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1. Introduction

. . . . . . 2
Let B be a Boolean ring, i.e. a ring with 1 in which x =x for all Xx.
Tt is well known that B is commutative, and that x+x = 0 for all x€B.
Hence we can consider B as a vector space over IF, (the field of two
[

elements). By a basis of B we mean a basis of B over IF?, and the

dimension of B is its dimension over IF notation s dim B.

2 9
Let ACB be a subset. By A we denote the smallest subset of B which

satisfies

(1.1) AU fo}eca”

(1.2) if x,y € B are such that 1% contains three of the elements

{x, Yy XY, x~+y~+xy} , then also the fourth one is in I

Let us call a basis U of B an §-basis if U =3B. The main object of
this paper is to prove the following lemma, which was left open by

W. Scharlau [4, lemma 5.1.71]:
Lemma (1.3). BEvery Boolean ring has an 3 - basis,
The proof is given in section 2,

By %Z[B] we denote the commutative ring defined by generators [x] (x € B)

and relations

(<] + [v] = Dxeyl + 20x]
(<).[y] = [xv],

cf. [1]. If B 1is identified with an algebra of subsets of a set X,
then 7Z[B] may be thought of as the ring of functions f: X - Z which

satisfy
(1.4) flX] is a finite subset of Z,
(1.5) Yoez: £ [{nl] ¢ B.

X subset U of B is called an N~ basis if {[u]‘ uE'U} is a 72 - basis
of %Z[B]. From Z[B]/2%Z[B] =3B we see:



Proposition (1.6). Every N-basis is a basis.

The converge of this proposition is discussed in section 3.
A theorem of G. Nobeling [3] asserts that every Boolean ring has an N -

basis. This theorem also follows from lemma (1,3) and proposition (1.7):

Proposition (1.7). Every S -basis is an N- basis.

This proposition is proved in section 3. Although the converse of (1.7)
does not hold (cf. section 3), it turns out that the N - bases constructed

by G.M, Bergman |[1] are actually &5 - bases.

2. Exigtence of § -~ bases

Lemma (2.1). Let U be a subset of B with 0€U. Then the following

three properties of U are equivalents

(2.2) if x,y € B are such that U contains three of the elements
X, ¥, Xy, X +y+xy then also the fourth one is in U,

(2.3) if x,y € U are such that xy=0 or xy=x, then x+y € U.

(2.4) if x,y,xy € U, then x+y € U.
Proof of (2.1).

(2,2) = (2,3). If =xy=0 then x,y,xy are in U, hence by (2.2) also
X+y+xXy = x+y dis in U. If xy=x then for y' = x+y we know that

X, xy'=0 and x+y'+xy' =y are in U, so0 also y' = x+y is in TU.

(2.3) = (2.4). For =x'=xy we know x'€U, yeU, x'y=x'. Therefore by
(2.3) we have x'+y = xy+y € U. By symmetry, xy+x € U. Now
" = xy+x € U, y" = Xxy+yeU satisfy x"y"'=0, so by (2.%) we see

X+y = x"+y" € U,

(2.4) = (2.2). Let three of the elements x,y, Xy, x+y+xy be in U,

We distinguish three cases.

(a) x,y,%xy € U. Then x+y € U by (2.4), and since x!'=xy,
y!' = x+y, and x'y'=0 are in U, we have
X' +y! = x+y+xy € U,
(b) Xy, ¥, X+y+xy € U, Applying (2.4) to x'=xy and y'=y we

find y+xy € U. Then x'" = x+y+xy, y" = y+xy yield

"+ yt = xeU.



(c) X, ¥V, X+y+xy € U, Putting zx'=x, y' = x+y+xy we find
y+xy € U. Then x" = y+xy and y"=y give us x"+y" =
= xy € U,

This proves (2.1).
For AcB, let A" denote the smallest subset of B which contains
AU{0} and satisfies the equivalent conditions (2.2), (2.3) and (2.4) :

p¥ o nfuflotusacuocs, v satisfies (2.4)1.
Lemma (2.5). Let f: B — B! be a surjective ring homomeorphism, and let
A be a subset of B which contains ker(f). Then

-1

A% -7 e[a]*],

where f[A]*¥ is formed inside B'.,

Proof of (2°5), It is clearly sufficient to prove the following three

asgertions

(2.6) A% £ E[A]*]
(2,7) .A.* -+ ke—f'f = A%
(2.8) flA]* < £[a*].

Proof of (2.6). f[A]¥ 4ig a subset of B! which contains f[4] U {0}

and satisfies (2.4). Therefore f—1{f[A]J* ig a subset of B containing
AU {0l and satisfying (2.4). Wow A* ¢ f"1[f[A]]* follows by definition
of AY,

Proof of (2.7). If xed™, y ¢ kerf then yeh c A* since we assumed

kerf ¢ A, Also xy € x.kerf c kerf < 4%, so (2.4) gives x+y € A",

Proof of (2.8). Since f[AJU {0} ¢ £[a¥], it suffices to show that f[A%]
has property (2.4)., So let =x,ye A be such that f(x)e £f[a"],

fy) e f[A*], £(x)f(y) € £[A*]; we have to show f(x)+f(y) e £[a*].

Choose =z € A¥ guch that f(x)f(y) = f(z). Then =xy € z+kerf < A + ker f =
= A" vy (2.7). So A* contains x,y and xy, and by (2.4) we conclude

x+y € A, f(x)+f(y) = f{x+y) ¢ £[A¥].
This concludes the proof of (2.5).

Before proving lemma (1.3%) we fix some notations, For a well ordered set
I, we denote the set of finite subsets of I by F(I), and we wellorder
F(I) by putting B'<E if E,8' ¢ F(I), B/RE', are such that the



™

largest element of the esymmetric difference (EUE')\ (ENE') is in Ej
this comes down to a lexicographic ordering if in each E € F(I) the
elements are arranged in decreasing order. We agree that a subring of B

always contains the unit element 1 of B,
Proof of (1.3).

Let <ei>iel be a sequence of elements of B, indexed by a well ordered
set I, such that B, as a subring of itself, is generated by

fe,|ie1}. For Bew®(T) we put

dE = HiEE e, € B,

in particular d¢ = 1. Lemma (1.3%) clearly follows from:

Lemma (2.9). Define T < F(I) by

T - {BEeF(I)|d, is not in the I, -linear span of
?dE,[ E1e P(I), B'<E}}.

Then {a,|EeT} is an S-basis of B.

The proof of lemma (2,9) is by induction on the order type of I,
If I-¢ then B = {0}, 7=¢ or B =w,, T-{@] and the assertion of
the lemma is easily checked. If the ord;r type of I 1s a limit ordinal,
then B is an ascending union of subrings corresponding to beginning
segments of I, and the assertion of the lemma is immediate from the
induction hypothesis. We are left with the case the order type of I is
A+ 1 for some ordinal A,

Let k Tbe the largest element of I, We put J = I\ {k} and e=e, .

k

The subring of B generated by fei ie J} is denoted by BOw

Let T,,0,cF(J) be defined by:
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() | telusett.
Since J has order type A, the inductive assumption shows :

{a

e m
0 Ee T

1} is an 5 - basis of Bo‘

Hence we can rewrite :

(2.10) T, = {Ee;F(J)) ed, 1is not in the ¥, -linear span of
B, U led,, |BreF(3), B' <R},

~

. . 2 . .
As a rTing, B 1s generated by BO and e, so e =e 1impliles
e

Bo" Here eBO is a Boolean ring with unit element e, although



it is not a subring of B if e# 1. Clearly, B, ﬂeBO is an ideal of B .
Let B' = eBO/(BO NeB_ ) . Since the function g:B = B', g(b) =

= (eb mod(BO ﬂeBO)), is a surjective ring homomorphism, we have a sequence

<e§)j€J = <g(ej)>je3 of ring genefators for B'. Applying the induction
hypothesis to B!, we find that {g(d.) | Ee Tt} is an S -Dbasis of B',
where

T = {Ee 7(J) | g(d;) ic not in the T, - linear span of

gg(dE'>l Brer(3), 81 <ull.
By definition of g, we have

T - {Ee F(J) | edy, is not in the IF, - linear span Of

(B, NeB,) U ledy, | E'eF(7), E'<E}}.

Comparing with (2.10) we see T'=T,. S0 we know

{edE mod(B_NeB ) |EeT,} is an 8 - basis of B /(B NeB.) .

Since

fay et - f{ag|mer,}ulea |Ben,}

1
it now suffices to prove the following lemma :

Lemma (2.11). Let U, be an S-basis of B , and let T,ceB  Dea
subset which under the natural map f:eB_ - eBO/(BofleBo) maps bijective-
1y onto an S - basis of eBO/(BO{WeBO) . Then U,UU, isan 8-basis of

B +eB .
(@] ]

2
Applying lemma (2.5) to f eB, - eBO/(BOfTeBO) and A = (BO(\eBO)lJUz

Proof of (2.11). It is clear that U, UU, is an T, -Dbasis of B +eB .
T—— <

we find

((B, MeB ) UT,)" = eB_,

and since
B NeB ¢ B = UY
o) o} o) 1
it follows that

eB_ = ((B, NeB ) UT,)" c (UﬁLJUZ)* = (U, UT)*.

Also

1 ¥ | *
B, = U} (U1\JU2)

and application of (2.4) to U = (UWLJUO)% ives immediately

|

0

. 1o ¥
B +eB, C <U1xJU2)

so U,UU, is an S-basis. This proves (2.11), (2.9) and (1.3).



3. S ~bases and N - bases

<

We first prove that every S - basis is an N -basis (1.7).
Let U ©be an 3 -Dbasis for B, let H CﬁZ[B] be the subgroup generated
by {[u]f weU}, and let VT = {x ¢ B| [x]e ). Clearly, U U {o}c v.
Also, for x,y € B we have in 7Z[B]

[x] + [y] = [x+y +xy] + [xv],
so if three of the elements x, y, Xy, X+y +xy belong to V, then so
does the fourth one, Now the definition of U® implies TV,
But U*=B, so V=B, From this it follows easily that H =%[3], i.e.
f[u]! u € U} generates EZ[B] ag an abelian group., It remains to show
that i[u]t u € Uf ig linearly independent over 7% . Suppose we have a

relation

L nfu] =0, n_ €%, n_ =0 for almost all u,
n_ /4 0 for some u.

u
Since %Z|B] 1is torsion-free, we may assume that at least one of the n
is odd. Then

> (n_ mod 2),u = O
uelU

is a nontrivial dependence relation of U over ]F2, contradicting that

u

U is a basis. This proves proposition (1.7).
We next study the converses to (1.6) and (1.7).

Let B be a Boolean ring. If dim B > 2 , then there is an xe B with

x£0, x#£1, and for this =x there is an isomorphism of rings

B =3/xB X B/(1+x)B = B, B,

where B B are nonzero Boolean rings., By induction on k it follows

1772
1
that if dim B > k¥ (ke Z, k>0), then B Einf1 Bi for certain nonzero
Boolean rings B, (1<i<k).
If dim B = k 1is finite then every Bi is one~dimensional, so B EIFSO

In this case Z[B] ~z¥ . A subset

fe. = (e.).F

1 Jj=1

\

e. . e TS | 1< i< x]
ij 2 - =

is a basis if and only if

(3.1) det((eij>1§igjik) 1 e,

and it is an N -basis if and only if the matrix



i i - - 7 J
eij>1§;,j§k’ el - 1e%Z if ey = e, ,
el . = 0eZ 1f e, . Celt,,
1] ij 2

M-

i

(this matrix has coefficients in % ) satisfies
det(M) = +1.
Of course, (591) is equivalent to

det(l) is odd,

Proposition (3.2). Let B ©be a Boolean ring. Then every basis of B is

an N - basis if and only if dim B < 3.

Proof, "If":; Let M be a k Xk-matrix with coefficients 0,1 in .

Applying the Hadamard determinant inequality to a suitably chcsen
(k+1) x (k+1) -matrix with coefficients -1, +1 we find [of. 2]
A
ldet(m) | < 2“k,(k+-1)2<k+1>0
If k<3, it follows that

[det(M)| < 2,

so det(M) is odd if and only if det(M) = +1. This proves the "if" - part.
/
"Only if": If dim B> 4, we may assume B = Hjj4 Bj’ where the Bj are

nonzero Boolean rings. Let U %be a basis of B containing the four
elements e, = (1,0,0,0), e, = (0,1,0,0), e (0,0,1,0) and
ey = (0,0,0,1) . Replacing e, by 1+e, = ( 1?1,1)-+ei for 1<i<4,

we get a new basis U', which is not an N - basis since the subgroup of

1l

5
Ty

%Z[B] generated by f[u*]]u’e U'! has index 3 in the subgroup generated

by {{u]] weUl. This proves (3.2).

Proposition (%.3). Let B be a Boolean ring. Then every N- basis of B

is an S - basis if and only if dim B { 5.

Proof, "If": Let B Efﬁg‘9 k<5, and let UcB be an N~ basis.
We have to show that U is an S -Dbasis. If wu,v ¢ U satisfy uv=v,
uffv, then replacihg u by wu+v obviously does not change the problem.

Also, this replacement lowers the number of extries 1 in the matrix

ko Lk . -
<eij>ﬂgi9j£k’ where U = i<eij)j:1 € EZ’ 1i3m§k}° We conclude that we
may assume
(3.4) if u,v e U, u4 v, then uv £ v.

A direct search shows that for k<4 +the only N -basis U satisfying
(3.4) is the trivial basis corresponding to the k Xk identity matrix.
For k=15 there are three types of N - bases satisfying (3.4), given by

the three matrices



(10000 011 1N 110 0 0)
01000 100 1 10110
00100 10010 01101
00010 10100 01011
o0o001, (11000, 001 11].

It is easily checked that each of these bases is an S -~ bagis, This proves

the "if" - part,

"Only if'" : First we treat the case B :]Fgo Then an ¥ - basis U 1is

given by the rows of the matrix

111000
110100
011100
(3.5) 010110
001101
1010 1 1),

But U 1is not an S - basis, since UY = vuU{o0}.

In the general case dim B > 6 we may write B 35H3f1 Bj , where each Bj
is nongero. Let M., be a maximal ideal of B, (1< j<6). Then

J J
Bj = thj(1—+Mj), S0 Mj generates B, as a subring of itself. Using
lemma (2.9) one easily sees that Bj has an B - basis of the form

{11 u U, , where T, is a basis of M..

J
Combination of these bases yields an S -basig of B of the form
U U le|1<i<6}, where U is a basis of ‘M:Hj61M. and e, =
6 6 . T o .
<eij)jz1 € Hj:1 Bj’ ey = 1 for i=3, eij::O for 143 (1<1,5<6).
Replacing feif 1§_i§_6} by the rows of matrix (%.5) we get an N - basis

V of B which is not an S - basis since
T < (V+N) UM;BQ

This proves (3.3).

Remark. Using the notations of lemma (2.9), we put

T = {B ¢ F(I) | [d;] is not in the % - linear span of
{[dE,] | B e F(I), B' < El}.

Clearly ToT, . ¢.M. Bergman |1, theorem 1.,1] proved that de B e TO} is

an N -basis of B, But by (2.9) {a,|EeT! is an S -basis of B, and

since different bases can have no inclusion relation, it follows that

T::TOo 50 the N - bases constructed by G.M. Bergman are actually ©S - bases.
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