf_+ * 1 fq - l)e-i 
e-31 Jl: 8, Lloyd’s theorem now follows 

from (7) and (8). 
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$2. Perfect ljroup codes 

Theorem 2. &t*Gi, 1 i i <, n, b a group with underlying set V. Suppose 
theA eAsts u subgroup C c II!+ Gi such that the undertying set of C is 
a perfect e-error-correcting code of blnck length r~ over V, with e < n. 
Then q is a power of a prime p uazd each Gi is abelian of type 
Q& p9 -‘.? PI* 

PROOF. -Without 10~s of generality wrs may assume that the groups Gi 
have the same unit element 1 E V (I <_ i <_ n). Put u = (l$& , and let 
w(g) = d(g, u) for g E I$!=, Gi, a2 ?I $j 1. 

Let C C II!= 1 Gi be as in the statz,Yrlent of Theorem 2. Then z-1 E C 
since u is the unit element of IIy= l E,. If 

satisfies w(g) = e + 1 9 then the unique element c = (Ci)yzl E C for which 
d(g, c) 5 e cartnot eaual U, and therefore w(c) > 2e f 1. This is only 
compatible with. w(;:) = e + ! and d(g, C) C e if W(C) z 2e + 1 and Ci = gi 

for all i such that gi # 1. We shall use this remark two times below. 
Choose a2 E G, :$~h that the order of a2 in C, is a prime number p, 

and choose ai E 6i, f:ui # 1, for 3 <_ i <, e + 1. It is sufficient to prove 
(i) every cr E Gj , is: -:e 1. has order p in G, ; 

(ii) a/I = /30 for all QL, #3 E G, . 

(i) Let 01 E G,, a fi 1. Put 

Then w(g) = e + 1. By the above remark, sDme c E C’ has the r”csllowing 
shape: 

c = (a, W-2, . ..) a,_*.1 ) \ (exactly e of the remaining components + 1)). 

Since C is a subgroup, CP E C, and 

cp = (a p q 1, (at most Ze- 1 of the remaining components # I)). 

Therefore w(cP) <_ 2e which implies cp = 24 and QP = 1. 

(ii) Let ar, p E G,, cy # t f p. Put 

’ 
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The above l*errrark yields c, c”’ E C whkh Book like: 

c = (a, “2, . ..) a,*1 ) 
* 

(exactly e of the rem’ziining components St 1)) 

c’ = l@, 9, l *.9 Q,,l, (exactly e of V-e remaining components # 1)). 

Then d( cc’, c’c’) 5 e + 1, and since cc’, c’c E C it follows that cc’ = L 
and arfi ==. % This completes the proof of Theorem 2. 
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