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Abstract

The acyclic-subgraph problem can be stated äs follows: given a

finite directed graph in which a non-negative weight is assigned

to each edge, determine an acyclic subgraph of maximum weight.

We give several mathematical formulations of this problem and

indicate some applications, such äs the ordering of input-output

matrices. The graph-theoretical implications of the problem and

the suboptimal and optimal algorithms, proposed in the literature,

are discussed. Finally, we describe a branch-and-bound method for

the problem.
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I. INTRODUCTION

§1. Relations and graphs

In this section we list some basic notions and notations.

(1.1) Relations. Let I be a set. A relation on I is a subset of the car-

tesian product I x I. For a relation R, we put

R"1 = ((x,y) | (y,x) e R}.

Instead of (x,y) e R we also write xRy. For χ e I we define

R[x3 = {y e I | (x,y) e R};

so we have

R~JCxJ = {y e I | (y,x) e R}.

A relation R is called antisyrnmetvio if R n R = 0. We say R is complete

if

V x e I : V y e I : x j 4 y = > (x,y) e R u R~J.

R is called transitive if for all x,y,z e I the implication

(x,y) e R Λ (y,z) e R =s» (x,z) e R

is valid.

(1.2) Orderings. A transitive antisymmetric relation is called a (partiell)

ovdering. A complete transitive antisymmetric relation is called a total

OTdeving. We denote the set of total orderings on I by VT. If I is finite,

|l| = n, one has |v | = n!.



(1.3) Graphs. By a gvaph we understand a pair (I,R) where I is a set and R

is a relation on I, The elements of I are the vevtices of the graph, the

elements of R are the edges. A graph (I,R) is called finite if I is finite.

One gets a diagram of the finite graph (I,R) by considering I äs a subset

of the plane and drawing an arrow *_> . for every edge (i,j) e R. We call

(I,S) a sübgraph of (I,R) if S c R. For an integer n >̂  0, a path of length

n in the graph (I,R) is a sequence (x.)._0 of elements of I, such that

(χ.,χ. ,) e R for 0 £ i < n. If (I,R) is finite a hamiltonian path in

1 1 1 — l
(I,R) is a path ί̂).·̂  of length |l|-l for which 1 = {χ. | 0 < _ i < |l|}.

A graph (I,R) is called acyalio if there does not exist a path (x.)̂ _n of

length n > 0 in (I,R) with the property x_ = χ . An acyclic graph (I,R) is

called maximwn acycl-ic if there is no acyclic graph (I,S) with R * S. One

simply proves:

(1.4) (I,R) is maximum acyclic if and only if R is a total ordering on I.

(1.5) Tournaments. A graph (I,K) is called a tournament if I is finite and

K is a complete antisynmetvio relation on I. A subtoumament of (I,K) is a

pair (J,Kn(JxJ)) with J c I.

(1.6) From now on I denotes a finite set with |l| = n, n > 0. For 0 <_ k £ n,

we write S, for the set of injeotive maps
κ, l

α : {l,2,...,k} -> I.

S is the füll permutation group on {l,2,...,n}; so S = S T if
n n n,I
I = {l ,2,...,n}.



§2. The acyclic subgraph problem

(2.1) Let (I,R) be a finite graph and a : R -»- TR a map from the set of

edges to the set of non-negative real numbers. Let the weight of a

subgraph (I,S) be defined by

Question: determine an acyaUa subgraph of (I,R) of maximum weight.

Defining

a(i,j) = 0 for i,j e I, (i,j) l R,

and replacing R by Ι χ I obviously does not change the problem. Since all

a(i,j) are non-negative, it is sufficient to look only at maximum acyclic

graphs (I,S), cf. (1.3); that is, we need only consider total orderings S

on I, cf. (1.4). So we found the following formulation for (2.1):

(2.2) Let I be a finite set and a : I x I ·> E. a map. For * e V (see (1.2))

we put

f(*> - I

Problem: maximize f(*) subject to * e V , i.e. determine a total

ordering # on I for which

f(#) - max{f(*) j * e V.j.1.

Observe that the a(i,j) ara allowed to be negative in this formulation:

adding a constant c to every a(i,j) increases each f(*) by (̂ ).c, n = |

For any bijective map σ: {l,2,...,n} -> I a total ordering * on I can be

defined by

(2.3) i * j <=*« a~'(i) < a"J(j), i,j e I.



Conversely, for any * e V a σ e S (cf. (1.6)) can be found for which
-L. n, y l.

(2.3) holds. Taking I = {1,2 ..... n} and putting g(a) := f(*) if (2.3) holds,

we find that the following problem is äquivalent to (2.2):

(2.4) Let n > l be an integer and let (a..), · . be an ηχη-matrix with
— ij l<i ,

real entries a... For σ e S (cf. (1.6)) put

Problem: determine a τ e S for which
n

g(-r) = max{g(o) | σ e S }.

The next formulation follows immediately.

(2.5) Let n >_ l be an integer, and let the matrix (c..),̂ ,· . be defined

by

if i < j

c.. = 0 eise.
ij

Let (a..), · · be an ηχη-matrix with real entries.
ij lli»JfP

Exercise: maximize

c

subject to σ e S .

This is a quadratid assignment problem.

Consider formulation (2.2), and let * e V . Define x.. for i,j e I by

x.. = l if i * j

(2.6)

x. . = 0 eise.



Then

(2.7) x^ e {0,1} for all i,j e I.

The aompleteness and the anttsymmetry of * are expressed by

(2.8) x... + x... - l for all i,j £ I, i / j,

(2.9) x^ = 0 for all i e I,

and, given (2.7), (2.8) and (2.9), the transitivi-ty of * is equivalent to

(2.10) x^ + xjk + xki £ 2 for all i, j ,k e I, i φ j ̂  k φ i.

We conclude that, conversely, for any system of numbers (x..)· · T satis-
ij i»Jel

fying (2.7), (2.8), (2.9) and (2.10), there exists a total ordering * on I

such that (2.6) holds for all i,j e I, cf. (1.2).

So problem (2.2) can be rewritten äs follows:

(2.11) Let n >_ l be an integer and (a£.j)i<;: ·< an nxn-matrix, with a.. £ H.

Maximize

J\ . . a..x..

subject to the constraints

x. . e {0,1} for l <_ i, j <̂  n

x. . = 0 for l < i < n
11 — —

x. . <- x. . = l for l <_ i < j <_ n

x. . + x., + x, . < 2
ij jk κι —

for

x.. + x, . + x. . < 2
ik kj ji —



In this way we exhibit the problem äs a disGTete ΙΊηβατ programm-Cng ppoblem.

Consider again formulation (2.2). Define a relation K' on I by

(i,j) e K' <=*> a(i,j) > a(j,i).

Obviously, this relation is antisymmetric. Extend K' to a aomplete anti-

symmetric relation K on I, by making a choice between

(i,j) e K and (j,i) e K

for every two i,j e I satisfying a(i,j) = a(j,i), i ̂  j . Define

b(i,j) = a(i,j) - a(j,i) for (i,j) e K.

Then b(i,j) _̂ 0 for (i,j) e K, and for any * e V we have

This leads to the next version of our problem:

(2.12) Let (I,K) be a tournament (1.5) and b : K -> IR- a map. For * e V

put

Problem: determine a # e V.J. with

g(#) = min{g(*) | * e Vj.}.

In words: determine a total ordering which "resembles K äs closely äs pos-

sible". The case b(i,j) = I (for all (i,j) e K) can be formulated thus:

(2.13) Let (I,K) be a tournament. Determine a # e V with |K \ #| smallest

possible.



That is: make K transitive by reversing äs few edges äs possible. For

* e V and σ e S (cf. (1.6)) we can define g(a) := g(*) if
J- IL y .L

i > j <*=*· σ(ί) * a(j) for all i,j e {l,2,...,n}

(different from (2.3)). Then (2.12) transforms to:

(2.14) Let (I,K) be a tournament, and b : K ~> TEL n a map. For a e S put

Problem: determine a τ e S T for which

g(x) = min{g(a) | σ e S }.
n, j.

Using formulation (2.2), we have for any * e V :

(2.15) f(*) + f(*~J) = T. . . ,. a(i,j) = constant, *-1 e V
i j J tJ- j^rj

Hence:

(2.16) If-one replaces "max" by "min" in (2.2), (2.4), (2.5) or (2.11)

or "min" by "max" in (2.12), (2.13) or (2.14),

one gets an equivalent problem.

Further one easily sees (cf. (2.12), (2,14)):

(2.17) In (2.2) and (2.4), (2.5), (2.11) one may assume

a(i,j) >̂  0, a(i,j).a(j,i) = 0

and

a.. > 0, a...a.. = 0
ij - ij Ji

respectively, for all i,j.



§3. Examples

(3.1) "The mefhod of ραϊ-ved aomparisons". S ix dog foods have to be ranked

according to taste. To this end one offers each of the fifteen possible

pairs to a dog and makes note of bis preference. A possible outcome is

[18, example 11.1; 28]:

Here i . > . j means that the dog prefers food i to food j. The question is

to indicate a ranking of the foods "which fits best the outcome of the ex-

periment". There are various ways to define exactly what it meant by the

clause between quotes [23,§15]. P. Strater [31] suggests that the foods be

ranked so äs to minimize the number of "errors" of the dog. Precisely for-

mulated: (2.13).

The same experiment can be done with different dogs. Putting a(i,j) = the

number of dogs preferring i to j, we get problem (2.2).

(3.2) Weighing of pr*iovi-ti-es. A certain number of persons has to rank n

alternatives according to desirability. To this end each of the persons

determines the ranking he prefers. Let a(i,,j) = the number of persons put-

ting alternative i before alternative j, for l <̂  i, j <_ n. Then problem

(2.2) asks for a ranking which minimizes the number of neglected prefer-

ences. Also in this case there are other ways to define what is meant by a

"best ranking".
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(3.3) Triangulation of input~~output-matrioes. Let the economy of a country

be divided in n industry sectors, and let a matrix (a..), · · of non-
ij llijJln

negative real numbers indicate the mutual supplies between these sectors.

(2.4) asks for a ranking of the sectors which maximizes the total supply

from sectors to sectors which are placed lower: a ranking "from raw

material to consumer". For an extensive discussion of this problem and its

economic aspects, see [l;2;4;8;9;10;11;12;13;16;17;19;20;22;26;27;30].

(3.4) A sportman's problem. In a certain football competition each two

clubs meet exactly once. Each match is decided, if necessary by lot. Fur-

ther the rules require that in the final ranking at the end of the compe-

tition any club should have beaten each club which is placed lower. A

league official is responsible for the observance of this rule. When treat-

ing the protests at the end of the season he is able to "rectify" the

results of a number of matches. If club i has beaten club j, the amount of

money required to change the result of this match equals b(i,j). The com-

petition manager is interested in the cheapest way to meet the rules:

problem (2.12).
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II. TOURNAMENTS

§4. Scores and decomposition of tournaments

In this section we recall some facts about tournaments. Reference:

J.W. Moon [23]. An alternative terminology has been designed by G. Jaeschke

[14,15], who apparently is unaware of the known theory.

(4.1) Scores. Let (I,K) be a tournament. For i e I let s. = |K[i]| be the

of i. Suitably numbering I we may assume I = {l,2,...,n} and

(4.2) s. < s. , for l < i < n.
i 1+1 —

The sequence (s.)., is called the sooTe veotoT of (I,K).
l -L™" l -t

Fix l <_ k £ n. Then there are £., s. edges (i,j) e K for which i £ k, and
k i i i
(_) edges (i,j) e K for which i,j £ k. Therefore:

(4.3) f· , s. > Λ for l < k < n,
^1=1 i ~ ^ —

// / \ Vn /n\
(4.4) l 8 = ().

Of course we have also

(4.5) 0 < s. < n-1, s. € 1 for l < i < n.— i — i — —

Conversely, for every sequence (s.)._1 satisfying (4.2), (4.3), (4.4) andl l— l

(4.5) there is a tournament which has (s.)., äs its score vector (theorem

of H.G. Landau, [23,§21;5,Ch.II,§1;14]). For n > ^ 5 this tournament is not

necessarily uniquely determined (cf. (6.5)).

(4.6) Decomposition. The tournament (I,K) is called reduoibte if there is a

subset J c I such that

0 φ J x (I\J) c K.



1 1

One easily sees that (I,K) is reducible if and only if

3k : l <_k < n, j£el s. = φ

A tournament which is not reducible is ΊννβάαΰίΊιΙβ or sträng. For every

tournament (I,K) there is a unique integer l > 0 and a unique decomposition

£
(4.7) I = u I., I. - 0 (l<j<A), I. n I., = 0

j = ] J J J J

such that

(4.8) Ι. χ I., c κ for l < j' < j < Ä,J J _ _

(4.9) (I. ,Kn(I.xI.)) is an irreducible tournament for l _<_ j < _ Ä .
J J J

This "decomposition in irreducible subtournaments" can be read from the

scorevector (s.)·, in the following manner:

let {k. | 0 £ j <_ £} be the set of k1 s for which

ΣΪΗ β£- φ, 0 < k < n ,

indexed in such a way that k._ < k. (0<jfÄ); in particular

k0 =0, k£ = n;

then

I. = {i | k._j < i £ k.}

for l <_ j < £.
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§-*· Reduction to strong tournaments

Let (I,K) be a tournament. Suppose # e VT is such that |κ\#| is minimum

(2.13). Let σ be the unique bijection σ : {l, 2,..., n} -> I for which

i < j <=> σ(ί) # a(j)

for all i,j e {l, 2,..., n}. Then

(5.1) (σ(1),σ(2) ,. . .σ(η)) is a hamiltonian path in (I,K).

Proof of (5.1): choose i, l _<_ i < n, fixed; we have to prove

(σ(ΐ),σ(ί+1)) e K; if (σ(ΐ) ,σ(ί+])) ψ Κ, then for

#' - (#\ί(σ(ΐ),σ(ί+1))}) υ {(σ(ί+1),σ(ΐ))}

we would have

#' e V.J.

K \ # = (K\#') u {(σ(ΐ+1),σ(ΐ))} (disjoint union) ,

contradicting the minimality of |κ\#|; this proves (5.1).

Note that (5.1) yields an easy proof of the existence of a hamiltonian path

in an arbitrary tournament.

£ i
Now let (I.)*el be äs in (4.7), (4.8) and (4.9). If (x̂ )̂  is a

hamiltonian path in (Ι.,ΚηΙ

combination of these paths

hamiltonian path in (I.,Kn(I.xI.)), for l < j < £, then (4.8) implies that
J J 3 — _

yields a hamiltonian path in (I,K). Conversely, every hamiltonian path in
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(I,K) has this form, äs is easily deduced from (4.8). Applied to the

hamiltonian path (5.1) this yields

(5.2) i e I.., i' e I..,, j > jf =* i # i'.

Putting #. = # n (I.xl.) and K. = K n (I.xl.) we get from (5.2)
J J J J J J

(5.3) =

#. e V

j

Conversely, if #. € V are given OlJUO, then one can find # e V for

ü
which (5.3) holds. We conclude that when solving (2.13) one can restrict to

the case of an ivreduoible tournament. This is a substantial reduction if

& > l, but unfortunately most tournaments have Ä = l : putting

number of reducible tournaments (I,K) with I = {1,2,...̂ }
~ number of tournaments (I,K) with I = {l, 2,..., n}

2
(the donominator equals 2 ) , we have

for n >_ 2,
2" ""· * \2" 7

cf. Moon [23, §2].

The following result generalizes (5.2) but seems less useful:

(5.4) Define * c Ι χ I by

(i,j) e * <=> (i,j) e K Λ ̂ k e I : C(j,k) e Ι Λ (k, i) e K]

Q(n)
n

9n-2
/

n

/

Then * is a partial ordering on I, and for every # e V with minimum

|K\#| we have * c #.

The proof may be left to the reader .
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Next we consider problem (2.12). Let b : K -*- R be a map, and

for * e V .

(5.5) Among the orderings # e V which satisfy

g(#) = min{g(*) | * e V.J.}

there is at least one with the following property: if σ e S is the
n,l

unique bijection for which

i < j <=> σ(ΐ) # a(j) (i,je{l ,2,... ,n}),

then (σ(1),σ(2),...,σ(η)) is a hamiltonian path in (I,K).

Proof of (5.5). Choose

(5.6) # e {#' e V | g(#') = min{g(*) | * e V }}

such that |κ\#| is minimum subject to condition (5.6). It is easily checked

that # has the indicated property.

Remark. Because of the possibility that an edge has zero weight:

3(i,j) e K : b(i,j) = 0,

we cannot assert that eveicy $ satisfying (5.6) has the property indicated in

(5.5). For example, if all weights b(i,j) equal zero, then all $ e V

satisfy (5.6), but not all # e VT induce a hamiltonian path, if n > 2.
l

From (5.5) we conclude in the same manner äs above, that when solving

(2.32) we may restrict to the case of an irreducible tournament. This re-
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duction has been recommended by G. Jaeschke [15]

If i,j € Ί. satisfy

K, b(i,j) = 0, s^<_ s.,

then i t may be advantageous to replace K by

putting b(j,i) = 0. This does not change the problem, but the probability

of decomposition increases.
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§6. Two lower bounds

Let (I,K) be a tournament, where I = {l, 2,..., n} is numbered in such a way

that the score vector (s.)·, is non-decreasing (4.2). Let (x,y) e K be an

edge, and let the tournament (I,K') arise from (I,K) by

first replacing (x,y) by (y,x) in K, and

secondly reindexing I in such a way that the new score vector

(s!)., is again non-decreasing.

Then i t i s easily checked that

i |s.-s!| < 2.
^1=1 'ι i ' —

By induction on k i t follows that:

(k)
(6.1) let the tournament (I,K ) arise from (I,K) by

first reversing the orientation of k edges from K, and

secondly reindexing I in such a way that the new score vector

, v ,
(s: )·_ι ls again non-decreasing,

then

yn ι s -s(k)i < 2kLi=l \*i *i i! ̂k·

(k)
If we take k = |K\*| for some * e V , we can choose K to be a total

(k)
ordering. Then s/ = i-1, so (6.1) implies:

[T^\JL| v - L V ο—/"-ί — ̂  ·Ρ/-ιτ·α1Ί ·*· έ- \7Jx\*l ^y / · i V · * - - * / ! E O i r a j - J L ^ t V - . - ,

that is:

(6.2) min{JK\*! | * e V.J.} >^ |- £? (s^Ci-l)!.
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. n
For every score vector (s.)·, one can construct a tournament for which

the equality sign holds in (6.2) (H.J. Ryser [29], D. R. Fulkerson [6],

Moon [23, §21 , ex. 7]) . So -~ £._. |s.-(i-l)| is the best lower bound for

JK\*| which depends only on the score vector. For most tournaments, how

ever, (6.2) is a bad estimate, since on the one hand we have

tr o\ l ν·η ι / · i \ l ., l Γη+1Ί Γη-1Ί Ι ,τι*
(6.3) l |S-(i-l)| <_ . [--].[— ] ~ ( )

for every score vector (s.)·.,» and on the other hand

number of K for which min{|K\*| | * e V }> (-i-e).(-y)

(6.4) lim - ~ - - - — = l
.,n\

n-x» (9)

2

for every ε > 0 ("for almost all K one has to reverse nearly half of the

edges to get a total ordering"). A proof of (6.4) can be found in Moon

[23, §8], more precise results are given by J. Spencer [32] and Moon [24].

We do not give the proof of (6.3) here. That the equality sign can hold in

(6.3) may be seen by taking

s. =. (n odd) ,

s. = »" + [z-, (n even) .
i 2 n

One may hope that the tournaments encountered in the applications bear al-

ready a close resemblance to a total ordering. This resemblance may add to

the probability of decomposition (§5) and the sharpness of (6.2).

In connection with (6.2) we remark that the number of 3-cycles in (I,K)

equals

. . N 2 2-,

cf. Moon [23,§5]. (A 3-cycle is a subtournament of the form A.)
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Examples

(6.5) The tournament

5 ' 4

is the smallest example for

which the equality sign in (6.2) does not hold. The score vector is

l v5 ι ι
(1,1,2,3,3), so -x- L._. |s.-(i-l)| = 1. But the presence of the 3-cycles

Z. l— i χ

(3,5,4,3) and (3,2,1,3) implies |κ\*| >_ 2 for all * e V . Reversing (3,5)
2 -1

and (1,3) one sees that in fact

mini | K\* | | * e V.J.} = 2 holds.

A tournament with the same score vector

for which equality holds in (6.2) is

drawn at the right.

(6.6) The tournament

has score vector (1,2,2,2,3), so -z ),·_, |s.-(i-l)| = 2. There is exactly

one * e V for which |K\*| = 2. Also for example (3.1) the equality sign

holds in (6.2).

Next we deduce two lower bounds for (2.14) which generalize (6,2).

(6.7) Notation. Let V be a finite set, and r e 1R for v e V. If k is an

integer, 0 <_ k £ |v| , then we put

Ck]
r = miniT . r | A c V, |A| = k}
v ^veA v ' ' '

(the sum of the k smallest elements of V).
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Let b : K -*· R n be a map, and

for σ e S , äs in (2.14). Then (6.2) immediately implies our first lower
n, l

bound for g (σ) :

(6.8) Let (s.)._. be the non-decreasing score vector of (I,K), and

(notice that t is an integer, cf. (4.4)). Then for all σ & S T we
n,I

have

(using notation (6.7)).

We improve upon this lower bound. Write

(6.9) g(a) = ll=l ̂

For fixed i the number of terms in the sum

is at least max (Ο, |κ[σ(ί) ] }-(i-l )) . If we put

(6.11) t(i,£)

then the sum in (6.10) is at least

Et (i,o(i))]

(using notation (6.7)). Therefore (6.9) yields
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„n tt (ί,σ(ΐ))]

(6.12) 8(σ) >Σ1β1 Ik€K[a(i)]

Starting from

we find in the same way

pn Ct (
(6.13) g(a) ̂  £? l

J~J keK

where

(6.14) tjCj,*) = max(0,j-l-|K[A]|)

Adding (1-λ) χ (6.12) and λ χ (6.13), for λ e [0,1], we find our second

lower bound;

(6.15) For i e {l, 2,..., n}, £ e I and λ e 1R, 0 < λ < l , we define

(6.11) tQ(i,J2.)

(6.14) t(i,Ä)

cf. (6.7)
l
b(k,Ä)

keK '[£]

,
b(k,Ä)

Then

>. Ii=] βλ(ί,σ(ΐ))

for every σ e S T and λ e [0,1], and therefore
n, l
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(6.16) min g(a) >_ min £. e (isa(i))

oeS _ aeS T
η,Ι η,Ι

for every λ e [0,1].

The lower bound (6,16) may be considered äs a special case of the lower

bound given by P.C. Gilmore for the general quadratic assignment problem

[7], cf. (2.5).

We add some remarks.

(6.17) For fixed λ, the determination of the right hand side of (6.16):

(6.18) min J e (ί,σ(ί))
l A

_
η,Ι

is a linear assignment problem. The dual of this problem is (cf. [5]):

. . γΏ. νη
maximize ) . , u. + } . , v.

Δι=1 ι ^j=l j

subject to

u.+v. < e (i,j) (l<i,j<n).
i j — λ —

Here we have taken I = {l, 2,... n}.

Therefore, choosing λ such that (6.18) is maximum comes down to solving the

linear programming problem:

• · vn vn
maximize >. , u. + > , , v.

Li=l i ij=l J

subject to

XJN + v. + A.(e0(i,j)-eJ(i,j)) £ eQ(i,j) (l<i,j<n)

0 < λ < 1. -°° < u. < °°, -oo < v. < °° (l<i,j<n).
— — i J ~

It seems possible to find an efficient algorithm for this problem.
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(6.19) If the tournament (I,K) is reducible, then the lower bound (6.16)

can be improved by decomposing (I»K) in subtournaments (I.,Kn(I.xI.))
J ü J

(cf. (4.6)) and adding the lower bounds obtained for these subtournaments

by (6.16). An analogous Statement is true for (6.8).

(6.20) From (6.J1) and (6.14) it follows that tn(i,£) and t.(i,A) are

determined by

, £el).

t0(i,A)

(6.21) Finally we show that for problem (2.13) the bound (6.2) is implied

by (6.16). In the case of (2.13) we have b(k,£) = l for all (k,&) e K, so

Hence (6.20) implies

for l < _ i < _ n, Ä e l , A e [0,1]. Since

- - Σ , α-υ

it follows that for each bijection σ : {l, 2,..., n} -> I and each λ e [0,1]

we have

£?=1 βλ(ί,σ(ί)) =yli=1

It is easily seen that the right hand side is minimal if σ is chosen such

that the sequence (Κ[σ(ί)])._ is non-decreasing. Therefore in this case

(6.16) yields exactly the bound (6.2), for which we thus found a new proof.



23

III. SUBOPTIMAL ALGORITHMS

§7. Ranking according to scores

Let (a..), . . be an n><n-matrix with real non-negative entries. We want
1J ' _1> JJ^Il

to maximize

8(σ) = Z

subject to σ e S (problem (2.4)).

Some methods to determine a crude ranking are based on the scores

(7.1) t. = £η , a..
^

Vnu. = ) .l ij =

For example, one can choose σ such that (tσ/··\)· = ι is non-increasing, or

such that (u /·\)·_ι is non-decreasing, or such that (̂ /-j \~ua/· \) ·_ι is

non-increasing: ranking of football clubs according to the number of goals

scored by themselves, the number of goals scored by their opponents, and

the difference between these numbers, respectively.

0. Becker proposes to define σ(1) by

l < i < n}

and to apply induction on n to the (n-J )x(n-l)-matrix (a.·̂  j^n) to

determine the remainder of the sequence Γ2]. However, there seems to be no

reason to share his optimism about the optimality of this priority rule

[201. Analogous methods have been suggested by G, Chaty [3] for the case of

problem (2. 13).
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H. Aujac [1] and D. Massen [22j say that j is domlnabed by i if

this relation needs not be transitive, and it remains unclear in which way

this "principle of dominance" leads to a solution.

The algorithm of H.B. Chenery and T. Watanabe [4,p.496], referred to in

[20], does not apply to the problem under consideration.

(7.2) Using formulation (2.14), a σ for which the right hand side of (6.16)

is minimal can be used äs a first solution. For problem (2.13) this comes

down to a ranking according to scores, cf. (6.21)·
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§8. Two travelling-salesman methods

In [20] B. Körte and W. Oberhof er describe two suboptimal algorithms for

problem (2.4), which are modif ications of travelling-salesman methods given

by H. Müller-Merbach [25; 26],

(8.1) Suoeess-ive insert-ίοη of points. This method can be formulated with

induction on n äs follows:

for n = l, the problem is trivial;

for n > l, one Starts by solving the problem for the (n-1 )x(n-l )-matrix

")t
(a..). · · ,5 this yields a σ e S ,; from the n elements σ e S with
ij 1̂ .1 »j£n- 1 n-1 n

the property

VI l i,j l n-1 : σ""1 (i) < a~'(j) <=* σ*~!(ΐ) < o*~

the one which maximizes g (σ) is chosen. This solution is expected to be a

good one.

Of course, instead of (a..)1<:· ·< _i one can use tne (n-1 )x (n-1 )-matrix

(a..)· ·/, , where k e {l, 2,..., n} is arbitrary. This makes it possible to
•Ό ^-sJ**1·

construct several "good" Solutions from which the best one can be chosen.

(8.2) Choos-ing the neavest neighbouT, This algorithm determines

σ(1),. .. ,σ(η) in the following way: let, for an m with l f.m <_n, all σ(ί)

with i < m be determined, then a(m) is chosen from { l ,2, . . . ,η}\{σ(ί) | i<m}

in such a way that

is maximized. After n Steps σ is found.

This rule does not prescribe how to choose σ(1.)· Also it is not clear why

the larger sum

) + H=l ^J<
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is not used instead of (8.3) (cf. §14). In that case, the method would be

äquivalent to the following rule: select σ(1) by t ,,,. = max{t. l l < i < n}
a(i) ι — —

with t. äs in (7.1), and apply induction on (a..). ./ ,n to determine the
l 1J -̂ > Jrü v, J y

remainder of the sequence. (Here we assime a.. = 0 for all i, cf. (2.17)).
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§9. Relative optimality

We consider again formulation (2.4). For τ e S the requirement

Va e Sn : g(r) >_ g(a)

is equivalent to

(9.1) g(-r) >. g(rp)

for all p e S . Some heuristic methods construct a τ e S satisfying (9.1)

for all p e R, where R c S is a certain subset.
n

0. Becker [2] takes R to be the subgroup of S generated by the cyclic per-

mutation (n l 2 ... n-1); so we have |R| = n. In this case

(9.2) Vp e R : g(-r) >_ g(tp)

means, that for no m e {l,2,...,n-l} one can improve the ranking

(τ(1),τ(2),...,τ(η)) by replacing it by the ranking (r(m+l),τ(πι+2),...,τ(η),

τ(1) ,τ(2) ,. .. ,τ(ιη)) . One easily checks:

(9.3) Let

z. = t.-u. = Υ. , (a..-a,.)
i 1 1 ^j=] ij ji

for l < i < n, and let R c S be the subgroup generated by
n

(n l 2 ... n-1). Theri (9.2) is equivalent to

Vk e {l,2,...,n-l> : jj=] ZT(I) >. 0.

According to [20], Becker recommends the following Iteration:

τ_ = arbitrary element of S ;
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τ, for k >_ J is defined by
K. "™*

Tk e Tk-l'R' 8<·τ̂  = max^(Tk_j,p) | ρ e R}.

However, after the first Step of this Iteration no further improvement is

found: since R is a subgroup, τ. e τ-R implies TjR = t-R. So, if Körte and

Oberhofer write [20, p.405]:

"Nach k Iterationsschritten sind erst n.k Permutationen untersucht"

one should read: "After k Iteration Steps each one of n permutations has

been examined k times". No value can be attached to this method.

The following choice for R is more promising. Define p e S for

l <_ k < SL £ n by

p. (i) =i if l < i < k or & < i < n,
Kx. —

PkÄ(i) = i-1 if k < i <_H,

Pk£(k) = l,

and put

(9.4) R = {pk£,P^ l l £k < * <.n>,

n
so )R| = (n-l) (not n(n-l), cf. [20,p.4173). For this R (9.2) means that

the ranking (τ(1),τ(2),...,τ(η)) cannot be improved by moving one τ(m) to

a different place. One easily checks:

(9.5) Let R be defined äs in (9.4), and τ e S . Then (9.2) holds if and

only if for all k,£ with l <̂  k < £ _<_ n:
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(9.6)

A τ e S having the property (9.6) for all k,Ä with l £ k < £ £ n is called

relatively optimal. It follows from the above that each optimal τ is rela-

tively optimal. The converse does not hold [31;17]: let n = 4, and define

(9.7)

<Vl.SL.Jl4 by 312 = a23 = a34 = 3' a31 = a42 = 2> a!4 = '' a11 other

a.. =0, cf. figure (9.7); for τ = identity we have g(i) = 10, and τ is

relatively optimal (in fact, strict inequalities hold in (9.6)); however,

τ is not optimal, for g(0) = 11 with (σ(1) ,σ(2),σ(3),σ(4)) = (3,1,4,2).

If in this example all a.. ̂  0 are replaced by l, cf. (2.13), then τ is

relatively optimal again, while g(t) = 4 and g(a) = 5.

The introduction of the notion "relative optimality" involved some diffi-

culties, for which we refer to the discussion between E. Helmstädter on the

one side and H.J. Jaksch and H. König on the other side [8;16;9;17;10].

A relatively optimal τ is constructed by the following Iteration:

A. choose τ« e S arbitrarily, k := 0, go to B.

B. if Vp e R : g(r.p) < g(T,), then τ. is relatively optimal and the
k — k κ

iteration comes to an end; eise: go to C.

C. choose p e R such that g(r,p) > gix,), put τ,+. := τ,ρ, k := k+1,

go to B.
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The first algorithm of this type has been given by G.G. Alway for problem

(2.13) [31], i.e. for the case

a. . + a.. = l

a. . . a.. =0

for l _£ i < j _̂ n. By putting τ := τ, ρ also in sotne cases where g(i, p)
K"«" l K, K.

is equal to g(t,,) his algorithm computes an optimal solution if n < 8

[31;28].

The second method using this Iteration scheme is described by Körte and

Oberhofer [19]. In [20] they classify it wrongly äs an optimal algorithm.

The fastness of their procedure allows us to use several τ's äs starting

points and to choose the best one of the constructed relatively optimal

Solutions.

Finally, we make some remarks about the set of those p e S for which (9.1)

holds if τ is relatively optimal.

If a_,a. ,bn,b1 e IR we say that {a..,a,} and {bQ,b,} are sepaTati-ng pairs if

(9.8) there are i,j e {0,1} such that

a. < b. < a, . < b. .
i 3 l-i 1-3

or

b. < a. < b, . < a, ..
3 i 1-3 l-i

One can prove:

(9.9) If p e S satisfies
n

(9.10) VI £ i,j £ n: {i,p(i)} and {j,p(j)} are no separating pairs,

then g(rp) <_ g(x) for every relatively optimal τ.
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Notice that p has property (9.10) if

3.

Put yn = |{p e Sn | p satisfies (9.10)}|, and yQ = 1. Let Υ be the formal

power series

Υ = v xn.
^n=0 n

One can prove

33 2
χ Υ + xY - Υ + l =0.

This formula can be used to determine the y successively; one f inds :

70 - l, 7, = l, 72 " 2, y3 = 6, y4 = 19, y5 = 63, Jf> = 219, y? = 787.

Using the theory of algebraic functions one can show

lim v/'y"' = /9 + 6/F .
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IV. OPTIMAL ALGORITHMS

§ 10. Explicit enumeration

One way to solve (2,4) is checking all n! permutations. Even though one can

stop half way be using (2.15), this method seems too laborious.

Because of (5.5) i t suffices to check all hamiltonian paths in the

corresponding tournament. For iyTeduoi'b'le touvncments, G. Jaeschke [15]

proposes to enumerate the permutations τ for which

(10.1) (τ(1),...,τ(η)) is a hamiltonian path, and

(10.2) Vk e {l,2,...,n-l} : £j=] £?=] (aT(i)j-aJT(i)) 2.0 (cf. (9.3)).

He reduces reduoible tournaments to irreducible ones (§5).

Körte and Oberhofer [19] enumerate all relatively optimal Solutions. This

is done lexicographically:

τ(1) takes the values l,2,...,n;

if τ(1) is fixed, τ(2) takes those values from {l,2,...,η}\{τ(1)}

for which (9.6) holds for k = l and £ = 2;

if τ·(1) ,. . . ,τ(£-1) are fixed, τ(£) takes those values from

{1,2,...,η}\{τ(1),...,τ(Α-1)} for which (9.6) holds for all k < £

It is clear that in this way one obtains all relatively optimal Solutions τ,

From

i=l (ar(£),i"ai,T(£)) " ĵ = l
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one sees, that if τ(1) , . . . , τ(£-1 ) are fixed, one can also impose the con

dition

on τ(£) [19]. The possibility to require also

(10.4) T? , Γ , (a ,.. .-a. ,..) >
^i=l ̂  = 1 T(I),J 3,τ(ι)7 -

0

(cf. (9.3)) is not used by Körte and Oberhof er (notice that some relatively

optimal Solutions which are not optimal may be eliminated by (10.4)).

Numerical results of Körte and Oberhofer suggest that the average number

of relatively optimal Solutions increases exponentially with n C20,pp.423-

424].

A similar method to enumerate all relatively optimal Solutions in the case

all a., are 0 or l has been proposed by G. Chaty C3].
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§ 1 1 . Linear programming

In (2.11) we formulated the problem äs a discrete linear programming prob-

lem. This, however, does not immediately imply an efficient solution

method.

We remark that an optimal solution to (2.11) need not be an optimal solu-

tion to the linear programming problem which arises from (2.11) if one re-

places the constraints

x.. e {0,1} for l <. i,j <. n
J

by

0 £ x· · — l f°r l — i»J £ n·

To prove this remark, consider a tournament (I,K) for which

I = {l,2,...,n}

(11.1) V* e Vj. : |κ\*| ̂  ± . φ;

if n is sufficiently large, such a tournament exists by (6.4). Define a..

for i,j e I by

a^ = l if (i,j) e K,

a.. = 0 eise.
13

For every feasible solution (x..), · · to (2.11) we have by (11.1)

^l<i,j<n aijxij < 3" (2}·

But if we define
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. .
x . — _ - Ιϊ. for £j

2a. . + a. .
— üJ_

then (x..)i · · is a feasible solution of the non-discrete version of
ij lli,J<n

(2.11) described above, and

V "L P\
ijXij " 3 V'

The non-discrete Version of (2.11) may be used to determine a lower bound.
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§12. Dynamic programming

If (J,L) is a tournament and c : L -> H a function, then we define

VJ'

m(J,L,c) = min{g(*) | * e V }.
J

Let * e V :> and choose p e J such that
J

V i e J : i = p v i * p

(so p is "minimal" if * = "larger than") . Then

(12.1) g(*) - £ [p] c(P,j) +(i>j)eLN. c

P P

where

J = J\{p}, L = L n (J xj ),
P P P P

* = * n ( J x J ) , c =C|L
P P P P P·

From (12.1) it follows that

(12.2) m(J,L,c) = min (I

while

JP - J - i

for all ρ e J.

Now consider problem (2.12). Applying (12.2) to the subtournaments of

(I,K), we can successively determine all values
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m(J,Kn(JxJ)), b|Kn(JxJ)) (Jd) ,

starting from

m(J,L,c) = 0 for |j| = 2.

Then we know m(I,K,b) at the end of the computation, and by an easy device

also an optimal solution * e VT can be found.

This algorithm is given by R. Remage and W.A. Thompson [28] for the case

of problem (2.13), and by Körte and Oberhofer [20] for the general case.

The memory storage required for the execution of the algorithm increases

exponentially with n.
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§13. The quadratic assignment problem

In (2.5) we exhibited the problem äs a quadratic assignment problem. Körte

and Oberhofer [20,p.417] write:

"Es liegt daher nahe, die bekannten Algorithmen zur Losung
27)

des quadratischen Assignment Problems von L. Steinberg ,
28) 29)

P.C. Gilmore und E.L. Lawler gegebenenfalls mit

einigen Modifikationen auch auf das Triangulationsproblem

anzuwenden. Da diese Algorithmen aber im allgemeinen nach

dem Branch-and-Bound-Prinzip aufgebaut sind, wird es

effizienter sein, Input-Output-Matrizen mittels eines

speziellen Branch-and-Bound-Algorithmus, wie in Abschnitt

b) dargestellt, zu triangulieren".

However, the main difference between the algorithm described in "Abschnitt

b)" and the method of Gilmore [7] consists of the considerably less sharp

lower bounds used by Körte and Oberhofer. Cf. §14.

27) [333

28)

29)
C21]
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§14. Branch-and-bound methods

In this section we make use of the notations from 0.6) and (2,14).

To describe a branch-and-bound method for the solution of (2.14) we have to

indicate a certain class of subsets of S T. and for each of these subsets
n,I

a branohing rule and a bounding rute.

For 0 £ k £ n and α e S let
k, I

T = {σ e S _ l σ|{1,2,...,k} = a, i.e. σ(ί) = a(i) for l < i < k}.
a n,I ' ~ ~

The class of subsets of S _ to be used is

{Τ Ι Ο < k < η, α e S, T
α ' — — k,Ι

>.

Taking k = 0, we see that S T itself is one of these subsets. For k = n,
n,I

α e S , the set T is equal to {a}, For k < n, a e S, , we have a parti-
tC y X Ct IX 5 O.

tion

Τ =
α

This is our bvonohi-ng rule.

Next we look for a bounding rule, i.e, we want to indicate a lower bound

for

min{g(o) | σ e T }

for every 0 j£ k _£ n, α ε S, T.
k,l

Körte and Oberhofer [20] reraark that for σ e 1̂  one has

(14.1) g(a)

This is seen by suppressing the terms for which

i 1k < j
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or

k < i < j

in the definition of g(0), cf. (2.14). They use the right band side of

(14.1) äs a lower bound for mini g(σ) [ σ e T }.

This lower bound can be sharpened considerably. Putting

= 1\{α(1),...,a(k)}, we have for σ e T :
α

α

(14.2) 8(σ) =

The first two terms of the right hand side depend only on a, and their sum

is a lower bound for min{g(a) | σ e T } which is sharper than the lower
ot

bound of Körte and Oberhofer. Minimizing the last term of (14.2) is equi-

valent to solving (2.14) for the subtournament (Ia,Kn(I xl )). In this way

we find the following bounding rule:

(14.3) Write

m(I,K,b) = min{g(o) l σ e S }
n, i

and

m(a) = min{g(a) | σ e T },

for a e S , T, 0 < _ k < n .
K, J-

Then
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(14.4) m (α) = c(a) + m(Ia,Kn(I χΐ ), b|Kn(I xl ))

where

=] J£K[a(i)]nI

The second term of the right hand side of (14.4) can be estimated

from below by §6.

The lower bounds for min{g(a) | σ e T } found in this way are slightly

better than the lower bounds given by Gilmore [7] for the general quadratic

assignment prob lern.

Körte and Oberhofer, who use formulation (2.4), could also have improved

their lower bound (14.1) by applying (2.17). The limited success of their

branch-and-bound algorithm is not surprising.

In the above we described a branch-and-bound algorithm for the solution of

(2.14) by specifying a class of subsets of S T, a branching rule and a
n, i

bounding rule. We add some remarks about this algorithm.

(14.5) It is important to know a low upper bound for min{g(a) | σ e S }
n ,1

in an early stage of the computations. Such an upper bound can be found by

constructing a solution by one of the methods described in §§7-9. For

example, a first solution arises from the determination of the lower bound

(6.16), cf. (7.2). A similar remark applies if one wants to find a "good"

σ € Ia, for α e Ŝ .

(14.6) Let S' c S _ be the set of relatively optimal Solutions, i.e.
n,I

S' = {r e S | Vp e R : g(x) < g(tp)}
n,I —

with R äs in (9.4). Since every optimal solution is relatively optimal,

minimizing g(a) subject to a e S is equivalent to minimizing g(a) subject
n, I
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to σ e S'. The latter problem can be solved by a completely analogous

branch-and-bound method., using the subsets

η S' <aeskfl, 0<k<n)

with the branching rule

T

and for T' the same lower bound äs for T . This has the advantage that some
α α ö

T', occurring in (14.7), can be eliminated immediately since they are

empty; in fact, T' ̂  0 implies (cf. (9.6) and (10.3)):

(14.8) Vk, l <_ k < £ :

/.'—l V ^ V M V J / J h J V ^ / / w\|J\,Ä//jfJ\j//y < 0 j
*- J ""*£

where we define b(i,j) = 0 for i,j e I, (i,j) k K.

Narrowing slightly the notion "relatively optimal", we can also require

(14.10)

cf. (10.4).

From β|{l,2,...,£-1} = α it follows that, for α e S fixed, the in-
J6 I 5 J_

equalities (14.8), (14.9) and (14,10) are conditions which should be satis-

fied by ß(£). In [19, 3.2] one can find a simple method to check (14.8) and

(14.9).

Finally we remark that if the tournament

(I ,Kn(I xl )) where I = 1\{α(1),...,a(£-l)},
et o* et et
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is reducible (4.6), say

Χ Χα2 c Κ»

we can impose the condition

Of course it is possible that, if T' has been eliminated for one of these

reasons, T contains a solution which is better than the best one found so
P

far; however, that solution cannot be relatively optimal.

A branch-and-bound algorithm äs described in this section has not yet been

programmed for a Computer.
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