stichting
mathematisch
centrum MC

AFDELING ZUIVERE WISKUNDE ZN 54/73 JUNE

A.E. BROUWER and H.W. LENSTRA Jr.
MULTIPLICATIVE DIVISION ALGOR!THMS ON THE INTEGERS

2e boerhaavestraat 49 amsterdam



Pruinted at the Mathematical Centre, 49, 2e Boerhaavestraat, Amsterdam.

The Mathematical Centre, founded the 11-th of February 1946, is a non-
profit institution aiming at the promotion of pure mathematics and its
applications. 14 L8 sponsored by the Netherlands Governmment through the
Netherlands Onganization for the Advancement of Pure Research (Z.W.0),
by the Municipality of Amsterdam, by the University of Amstendam, by
the Free University at Amsterdam, and by industries.

AMS (MOS) subject classification scheme (1970): 10405, 13A15, 13F10




Multiplicative division algorithms on the integers.

A.E. Brouwer, H.W. Lenstra Jr.

1. Introduction.

Let Z denote the ring of rational integers, and let W be a totally ordered
set. A function ¢ : Z - {0} > W is called a division algorithm on Z if

(i)  +the image of ¢ is a well ordered subset of W;

(ii) for every a, b € Z, b # 0, there exist q, r € Z such that

a gb + r

it

r

0 or ¢(r) < ¢(b).

If W is the set of positive real numbers R_, we call ¢ multiplicative if
¢(ab) = ¢(a)é(b)

for all a, b ¢ %, ab # O.
Theorem 1 describes all multiplicative division algorithms on %, thus

answering a question of R.K. Dennis [1].

Theorem 1.
Let ¢ : Z - {0} >R, be a multiplicative division algorithm. Then there

exist a prime number p and real numbers A > 0, B > 0 such that

B

¢(a) = IalA -8y for all a € Z, a # 0;

here ap denotes the largest power of p dividing a. Conversely, if p is a
prime and A > 0, B 2 0 are reals, then the function ¢ defined by the above
equation is a multiplicative division algorithm on Z.

Moreover, ¢ assumes only integral values if and only if both A and pA+B

are positive integers.

This theorem will be deduced from the following two results.
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Theorem 2.
Let W be any well ordered set, and let ¢ : % - {0} > W be a function.

Then ¢ 1s a division algorithm on Z if and only if
min {¢(r), ¢(-s)} < min {¢(r+s), ¢(-r-s)}

for all r, s e Z, r > 0, s > 0.

Theorem 3.

Denote by I the set of positive integers. Suppose ¢ : >R, satisfies
¢(ab) = ¢(a).4(b)
¢(a+b) = min {¢(a), ¢(b)}

for all a, b € N. Then there exist a prime number p and nonnegative real

numbers A, B such that

for all a € NW.

In section 5 we show how theorem 3 can be used to sharpen a certain lemma

from valuation theory.

2. Proof of theorem 2.

Let W be a well ordered set, and let ¢ : Z - {0} > W be a map. If ¢ satis-
fies the system of inequalities indicated in theorem 2, it is clear that
¢ is a division algorithm. In fact, for a, b € Z, b # 0, one can find

g4, r € Z such that

a=qg.b + 1,
r =0 or ¢(r) < ¢(b),
|z < |v].

Conversely, assume ¢ is a division algorithm. Consider a triple (r,s,b) of



integers such that

(2.1) r>0, s>0, r+s=]|p|.
To prove theorem 2, it suffices to show
(2.2) ¢(r) < ¢(v) or ¢(-s) < ¢(b).

This is done with induction on ¢(b). So assume the assertion is true for
all triples (r',s',b') as above for which ¢(b') < ¢(b).

If ¢(-b) < ¢(b), the induction hypothesis, applied to the triple
(r,s,-b), yields ¢(r) < ¢(-b) or ¢(-s) < ¢(-b), and (2.2) follows.

Therefore assume ¢(-b) = ¢(b), so
(2.3) o(|p]) = ¢(v), o(=p]) 2 ¢(v).

Now choose d in the residue class (r mod b) such that ¢(d) is minimal
(remark that 0 is not in this residue class, by (2.1)). Because ¢ is a di-

vision algorithm, we have
(2.4) ¢(d) < ¢(b).

We distinguish three cases:

(1) a> |v]

(ii) 4 < -|v|

(iii) 4 e {r, -s}.
In case (iii), (2.2) follows by (2.L). In each of the cases (i) and (ii)
we derive a contradiction.
Case (i). The triple (r',s',b') = (d-|v|,|v]|,d) has the properties corres-
ponding to (2.1). By (2.4) we may apply the induction hypothesis, and we
find

¢(a-|v]) < ¢(a) or ¢(-|v]) < ¢(a).

But the first alternative is excluded by the minimality assumption on ¢(d),

and the second one by (2.3) and (2.4).
Case (ii). Applying the induction hypothesis to the triple (r',s',b') =



.

= (Ibl,—d-]b’,d) we get
o([p]) < ¢(a) or ¢(a+|v]) < ¢(a).

The first possibility contradicts (2.3) and (2.4), the second one our
choice of 4.

This finishes the proof of theorem 2.

3. Proof of theorem 3.

Let ¢ : N +CR+ satisfy
(3.1) ¢(ab) = ¢(a) . ¢(b)
(3.2) ¢(a+b) 2 min {¢(a), ¢(b)},

for all a, b € N. From (3.1) it follows that ¢(1) = 1, and using (3.2) in-
ductively we find ¢(a) = 1 for all a € N. Define

Y(a) = ;gfggigl for a e N, a > 2.

Then y(a) > 0, and 4¢(a) = aw(a), for a = 2.

We first construct a natural number k > 2 such that
(3.3) v(a) = Y(k) for all a > 2.

Let p be any prime number, o = ¢(p). If ¢(q) = o for all primes g, then
¥(q) < a. If Y(r) 2 8 for

k = p works. So choose a prime q such that B
all r 2 2 we can take k = g. So let r = 2 be a natural number such that
1/8
)

Y = ¢(r) < B. Then B > 0, and replacing ¢(a) by ¢(a for all a we may

suppose
¢(q) =q, B=1, 0=<y<1<a.

Now choose a natural number M such that



(3.L4) Mzr

(3.5) >
Pa ‘/( 1__pY‘0‘ )

M be chosen such that

IN

Let k e N, 2 < k

P(k) = min {y(a) | 2 < a < M}.

(o]
il

By (3.4) we have § < vy < 1.

We assert that k has property (3.3). Otherwise, let a e I be minimal such
that ¢(a) < 6 = Y(k). We derive a contradiction. By definition of &, we
have a > M, so (3.5) implies al™Y / (pg) > 1, i.e. g.a' < 1a. Let q" be
the highest power of q which is smaller than q.aY. Then P

aY < qn < q.aY < %a.

Choose ¢ e {1, 2, ..., p} such that a + c.qn = 0 mod p. Then
Y

c.q® < p.q.a’ < a.

Therefore (3.5) yields

220 .2 2n i
(1-23—°> 1 -S4 —> 1 _ (pga"™)
a, a

Also

n
0 <a-c.qg <a,

n

so the minimality condition on a implies

¢(a-c.q") 2 (a—c.qn)s, b (




Hence

¢(a2—02.q2n)

v

[\

Also

We conclude

¢(a2) > min {¢(a2—02.q2n

s(a) 2%, u(a) 28,

= ¢(p).¢(a-c.

o n
p .(a-c.q)

-6

n
q“>.¢<9*—;49~—>

8 E;L+c.grl §
'( p )

2 2n

2

2§

) ¢(c2—q2n)} >a",

contradicting our choice of a. This finishes the construction of k.

Now fix k such that (3.3) holds. Putting A = ¢(k) we have

(3.6) y(a) = A = y(k), o(a)

If y(p) = A for all primes p, theorem 3

prime. So suppose
Y(p) =A+B>A,
for some prime p. We remark

(3.7) pla = ¢(a) = ¢

v
—

> aA for all a = 2.

follows by taking B = 0, p = any

v



Since ¢(k) = k' it follows that p [ k.
To prove theorem 3 it is clearly sufficient to show that ¢(s) = A

for all primes s # p. So let s be a prime # p. Suppose n, m € N satisfy

If N € N is divisible by p - 1 we have

o kn.N _ Sm.N

and taking N sufficiently large we find by (3.7):

kn.N_Sm.N) (kn.N_Sm.N)A B

- P

v

¢

Using (3.2) with a = e ol and b = =¥ ve get

n.N) Sm.N)

o(x 2 ¢(

)m

o(k)™ = ¢(s

If ¢(k) = 1, v(k) = 0 we conclude ¢(s) = 1, ¢(s) = 0 = A, as desired.

If ¢(k) > 1, the preceding discussion shows:

n,logs _ n, log ¢(s)
m ~ log k m ~ log ¢(k)

°

Since the rational numbers are dense in the reals this implies

log s . log ¢(s)
log k = log ¢(k)

_ _ log ¢(k) _ log ¢(s) _
A= y(k) = Tog X > Tog s = Y(s).

By (3.6) we conclude ¥(s) = A, as desired.
This completes the proof of theorem 3.



L, Proof of theorem 1.

Let ¢ : 2 - {0} +CR+ be a multiplicative division algorithm. Then
q>(—1)2 = ¢(1)2 = ¢(1) so ¢(=1) = 1. Therefore ¢(-a) = (a) for all a.

From theorem 2 we get
¢(a+b) > min {¢(a),4(b)}

for all a > 0, b > 0. Using theorem 3 we find a prime p and reals
A >0, B2 0 such that ¢(a) = lalA . apB for all a ¢ %, a # O.
Since

(p+1)™ = ¢(p+1) > min {6(p),6(1)} = 1

we have A > 0. This proves the first part of theorem 1.

A B .
!al . ap is a
multiplicative division algorithm for any prime p and all A > 0, B > 0, is

That, conversely, the function ¢ defined by ¢(a)

easy to check.
If A and pA+B are positive integers, it is clear that ¢ assumes only
integral values. To prove the converse, we recall a simple fact from analysis.
For a function f : R, > R we define Af :R, >R by Af(x) = f(x+1) - f(x),

and inductively A'f = af, A% = 40" ', n ¢ W, n > 2.

Lemma,

Let f : R+ + R be n times differentiable, n € N. Then for all y eZR+ there

exists a v € [y,y+n] such that

25y = APe(y).

n .
Proof. Let h(x) = } hix:L be the unique polynomial of degree < n for which
1=0
g(x) = f(x) - h(x) has zeros inx =y, y + 1, ..., y + n. Using Rolle's

theorem repeatedly we find v € [y,y + n] with



Furthermore, it is clear that
Ag(y) = 0, AMn(x) = h(n)(x) = n!hn for x e R,
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This proves the lemma.

We apply this lemma with f(x) = (p.x+1)A. Then ¢[Z - {0}] < Z implies

f[N] < Z, hence by induction on n we get

Anf(y) € Z, for all n, y € NW.

Choose n > A fixed. Then for y sufficiently large the lemma yields

18%2(y)| < max 15 ()] = [a.(A=1). . (Aent1) 0™ (pye1 )2

vely,y+nl

0 for y € W sufficiently large. So there exists a polynomial

Hence A"f(y)

f, of degree <n - 1 such that f(y) = f1(y) for all y € N sufficiently large.

Then

1im
Vel ,y-»>e

so A = degree f, is an integer, which we knew already to be positive.
+B . oL .
Also ¢(p) = pA 1s a positive integer.

This concludes the proof of theorem 1.

5. Valuations of the natural numbers.

Let R be a commutative domain and F : R +{R+ u {0} a function.

Suppose there exists a constant C € R+ such that

<

1.
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Fla) = 0 <==> g =0
(5.1) F(ab) = F(a)F(b)
(5.2) F(a+b) < ¢ . max {F(a), F(b)}

for all a, b € R. Then F is called a valuation of R.
By analogy, let us call a function F : N +R+ a valuation of W if
there is a constant C € R, such that (5.1) and (5.2) hold for all a, b e N.
The following lemma is frequently used to determine all valuations of

Z, cf. [2], ch.I, §3, lemma 3.

Lemma,
Let F be a valuation of . Then either F(a) < 1 for all a € N, or there is

a A € R_ such that Fla) = aA for all a e N.

For the proof of this lemma we refer to [2].

Using theorem 3, we can complete the conclusion of the lemma in the follow-

ing way.

Theorem k.
Let F : W —>R+ be a function. Then F is a valuation of N if and only if
there exist a prime p and real numbers A, u such that u < 0, Apu = 0,

F(a) = a}‘ . apu for all a e N.

Proof of theorem 4, cf. [2], ch. I, §3, lemma 4. First assume F is a valu-

ation of W.
If F(a) = aA for some A € R+ and all a € N we can put 4 = 0, p= any prime
number. So by the lemma we may assume F(a) < 1 for all a. Let n e NN,

N=2" o1, By induction on n, we get from (5.2)

N
F(Xa.)scn.max{F(a.)IOSiSN}, for a. ¢ N.
i=o * 1 i
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Applying this to

)N

| 12

(a+b

i=0

and using

F((W)aibN-i) < F(a)i . F(b)N_i < max {F(a), F(b)}N
we find

F((a+0)") < C" . max (F(a), F(b)}".
Taking N-th roots and letting n go to infinity we conclude

Fla+b) < max {F(a), F(b)}.

Define ¢(a) = F(a)-1; then theorem 3 applies to ¢, so there is a prime p

and there are reals A =2 0, B 2 0 such that

for all a e N. Putting A = -A and p = -B proves the "only if'part. The "if"-
part may be left to the reader.
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