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1. Introduction.

In general a splitting of the isogeny type of the formal group of an abelian
variety should not give an analogous splitting of the isogeny type of the

abelian variety. Honda gave an example of an abelian surface (in characteristic p)
where the formal group up to isogeny splits into two different factors, but

such that the abelian variety is simple (cf. [3], page 93). However Manin asked
whether it could be possible that the isogeny class of any abelian surface with
no points of order p (the analogue of supersingular elliptic curves) is split
(cf. [L], page 79, line 16 from below). Surprisingly the question by Manin has a
positive answer in any dimension: a "supersingular" abelian variety i1s isogenous
to a product of elliptic curves (ef. [5], theorem 3.2). However this is the only
exception to the general principle alluded above: in this paper we prove that
for any formal isogeny type which has at least one factor different from G1,1
(the condition t > 0 1in section 2 below), there exists a simple abelian variety
having this isogeny type for its formal group.

Using the classification, due to Honda and Serre, of isogeny classes of abelian
varieties over finite fields with the help of Weil numbers, in fact a proof of

this is nothing but an excercise in algebraic number theory,
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Notations: We fix a prime number p. For an abelian variety A we denote by A

its formal group, and we freely use the classification of such formal groups over
an algebraically closed field of characteristic p as given by Manin (ef. [L],
II.4.). We use "~ +to indicate the isogeny relation. By O we denote an algebraic
clogure of the prime field in characteristic p; by ﬂ& we denote the field

having q elements.

2. The construction of a simple abelian variety.

t .
Let <ni>i=1’ (mi)iz1 be two sequences of integers such that
t >0
n. >m. 20 for 1 =1 <t
i i
= ! < 1 £ = =
(ni, mi) 1 for 1 i t (so n; 1 if m, 0),

and let h be a nonnegative integer.



We want to construct a simple abelian variety A over ¢ such that
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In section 3 we shall construct two field extensions ® ¢ K ¢ L such that:

(2.1)  [x : @] = g;

(2.2) K is totally real;
(2.3) there are no intermediate fields @ ; K' g K;
(2.4)  the prime ideal factorization of p in K is

n.+m.

()= (L 5 5 - GEa),

where Do Qj are different prime ideals in the ring of integers in X,

1

and all residue class degrees f(Ei/<p>) and f(gj/(p)) are 1;
(2.5) [L : Kl =2; let the nontrivial K-automorphism of L be denoted by p;
2.6) L is totally imaginary (i.e. there is no field homomorphism L -~ R );
(2.7) either g = 1, in which case t = 1, n,=1,m =0,h=0 and K=4aq,
or K # @, and then there is no r € @ for which L = K(/r);
(2.8)  the primes B; (1 £1<+t) gplit completely in L:
p; =z . plry), r; #olzg),
and the gj (1< <h) ramify:

g. = 5. , s. = o(s.).

=] =j
By (2.2) anda (2.5), (2.6), L is a CM-field [3]. Let the ideal a in L
be defined by

Then we have

ola) = (p),

so a 1is an "ideal of type (A)) of order 1" (terminology from [31).
L
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moo(m) =p°, () =a .
)

Then L = Q(n

Proof of (2.9). We first show

(2.10) T ¢ K.
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In fact, 7 e K would imply =~ = m.p(m) = p’, so gAv = (n%) = (p)”,
which means
. 2 . n.-+Hm. n.+4m.
1 (r'Zvnl o )Lvm1> | . ov _ _ﬁ . v(nlkml) e )v(nl ml))° 'H _
1=7 : =i =1 =] 1=1 =i =3 J=1 =

This contradicts unique factorization, since t > O, n, > my, I, # p(gq) 5
v # 0, so (2.10) is proved. It follows that
(2.11) L= &(m).
If K =@, we are done. So assume K # §. We assert
(2.12) m+p(m) ¢ Q.
Otherwise we would have m + p(w) € § and w.p(m) = pv € @. But then m 1is
imaginary quadratic over @&, so &(n) = 0(V/r) for some r e @. By (2.11) this
implies L = kK(V/r), r e @, contradicting (2.7).
This proves (2.12).
We do have 7 + p(m) = UH'L/K(ﬂg € K, so (2.12) and (2.3) yield
K= 0(m + p(m)). Uéing polm) = Q;' we find
a(m) = an + 2)(n) = aln + p(n))(n) = K(r) = L,
thus proving (2.9).

By lemma 1 of [3] there exists a v ¢ &, v > 0, and an algebraic integer

m ¢ L such that
moo(m) =p°, (n) =a’.
Applying (2.9) to ™ we find
(2.13) o(r") = L for every integer u > O.
In the terminology of [3] this means

L=aga)=alr).

Let A be a simple abelian variety over ﬂ%v corresponding o m, by the

main theorem of [3]. We show that A satisfies our requirements. As in [6],

we put
EﬂdM(:[F\))(A) = 8 ﬂ;ndIF\)(A).
. . p p -
We identify = with the Frobenius endomorphism T € EndM(IF )(A).

e

(2.14) Lemma.




Proof of (2.14). B = End,

- -

I )(A) is a division algebra with center @(w) = L.
v

To show E = L it suffices tB check that E splits locally everywhere. This is

done with the help of théoréme 1 of [6]:

(a)
(b)
(c)

by (2.6), L does not have real places;

splits automatically at finite places v not lying over 7p;

t v lie over 7p. If v corresponds to r., then
1L
v(m)

, | ni-v
inv (E) = (L : @] =+———— . (n.4m.) =n., = 0 mod 1.
v v D (n.4m.).v i1 i

v(p') i
Similarly, for p(gﬁ) we get
inv (E) 2 m. £ 0 mod 1.

v 1

If v Dbelongs to Ej’ then
. ™ . _
1an(E) = XL~% . [Lv : ij = 5%;-, 2 =120 mod 1.

v(p)

This proves (2.14).

From (2.14) it follows that the characteristic polynomial of the Frobenius

endomorphism is equal to the irreducible polynomial of m over @&. Since we

know all p-adic values of w, we can apply theorem (4.1) of [4]l +to compute
= D

A. We find

-~

A

1
m.
1

i H‘Eﬁ‘f“
[

& 1,0

+ . G :
= 3
m%>& n.,mn. M. 1,1
1

as desired.

Let U be a positive integer. The degree of the charscteristic polynomial of

T is equal to

2.dim A =% : L1° . [L : 0l = [L : @] = 2g.

By (2.13) it follows that this polynomial is irreducible over . Hence A

remainsg simple over I§VU , for every u. We conclude that A remains simple over
X :

f
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as required.

3. The construction of the desired CM-field.

For a field F, let Mon(g, F) denote the set of monic polynomials of degree g

over F. If F 1is a topological field, Mon(g, F) has a natural topology such

that

®

fiS

as topological spaces.

Suppose f € Mon(g, @) satisfies

f has g real zeros;

the Galois group of the splitting field M of f over @& 1is isomorphic
to the full permutation gr?up SU of order gl

(p i)y g

‘‘‘‘‘ 4 Bl
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Then K = QLX1/f 0[X] 1is a field (by (3.2)) which obviously satisfies (2.1),
(2.2) and (2.4). We assert that also (2.3) holds. In f::t, the intermediate

field @ ¢ K ¢ M corresponds to the subsroup 5,258 > {1}. Since there are
no subgroups Sr ; H ; S 19 (2.3) follows by Galois theory.
(_)) tj) -

Let Pys Pps Py be  three rational primes, different from p.

Choose monic polynomials fT’ f?, f3 e ZLx1 of degree g such that
(3.4) (£,
(3.5) if g > 2, then (f

mod pi) is irreducible over ﬂ; ;

o mod p2) € Iﬂ%[%] is the product of a linear factor
and an irreducible factor of degrée g - 1;

(3.6) if g > 3, then f3 € ﬂ% [X] 1is the product of an irreducible quadratic
factor and one or two di%ferent irreducible factors of odd degree.

By [7, 8661, condition (3.2) is satisfied if for i =1, 2, 3 we have:

(3.7)i the coefficients of f are integers at Ps» and f = f. mod .-
A

So to construet K, it suffices to show that conditions (3.1),‘(3.3), (3°7>19233
can be satisfied simulteneously.
Each one of the sets
U ={f ¢ Mon(g, ™ | (3.1) holds},
{f ¢ Mon(g, Qp)l (3.3) holds},

{f ¢ Mon(g, @p J1(3.7). holds} (i =1, 2, 3)

o
1 ]

is nonempty and open (cf. [1, ch. 2, §6]1 for UO)w By the approximation theorem
L1, ch. 1, 841, Mon(g, ©) is dense in
Mon(g, T x Mon(g, @) x .1 Mon(g, @_ )
1) 1= jop
i

£

- . . ; 1. L.
Under the natural inclusion. Hence there eXists a polynomial

[

f ¢ Mon(g, @) n i=@1 U

Therefore, a field X satisfying (2.1) - (2.4) exists.

Next we construct L . If K # @, let Eﬁ’ &P be different primes of K
lying over the same rational prime £, & # p. Such £ and &i exist, cf. [2],
Let VE. denote the normalized exponential valuation at the prime p. By the
approximation theorem, there exists an a € K such that:

(3.8) if K # @, then vy (a) # v, (a) mod 2;
(3.9) v, (a) =1 (15 5iny;

(3.10) a Jis a square in each of the local fields KE , 151 < ¢,

e
55

(3.11) d(a) < 0 for every field homomorphism o : K

\ , 2 R . . .
From (3.8) we see a ¢ @ . K~ if ¥ # 0. Therefore L = K(vVa) satisfies (2.5)
and (2.7). Also (2.6) and (2.8) hold, by (3.11) and (3.9), (3.10). This

finishes the construction of I and K.
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