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Introduction.

For a positive integer m , let L denote a primitive m~th root
of unity. By ¢ we mean the Fuler ¢~function. In this note we prove

the following theorem:

Theorem. Let  o{m) <€ 10, m # 16, m # 2L, Then Ziﬁgm; is euclidean for

the usual norm map.

Since ZZEng = Zﬂ[égmf for m odd, this gives eleven non-isomorphic
euclidean rings, corresponding to
m=1,3, 4,5, 7,8, 9, 11, 12, 15, 20. The cases m = 1, 3, b, 5, 8, 12
are more or less classical [3, pp. 117-118 and pp. 391-393; 10; T,
pp. 228-231; 5, chapters 12, 1L and 15; 61 07 . The other five cases are
apparently new.

For m even, the ring % ch} has class number one if and only if
o(m) £ 20 or m =70, 84 or 90, see 81 . @0 there are exactly thirty
non-isomorphic rings Zﬂ[ij which admit unique factorization. If some
generalized Riemann hypotheses would hold, then all these thirty rings

would be euclidesn for some function, possibly different from the norm

map L1111 .

Our notations are mostly standard. For Mo tm9 Fm and o see
section 1. By an overhead bar we denote the automorphism of Q(Qm) which
sends L to C;1, Since the Galois group of Q(Qm) over @ 1is abelian,

parring commutes with all automorphisms, traces and norms which we shall
consider. This trivial remark will be constantly used without further mention.
If we view Q(Qm) as a subfield of @, then barring is just complex con-

jugation. The end (or absence) of a proof is marked by 1.

§1, The Gauss measure.

Let m > 1 be an integer, and let tm:Q(Cm> + () denote the trace
function tm(x) =L o(x), the sum ranging over all automorphisms o of
al{z ). The Gauss measure umzm(cm) » @ is defined by um(x) = tm(xx)9 ef.

m T

[3, p. 395; 11 .

(1.1).(a) The function o is a positive definite quadratic form on

the O-vectorspace Q(Cm).

(b) For every real number r ‘there are only finitely many elemeuts
v € ZZEKml for which um(y) <r,

(c) For every x € Q(Cr) there is a v € zzfcmﬁ such that

il

um(x+y) < um(x+z) for all z € Zlg |



Proof.{a) is evident from u}(x) = ZU o(x)s(x), and (b) follows from (a)
since ZngmJ is a lattice in Q(gm).
Finelly, (¢) follows from (b) since /i satisfies the triangle inequality. [l

Let the fundamental domain F = be defined by
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Fm = {X € CQ( zm) ; Um<x+y) >

Then (1.1)(¢c) can be restated as: Fm + Zlfcmi = Q(cm).

A real number c¢ is called a bound for FW if  p(z) £c for all X e me It is

m

easily seen that such c¢ do exist. Clearly, there is a smallest bound for Fm,

which is denoted by c. Tt is not hard to prove that um(x) =c for scnme

w2 SO that C is rational but we shall not need this. A bound c¢ for

F is called usable if for every x € I satisfying um(x) = ¢ there is

i ———— Ll

a root of unity u € ZZ[CWX such that um(x+u) = ¢, The use of usable hounds
fas il

will become clear in the next section. Note that every c¢ > c is a usable

x € F

bound, since no x € F_ satisfies

. um(x) =c>c.

§2, The euclidean algorithm.

Let I =T : Q(Cm) +> @ be the norm function Nm(x) =1 o(x), the product

ranging over the ¢(m) automorphisms o of Q(gm), For x € Z,[Cm]\{O} we ‘have

()] = [Zi[gm}/ Z‘[CWJ x | . We call Z [2_:m"1 cuclidean for the norm if for

every a, be Zlz 1 , Db # 0, there are q, r ¢ Z[{r_1 such that a = gb+r
pis 3
and |N(r)] < |w(»)| .

Writing x = ab and vy = -q, ve find, using the multiplicativity of the norm:

(2.1). The ring %[z 7 is euclidean for the norm if and only if for every
Lih

X € Q(Cr> there is an element v e % [ij such that Im(x+y)| < 1.0

il

(2.2). For x e Q(g_), we have
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)2 < oy v

m
he equality sign holds if and only if xx ¢ Q.

=

(1

Procf. Im(x) ]2 = 1(x)° = HGOW(X) = Wxx) = 1_ o(x)alx).

If we view Q(gm) as a subfield of @, then o(x)o(x) is a nonnegative

real number for all o. Using the arithmetic-geometric mean inequality we find

i O(X)O(X) < ( (1> 5 G(J\:)M)‘ﬁ(m) - ( (1) u (X))Q‘)(m).

a ¢im m

The equality sign holds if and only if 211 the o(xx) are equal, which is

the case if and only if =xx € @ . [



Remark. From (2.2) one easily deduces: for x e Z[z 1, x # 0, one has

pm(x) > ¢(m), the equality sign holding if and only if x 1s a root of unity.

(£.3). Lemma. Let x e @(z_) be such that xx = (x+u)(x+u)= 1 for some root

of unity ue Zlz 1 . Then x ¢ Zﬁ[cmj
Proof. Put vy = xu, then yy =1 and y +y = -1, so ¥ is a primitive third
root of unity. Then ¥y € Q(Cm) implies that m 1is divisible by 3, so '

a : ’ M" — - i Wg r_.
v € Z.[ch and x =yue Zlg 1. i

(2.4). If ¢(m) 1is a usable bound for F_, then Zlfcm] is euclidean for the norm.

Proof. Let x € Q(cm) be arbitrary. We have to find an element ¥ € Zﬁ[gmf

such that

W(x+y)| < 1. By (1.1)(c) we may assume X € Fm. Then

UF(X) < ¢{m), since ¢(m) is a bound for Fm.
L 1

Tf the inequality is strict, then |N(x)| < 1 by (2.2), and we can take y = 0.

If the equality sign holds, then um(x) = um(x+u) = ¢(m) for some root of unity

il

u € Zﬂ[cm], since ¢(m) is usable,

Then
li(x) | < (é(;) um(x))¢(m) = 1
iN(x+u)l2 < (ETéT um(x+u))¢(m) = 1,

If at least one inequality holds strictly, then we can take y =0 or ¥y = u.
If both equality signs hold, then +% and (x+u)(x+u) are raticnal, by (2.2).
Morcover, l(xx) = 1, so we have xx = 1, and similarly (xbu)(x+u) = 1.

Using (2.3) we find x € %Ziami , which contradicts x € Fm since x # 0.0

§3. Estimating the fundamental domain.

(3.1). Let n be a positive divisor of m. Then

C C
jif) I

S —

4(n)°
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6 (m)”

c 18 a usable

Moreover, if ¢ 1is a usable bound for an then
e

bound for Fmo

Y

The proof of (3.1) makes use of two formulas. Let t:Q(Cw) - Q( n) dencte
the trace function of the field extension Q(Cr) c Q(cm), and let
L

. ‘ ¢{m)
= Fa( . P AN
a LQ\CM) “ q?,((:n)} ¢(n) °



Proof of (3.1), assuming (3.2) and (3.3).

; . 2
Let x e F_ be arbitrary. We have to prove yu (x) <d el

L il

Applying (3.2) to vy € & Ecn] end looking at the definition of ¥

we Tind lt(x) € Since also  X. gi € Fm for all J € %Z , we have

d n’

b

in the same way é-t(x. Ci) e F_. Therefore
J L 42 1 J . 42
un(t(xa zm)) d '“n(d t(x. cm)) < d%.c
i)
for all j € % , and using (3.3) it follows that um(x) < da.cn.

This proves the first part of (3.1).

Next assume c¢ 15 a usable bound for Fpg and let x € Fm satisfy

Um(x) = dz.c. Then from the above reasoning we see C = c, and
1 J . , . )
- 1t . = = 1 . Laxe = o

Un(d (x Cm)) c, =c forall je % . Take J = O

Since ¢ is a usable bound for Fn’ there ig a root of unity u € wacnj
such that un(é~t(x) + 1) = c. Applying (3.2) with y =u we get

e . - 5 5
um(x+u) = um(x) = 4.c, which proves that d“.c is a usable bound for F . O

Proof of (3.2).

au (Tex) +y) - u (3 8(x)) =

1 e
2.t (3 oGy + § @y + 3

Y ) . + ()
t (t(x)y) + t (t(x)y) + d.t (yy)

il

i
™
<

tn(ﬁ(x{r)) vt (b)) + t (t(yy))

£ (xy + oy + vy)

(x). M

i

4o -
um(x y) - ouy



Proof of (3.3). Let G be the Galoisgroup of Q(Cm) over Q(cn).

In the computation below I _ and I_ refer to summations over G. We have
o T

m . J R ( J
Zi=1 w (t(xz: ) Tiz1 HnlZg olxz:))

=t (5, 5 o(x)r() (] (ale )ele

. -1
Let ¢ denote the m~th root of unity o(z )tlg ) . Then g = 1
0,T A

if and only if ¢ = 1, and

m ] .
J = ( C
Zj=1 Lot 0 +E co,T 7
=om 1 =1,
m 1f ga,r
Hence the above expression becomes
tn(ZG o(x)o(x) m) = m tn(t(xx)) = m,tm(xx) = m.pm(x)

which proves (3.3). [

§h., Proof of the theorem.

Explicit consideration of the case n = 1 shows that c, = %- is a

-~

1
usable bound for F,. Then %‘ ¢(m)° is a usable bound for F , by (3.1). If

(1) §(n) =

1 . .

then ﬂ‘¢(m)2 < &(m), and ¢ (m) is a usable bound for F . By (2.4) it follows
thet the ring %[z 1 is euclidean for the norm if (L.1) holds. This gives us
exactly the cases m = 1, 3, b, 5,8, 12 which were already known. To get

new cases we use the following result, which will be proved in the next section.

(L.2)., Let n be a prime number. Then c = =3 and this is a usable

bound for Fﬂ

ow suppose that m has a prime divisor n such that

2,(n=1)

(4.3) b(m) < )

Then a usable bound for Fm is given by

@(M)d . = ¢<m)2P ' n2w1 - ¢(m)2(n+1) < olm)
s(n)° P (n-1)® 10 12(n~1) |



Lo, -

il

so Zi{r 1 is euclidean for the norm, by (2.L).
3)

For which m, n dces (kL.

o]

hold? In any case n’m implies s(m) = 6(n) = n-1
56 n+1 £ 12 is necessary. For n = 2 we get  ¢(m) < b, which is (k

L.1).

3 we have y(m) < 6 which gives us the new case m = G.
1)

it

For n

15 and m = 20,

For n =5 we find ¢(m) £ 8 which is satisfied by mn
For n=7T and n =11, finally, m = n satisfies (k.3). This proves the

theorem, up to (4.2).

§5, Determination of the bound in a special case.

Let n be an integer 2 2, and let V be an (n-1)~dimensional

T ~vectorspace with generators e 1 £ i <n, subject only to the relation

n S = S : e < 4 < o O n = = n
Zi=1 € 0. So for x;, ¥; € R (1 <1i<n) we have Zi=1 ;e Zi=1 yies

°

if and only if X =¥y F Xj - yj for all 1, J
We define a positive definite quadratic form Q on V by

_ 2 ! )
Qlx) = 21£i<jsn (Xi - xj) ) x = Zi=1 X, € V.

Let ( , ): Vx V> R denote the symmetric bilinear form induced by Q:

(x,y) = 3alx+y) - alx) - aly)).

We have
(x,x) = Q(x) for x eV,
(ei, ei) =n -1 for 1<ic<n,
(ei, ej) = - for 1 <1i<J<n.
Let L © V be the subgroup generated by {ei ! 1 < i < n} . Clearly,

L is a lattice in V. We put

F={xeV ! olx) € Q(x~y) for all y e L}
= {x eV f (x,y) < 2a(y) for all y e L}.
Since I is compact, § assunes a maximum ¢ on V. Ve are going to prove:

(5.1). The set of points x ¢ F for which @(x) =c 1is given by

1 ) . . .
(5.2) {E 2221 e (i) E o is a permutation of {1, 2, ..., ntt .

Moreover,

O

_n =1
T I

We prove (5.1) after a series of lemmas. At the end of this section we show

how (5.1) implies (k.2).

e. = e, € L.

If A is a subset of {1, 2, ..., n}, then we put Z%EA ; )
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We call A proper if ¢ # A # {1, 2, ..., n} .

(5.3). Lemma. Let y e L be such that there is no A c {1, 2, ..., n}

with y = e,. Then there is an element =z = + e. ¢ L such that

J
Qlz) + Qly-z) < Qly).

. I n
m, e, with m, € % . Using Zi“ e, = 0 we may assume

Proof. Let y = zfy.ll(~ o

0<1I m. £ n-1, For z = i‘ej we have
3aly) ~ alz) - aly-z)) = (y,2) - (z,z)

m.) - (n=1).

=1 71

= + n. o L
*A(nwj

(%

If this is >0 for some j and some choice of the sign we are done.

So suppose it is <0 for all j and for both signs. Then for 1< j <n

we have
. < X5 om. + (n=1) € 2n-2 < 2n
J 1=1 1
nm. = 22:1 m, = (n~1) Z2 ~n+1 > -=n

S0 mj is 0 or 1 for all J, contradicting that y has not the form eA.D

FOt—

(5.4), Let x € V. Then x € F <= (x,e,) < Q(ep) for all A< {1, 2, ..., n}.

—— A L
Proof. => is clear. <= : we know

(x, eA) < %Q(eA) for all A< {1, 2, ..., nJ}
and we have to prove

(x,y) < 2a(y) for all y € L.

This is done by an obvious induction on Q(y), using (5.3). 0

(5.5). Let X € F  be such that Q(xo) = ¢. Then there are n-1 different

proper subsets A(i) < {1, 2, ..., n} , 1 <1 <mn-1, such that x_

.)

is the unique solution of the system of linear equalities

P2

(5.6) (x, eA(i>) = *Q(eA(i))s 1 <1< n-1,

Proof. Let
1

s={ac{1,2, ..o,nb | (x,e)=3iale)},

then we have (x_, e,) < 3Q(e,) for all A< {1,2, ..., n} , Ad S,

If the linear span of {eA | A ¢ 8} has dimension n~1, then there are

}
n-1 subsets A(i) ¢ S such that e - i < n-1} is linearly indepen-

~—
N
A

dent over R . Then clearly x_ is the unique solution of (5.6), and each



# 0.

A(i) 1is proper since e, .
Therefore assume that the linear span of {eA | 4 ¢ 8} has codimension 2 1

in V . We derive a contradiction. The subspace

{z ¢ V J (z,eﬁ) = 0 for all A e S}
=Y
has dimension at least 1, so for some z ¢ V, z # 0 we have

(z, e,) =0 for all A e S.

A
Replacing 2z by =z , if necessary, we may assume

(5.7) (xo, z) = 0.

Finally, multiplying =z by a sufficiently small positive real number wve may

assume

(z, eA) < %Q(QA) . (XO, eA) for all A c {1, 2, ..., n} , A ¢ S.

Then for all A < {1, 2, ..., n} we have

) < %Q(GA)

X + z, e
( o) > TA

so x +zeF by (5.4), But using (5.7) we find

Q(xo +z) 2 Q(XO) + Q(z) > Q(XO)

which contradicts our assumption Q(Xo) = ¢ = max {Q(x) | x e F} .0

(5.8). Let X A1), ..., Aln=1) be as in (5.5). Then A(i) < A(J) or

A(3) € A(L), for all i, J, 1 <1 <] £ n=-1.

Proof. Fix i and J, and put A = A(i) and B = A(j). Let C = A\B and
e

D=BW. If C=¢ or D=¢ we are done. So suppose C # ¢ # D. Then Cn D = "}

implies
(ecg ey) = - lc] . Ip] <o
This is equivalent to
(epnpe Caun) = (ey0 o)
Using enn ¥ S T Ca + e, we find
(x5 epnp) * (xg eup) = <%5 2, )+ (x, ep) = a(ale,) + Qley))

- ( )

€anB® CAUB

il
!
O
~~
@
=
+
(6]
o
~
1
—
[o]
e
e
D
os]
~—
™
O
—
{
I=
po
t
0]
=
(e
lus]
~—

[

= 7

. 1
Q(‘AnB) * 2Q(eAuB)°

L~

So for X =An B or for X = A u B we have (§feX) > %Q(ex), contradicting

e F. [



Proof of (5.1). Let x €F satisfy Q(XO) =c, and let A(1),
{a(i) | 1 <1 s n-1}

From (5.5) and (5.8) we conclude that
of

ordered by inclusion. This is only possible if after

be as above.

n-1 proper subsets of {1,

N

is a system oy N}

g o o

of the vectors e and the sets A(i) we have
A(L) = {1, 2, ..., i} for 1 < i € n-1.
By (5.5), ve have
i 2 = 1 = < 3
Ej=1 (xo, ej) = 2Q<EA(i))9 for 1 £ 1

n

Writing X, = Z? X.e. 1n such a manner that Zﬁ=1

=1737J
= R > = I, (n- A
(xo9 ej) nx; Also Q(aA) lal . (n
E% X, = ~l-i (n-i) 1< i< n-l
J=1 J 2n ? ’
?m x. = 0,
=1 J
Clearly, this implies
nx, = T(n+1) - i, 1<1i<n,
1 n .
o T3 Ti=t Cne1-i

We renumbered the ei
is in the set (5.2). Since there is at least one X,

it follows by reasons of symmetry that

satisfies x € F and Q(x) = c. Finally, we have
o]
o ='lu 5 (in.)E - n-1
2 Misi<jsn J 12

This proves (5.1). [0

Proof of (4.2). Let n be a prime number. The

)

conversely every element x of

d-vectorspace

vee, Aln=1)

which is linearly

suitable renumbering

i = 0, we £ind

) so our system becomes

at one point in the argument, so 1t follows that X

¢ T for which Q(Xo) =c,

(5.2)

is

Q(cn)

generated by the n elements C;, 1< 1 £ n, subject only to the relation
?=1 C; = 0. For rational numbers X.p 1€ i < n, we have
n iy o n .n i-dy

O N R R

- n 2 n n -

= (n-1) Ziﬂ? - Zi=1 ZJ=1 *5 3

— Y=

= igicjen ()T
All this implies that V can be considered as R® a Q}(z;p)9 by ei = 1@;;;3
and that @ 1s the natural extension of oy to V.

We have L = %;[er , SO Fp
4

= F n Q(cn). Applying (5.1) yields:
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2

. -1
(5.9). Let n be prime. Then c = ETE—-S and the set of elements x e F
which u_(x) = is given by
for which pn(X) c  is given by
{l n . O(l) I C RN Is] 1
” 2131 1z, | is a permutation of {1, 2, ..., n}}. [
To prove (L.2), we need only check ussbility of c . So let x e F_
: . - 1 n . o(i) ® .
satisfy un(x) =c . Then x = 2. . 1z, for some permutation
o of {1,2, ..., n} . Hence
( -1 . i . i~
‘-z o(n) _ 1 ,n-1 ir ofi) _ 1 T o(i=1)
n n 1=0 n n =1 n
where o(o) = o(n). By (5.9) it follows that un(x - Cns(n)) =c .

This proves that c is
This completes the proof

Remark. The result (5.1)

A

]

usable.

of the theoren.

can also be described as follows. Let T =1R /Z

ve a circle with circumference 1, and for t,, t, e T Iet d(t1, t2) be
[

the length of the shortest arc between t

q(x) = min

Then

max {q(x)

the maximum being attained at those

e T which divide T

This follows from (

X
1

2

.
1

n

n Zixi

for real numbers 1

']9

§6, Remarks.

(6.1). Let n

m also divides n. Put

-

7t J-basis for @iz ]
n m

( g0
Wy i=0
cf. [1, (3.16)7. ALl thi

(6.2). If n and

in (3.1). [0

Lod

CREEEY

be a positive divisor of m

B n n
1 and tg. For x = (Xi)i=1 e TW let
~y
{z?=1 alx;, £)° | t e 1
n n2-1
m =
| xe ™ 3= J5 s

n-tuples of points

intc n equal parts.

5.1) and the identity

(r

= N, . . .
1€1<J<n 1

r
n

.

such that every prime which divides

n_ ¢(m) 1

Qe .
= et Me I3
d == sn) - Then {1,Cm, cees T } is a
and a straightforward computation (e.g. using (3.3)) shows
i A1
) = . . X. . C
LT T I w (), for x; e oz ),
. ‘e - 320 . )
s 1mplies c, T 4, 1.e

m have the same prime divisors, then the equality sign holds
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2
3 LT . ﬂ‘ b - 2 M'j pal p - oy 5 RPN e k 4-
Since we know C, = and CZp = LT§M for 7 = 3 prime, it follovs that
ct=22t“h9 for t e Z,t =1,
2
Ciu = 1322t—h' pgu“g.(p2—1), for t,ue%, > 1, p =3 prime.
2 pu 3

(o)

In particular c, . = 16 > ¢(16) =8 and c,y = 10§-> ¢(2h) = 8, so our

method does not apply to the cases 16 and 2k.

I do not know the exact value of - if mw has more than one odd prime

divisor. But using different methods I can prove the following partial converse

to our theorem:
(6.3). Suppose ¢(m) > 10 or m e {16,24k} . Then ¢ > o(m). O

Of course, (6.3) does not imply that the only values of m for which
Zﬂ[cm] is euclidean for the norm are given by the theorem. In fact, I know
of no principal ideal domain % f;m] which is proved to be not euclidean for

the norm.

(6.4), The ring ZZ[C11 + §1:1] ig euclidean for the norm L1 .

We show how this can be proved by our methods. Note that an element
11
i=1

IA

) i : .
b x5 Ty € Q(§11), with x; € @ for 1< i 11, belongs to

A

Q(z;11 + §1;1) if and only if X, =X . for 1< 1 10.

11-1

1 . e
} Dbe arbitrary. We have to exhibit an

Let x € Q(gH T,
element y e x + Zﬁ[g11 + c;l] for which |N'(y)| < 1, where
-1 ‘
e Q(CT1 + C11) + () is the norm.

From our proof that %‘[c117 is euclidean it follows that there is an

element v € F11, y e x + Zlr,, 1, such that {N(y}l < 1 3 here

11
= . S Tt + o :v11 i 3 4
N=DN,, : Q(§11) > @ is the norm. Write y = I._, ¥;C} with y.e @

11
for 1 <1< 11, From y € x + %ﬁic11] we deduce ¥y, - ¥4 € % , for

< . ~1 i 10
1 <1 <10, Also yeF S0 (yi - J11~i’ 11|J11(y(5H - C11))ig 7 by § 3.

117

1
Hence v. =7y,, . for 1<1i <10, s0 ye @z, .+ Cm1). This implies ¥y - X €
i” V11 K EEMEE
. -1 , L . _ 5o .
alz,, + 2,4, )n Zlg,, 1 = Zle,, + %, 3, and since o (y)] = u)|® < 1,

we find that y satisfies our requirements.
An immediate generalization of this argument yvields:
if n < 11 1is prime, then any integrally closed subring of Zi[cn] is

. . -1 ;
euclidean for the norm. The ring Zi[cg + T, 1 can be treated analogously.
9
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However , no new results are obtained in this way: the case of quadratic rings

is classical [5, ch. 141 , and more precise information on the cubic rings

Z g

1 T 9

-1,

+ 11 and % [g. + QOMTW can be found in [21 . I don't know whether

my method applies to the ring % f§15 + ;15 1, which was proved to be euclidean

for the norm in [L47 . Wote that the integrally closed subrings

N

ol

M+ 1/A51cmlizc. ] and #%[V/-51 < %[z, ] are not euclidean, since
15 20

they are not even principal ideal domains.

(6.5). Throughout this note we have used that complex conjugation commutes
with the other automorphisms of Q(Cm). This is not essential for our method.
If K is any finite field extension’of @, then the Gauss measure

i ¢ K> R, may be defined by uK(x) =1 fc(x)[zs the sum ranging over
the [K:Q] field homomorphisms o: K - @. Then the main results of §§ 1-3
carry over to the general case.

Some care is required in stating (1.1)(a), since u may assume non-rational

K
values. The fundamental domain FK and the smallest bound CK for FK are
defined in the obvious way, so that T = F and ¢ = ¢ ., But c_
I alz ) m alz_) n K

need not be rational, and there is not necessarily an element Xx € FK for

which uK(x) = c,. Writing R for the ring of algebraic integers in K, we

K°
can generalize (2.4) as follows.

(6.6) If [K : @} is a usable bound for F_, then RF is euclidean for the

[ S48 K"

.

norm. [J

The generalization of (3.1) reads:

(6.7) Let K the a finite field extension of @, and let me Z , m 2 1.
Tet I be a field extension of the form L = K{o), where ot = oa e RY°
~ b
Suppose there is a real number r > O such that ic(a)[ “ =r for all

field homomorphisms ¢ : K = ¢. Then
-

_a® -1 i/m
(6.8) ep S oy Zi=o T R
where d = [L : K1 . Moreover, if Cy is a usable bound for FK, then

the right hand side of (6.8) is a usable bound for FL. Finally, if
{a’ | 0 <4 <m=1} 1is an RY—basis for R, (so that in particular & =
then the equality sign holds in (6.8).

The proof of (6.7) is analogous to the proof of (3.1).[

m),



The validity of (6.6) and (6.7) is not affected if the concept of a
"usable bound" (end § 1) is weakened as follows:
a bound ¢ for FK is usable if for every X € FK for which UK(X) = ¢
there exists a unit u € RK such that uy(x+u) = c,
Only the proof of (2.3) needs a small modification.

References.
1. J.W.S. Cassels, On a conjecture of R.M. Robinson about sums of roots of
unity, J. Reine Angew.Math. 238(1969)112-131,

2, H. Davenport, On the product of three non-homogeneous linear forms, Proc.
Cambridge Philos.Soc. 43 (1947)137-152.

3. C.F. Gauss, Werke, Zweiter Band, G&ttingen 1876.

L. H.J. Godwin, On Euclid's algorithm in some quartic and quintic fields,
J. London Math.Soc. L0(1965)699-T0k.

5, G.H. Hardy and E.M. Wright, An intpoductign to tﬁe theory of numbers,
oxford 1938, 1945, 19547, 1960 .

6. R.B. Lakein, Fueclid's algorithm in complex quartic fields, Acta Arith,
20 (1972) 393-ho0.

7. E. Landau, Vorlesungen iiber Zahlentheorie, Band 3, Leipzig 1927.

8. J.M. Masley, On the class number of cyclotomic fields, thesis, Princeton
University 1972.

9. J.M. Masley, On cyclotomic fields Fuclidean for the norm map, Notices
Amer.Math.Soc. 19 (1972) p.a-613 (abstract T00-A3).

10. J. Ouspensky, Note sur les nombres entiers dépendant d'une racine cinguiéme
de 1'unité, Math.Ann,§§ﬁ1909)1o9m112.

11. P.J. Weinberger, On Euclidean rings of algebraic integers, Proc.Symp. Pure
Math. 24, Analytic Number Theory, Amer. Math.Soc. 1973,
321-332.



