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{\bstmut: Two theorems are proved on perfect codes. The first cne states that Lloyd’s theorem
is true without tne assumption that the number of symbols in the alphabet is a prime power.

The second theorem asserts the impossibility of peifect group codes over non-prime-pcwer-
alphabets.

3 0. Introduction

Let V be a finite set, |Vl1=g 2 2, and let 1 £ e < » be 1ational inte-
gers. We pui N={1, 2, ...,n}. Forv= (@)L, € V", v'= (WD, € V" we
define d(v, v") = I{i € Nlv; # v;}|. A perfect e-error-correcting code of
block length n over V is a subset C C V" such that for every v € V"
there exists exactly one ¢ € C zatisfying d(v, ¢) < e.

If q is a prime power, a necessary condition for the existenice of such
a code is given by Lloyd’s theorem [6]. This theorem has recently been
used to determine all n, e for which a perfect code over an alphabet V
of q symbols, g a prime power, exists [5; 6].

In § ! I show that Lioyd’s theorem holds for all g. The proof, which
is modelled after [6, 5.4], makes use of some elementary notions from
comrrutative algebra. A different proof has been obtained by P. Del-
sarte [2]. It seems hard to use Lioyd’s theorem to prove non-existence
theorems for perfect codes over non-prime-power-alphabets.

*In §2 1 prove the following theorem: if G; (1 < i< n) is a group with
underlying set ¥, and C C II%., G, is a subgroup which as a subset of V"
is a perfect e-error-correcting code, e < n, then g is a prime power and
each G, is abelian of type (p, D, ..., P). A special case of this theorem
was proved in [4].
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§1. Lioyd's theorem

Theorem 1. If a perfe:t e-error-correcting code of block lengrk n over
V exists then the polynomial «

P00 = 201 (1 X)(X Y @1

where

@y i 9l
(i) ey =

has e distinct integral zeros among 1, 2, ..., n.

Proof. L:t K be a field of characteristic zero, and let M be a K-vector
space of dimension ¢" with the elements of V" as basis vectors:

= . 1 n
M {EveV"kv vl k, €K for ve V"}.

If DC V" is a subset, we denote Z,.,v € M by ZD. Define the K-endo-
morphisms ¢; (1 < i< n) of M by

P (1) =2{v =(q})}’=! e V| u]'-=v]- for all j+ i},
v = (y)kq € V™. One easily checks:
(1) $0; =6, (1=i<j<n),
(2) 2=g-¢, (1<i<nm).

Let K[X,, ..., X,] be the commutative polynomial ring in # symbols

over K. The ideal generated by {X? - 9X ;11 < i< n} is denoted by B,

and R is the factor ring K[ X, ..., X,,1/B. By (1) there exists a K-linear

ring homomorphism K[X, ... Y 1 = Endg (M) (the ring of X-endo-

morphisms of M) mapping 1 to the identity and X; to ¢, (1 <i< n).

The kernel of this ring homomorphism contains B, by (2), so we obtain
a ring homomorpkism f:R - Endy (M), mapping ; x;=(X:mod B)ER
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to ¢;. Therefore we can make M 7.:to an R-module by defining »-m =
[y my(reR,me M) [1,11.i.i;3,1I1.1].
Puty; =M;c;(x; — 1) €R for I C N. Then

yrrv=Z{v'€ V"Iifj€ N, then: v;=v; = j & I},

I¢ N,ve V", Therefore, {y;-vl1C N} C M is linearly independent
over K, forve V. Then certainly {y,| fc N}c R is lmearly indepen-
dent over K. Moreover, it is easily shown that { vl c N} generates R as
a K-vector space. This proves: {y,1/ C N} is a K-basis for R, and
dimg (R) = 2" (by dimy we mean dimension over K).

The permutation group S,, on n symbols acts as a group of K-linear
ring automorphisms on R by permuting {x;|i € N}. The set of invariants

A={reRlo(r)=r forall 6€S,}
is a subring of R. Put
2;=Zpey = Yifor 0Sj<n.
Then it is easy to see that {z;10 <j < n} is a K-basis for 4, and

3) Z;e

! v=3{v' € V"ldiv,v)=j}, 0<j<nuve V",

Since A is a subring of R, M is also an 4-module.

Choose u € V" arbitrary but fixed, and define w{v) = d(v, u) ior
ve V", Let SV be the full permutation group of V", and let G be the
subgroup G={o€e S ol 0(y=u, and d(v, v") = d(o(v), o(v")) for all v,
v e V"}. By permutmg the basis vectors, G acts K-linearly on M. This
action is even A-linear, sinc® foroc € G, 0<j< n,v € V" we have:

a(z;-v)= a(Z{v'l d(v,v") =} = Z{o@)! dlv, v') =}
=3’ d@, o7 (")) =j} = Z{v'l d(o(v), v" = j}

=2z o(v) .
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Therefore, MC ={m € M1 g(m> = . for all 0 € G} is an A-submodule of
M. and themapT: M~ MC | defined by

I'm)=Z, cq o(m),
is an A-homomorphism. We wish 10 determine the structure of MC as
an A-module.
It is not hard to see that the orbits of the G-action on V" are
f{fue V" w)=j}i0<j<n}. Put
m;=Z{ve V" lw) =i} M, 0<j<nm,

‘then it follows that {m; 0 <j< n}is a K-basis for MO . Define the A-
homemorphism

A% MC by Y@ =a-u
(we consider 4 as an A-module by lett multiplication, [1; 3]). Then
Ve =z;ru=Z{ve V"ido,u)=j}=m; .

So ¢ maps a K-basis for A one to one onto a K-basis for MS . This im-
plies that  is bijective. We have shown:

4 = A=MC% asA-modules.

Now suppose that a perfect e-error-correcting code C C V" exists.
Then one easily constructs e+ 1 perfect e-error-correcting codes
Co» --n Co = V" such that i € w(C;] (0< i< e). We first prove:
(5) {rzcpio<i<el c MO s lineariy incependent over K.
Proof of (5). Let T(XC)) = 2}‘___0 k,-jmj' (k,-,- € K); since C, is e-error-correc-

ting, we have w[:;] 1 {0, 1, ..., e} = {i}; therefore, if 0< i< e, 0<j< e,
the coefticient k;; is norzero if and only if i =, and {5) followe.
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Put
§=2Z%0 LEA.
By (3), the perfectness of C; implies
s+ 2C,=%1" ¢p<i<e.
Applying the A-linear map 7 we find
s*T(ECH=T(ZV"), 0<i<e.

Using (5) we conclude dimg {m e MC s -m=0}> e, and by (4) this is
the same as

(6) dimg{a€ Als-a=0}2e.

Therefore it seems useful to siudy the structure of 4.
For I C N we define the ring homomorphism x,: R - X by

x;k)=k, k=K,
x,(x,-)=0 if iel,
x/xp)=q if i¢l.
The maximal ideals ker(x;) of R are mutually different, so ker(x,) +

ker(x ;) =R for I # /. By the Chinese remainder theorem (3, 11.2; 1,
1.8.11] it follows that the X-liiizar ring homomorphism

X=Icyxr:R=>Ly-yK

is surjective (in I1; - 5 K addition and multiplication are defined compo-
nentwise); comparison of K-dimension shows that x is injective, so x is
a ring isomorphism. Foro € S,/ C N, r € K we have X, (a(r) =x(r).
This implies: if 7, J C N satisfy /1 = 1J) then x; and v; have the same
restriction tc 4. Therefore
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X[A] c {(k!)ICN € H]C”Kl kj=kj' "lf IJI= IJ"} s

and counting dimension over K shows that this inclusion is in fact an
equality. Putting

L={1,2,.,x}, X, =X, IAMO0<x<n),
we conclude that
D | IPCTEEY I | LAY ¢

is a X-linear ring isomorphism.
Fo k=1(k )%, € II7_ ;K we have obvicusly

dimg (k' €I oKl k- k' = 0= {<10< x < n, k, =0}!.
Putting &k = x'(s) and using (6) we find:

¥)) Hxl0S<x<n,x,(5)=0}>e.

s -

From the definitions we compute

xx(z}') = Z3lc.)v, = ?f.rx(J’ﬂ

rnfl

= Zen, in=i(=1) (g- 1!

=3, ():) (’;:f) (-Dig-1y~",

(8) Xx () = 2720 X4 {z;)
e i (1 -1 —i
=250 1 (557 (*77) @
= P(x).

. . ny ., _4 ,
Sirce P(0) = Z¢., (e—z’) {g —1)°~" # 0, Lloyd’s theorem now follows
from (7) and (8).
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§ 2. Perfect 4roup codes

Theorem 2. L2t°G;, 1 < i< n, b+ a group with underlying set V. Suppose
there e.ists a subgroup C C 1., G, such that the underlying set of C is

a perfect e-error-correcting code of block length 1 over V, with e < n.
Then q is a power of a pririe p and each G, is abelian of type

. p. .., D).

Proof. Without loss of generality we may assume that the groups G;
have the same unit element 1 € ¥ (1 < i< #). Putu = (1)}, and let
w(g) =d(g,u) forge I}, G;,as n §1.

Let C C I, G; be as in the statcment of Theorem 2. Thenu € C
since u is the unit element of M. | G;. If

g = (g € iz G;

satisfies w(g) = e + 1, then the unique element ¢ = (¢;)L, € C for which
d(g, ¢) < e cannot equal u, and therefore w(c) = 2e + 1. This is only
compatible with w(z) =e+ ! andd(g,c) < eif w(c)=2e+ 1l andc;=g;
for all i such that g; # 1. We shall use this remark two times below.

Choose a, € G, such that the order of a4 in G, is a prime number p,
and choose o; € G,, iy, # 1, for 3< i< e+ 1. It is sufficient to prove

(D everya € Gy, .« 1. has order p in G,;

(i)aff=Pa foralle, e G;.

(i)Leta € G},a+ 1.Put
g=(, 05, s 0y Ly o D E L Gy

Then w(g) = e + 1. By the above remark, some ¢ € C has the following
shape:
c=(a,ay, ..., 0., {exactly e of the remaining components # 1)).

Since C is a subgroup, ¢? & C, and

P = (aP, 1, (at most "e—1 of the remaining components # 1)).

\

Therefore w(c?) < 2e which implies ¢? =« and af = 1.
(ii) Leta, € Gy, a # 1 # . Put
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4

g = (as az, eeay ae+1’ Ay eaey 1),
g = ’(Ba Qg s eens Oopls 1, cesy 1)

The above remark yields ¢, ¢’ € C which look like:

¢ = (a, ay, ..., &4, (exactly e of the remaining components # 1))
¢'= (B, &y, ..., @pyy, (exactly e of the remaining components # 1)).

Then d(cc’, ¢'c} < e + 1, and since cc’, ¢'c € C it follows that cc’ =
and af = ”. This completes the proof of Theorem 2.
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