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Rat ional  Funct ions  Invariant 

under  a Finite  Abel ian Group  

H.W. Lenstra, Jr. (Amsterdam) 

Introduction 

Let k be a field and A a permutation group on n symbols x~ . . . . .  x,. 
Then A acts in a natural way as a group of k-automorphisms on the 
field of rational functions k(x~ . . . . .  x~). It is an old question, whether the 
field of invariants 

k(x l ,  . . . ,  x,) a =  { f ~ k ( x l  . . . . .  x , ) l g ( f ) = f  for all g~A} 

is purely transcendental over k or not, cf. Burnside, Theory of groups 
of finite order, second edition (1911), Ch. XVII. One usually calls this 
problem "Emmy Noether's conjecture" although Emmy Noether never 
stated that the answer would be affirmative [35-37]. 

Several positive results are known on this problem. Fischer 1-12] 
treated the case when A is abelian and k contains sufficiently many 
roots of unity. His result has been reproved [25, 7] and refined [32, 33] 
several times. If A is a p-group, where p = char(k)4: 0, then k(x~ , . . . ,  x,) a 
is purely transcendental over k, by [21, 20, 22, 16, 33]. Various groups 
of small order are treated in [35, 37, 41, 14, 3-5, 30, 31, 23, 46, 17]. 

Swan [44] and Voskresenskii [46] proved that Q(x~, ..., x.) A is not 
purely transcendental over Q if A is a cyclic group of order n=47, 
permuting x t . . . . .  x, transitively. An even smaller example is given by 
n = 8, cf. (7.2). Further results for abelian A were obtained by Endo and 
Miyata [10] and Voskresenski[ [47, 48]. 

Our main theorem [27, 19] gives a complete solution for the case 
when A is abelian and transitive. In this case we can index the x i by the 
elements of A such that g(xh)=x,~, for all g, heA;  we denote the field 
k({xglg~A})  a by k A. Before stating the main theorem, we introduc~e some 
terminology. 

Let p be a finite cyclic group of order rn with generator r, and let 
~,,~ Z [X] be the m-th cyclotomic polynomial. The ideal 45re(t) Z [p ]  c Z[p]  
(= group ring of p over Z) does not depend on the choice of z, and we 
define 

z(p) = z z [p]. 
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Then Z ( p ) ~ Z [ ( , , ] ,  where (,, denotes a primitive m-th root of unity, 
so by [26, Ch. IV, Th. 4] the ring Z(p) is a Dedekind domain. The group 
of units of Z(p) contains p in a natural way. 

Denote by k,yc, the maximal cyclotomic extension of the field k inside 
an algebraic closure. Consider a subfield K ~ kcy~t containing k for which 

(0.1) P r  = G a l  (K/k) 

and let p and s satisfy 

(0.2) p is prime, 2 + p # c h a r ( k ) ,  

Then we define the Z(pK)-ideal or(p s) by 

ct~(ps)=Z(pr) 

oK(p~) = ( ~ -  t, p) c Z(pK) 

is finite cyclic, with generator z r, 

sEZ,  and s>=l. 

if K + k(~vs), 

if K = k ( ( ~ ) ,  where t e Z  
_ _  1 is such that z K ( (v) - (p .  

This definition does not depend on the choice of z r. 

For a finite abelian group A, put m(A,p, s)=dimz/pz(pS-lA/pSA) 
(here A is written additively), and 

oK (A) = H aK (ps)m~A, p, s~ = Z (PK), 
p , s  

the ideal product ranging over all p and s satisfying (0.2). 

Let r(A) be the highest power of 2 dividing the exponent of A. 

Main Theorem. Let k be a field and let A be a finite abelian group. 
Then the field 

k a = k({xg ] g~A}) a 

is purely transcendental over k if and only if the following two conditions 
are satisfied: 

(i) for every intermediate field k c K c k c y c t  for which (0.I) holds, the 
Z(px)-ideal aK(A ) is principal; 

(ii) if char(k)+ 2, then k(~,~A) ) is a cyclic field extension o] k. 

Note that condition (ii) is satisfied if char(k)#0.  
Sections 1-5 of the present paper are devoted to the proof  of the 

main theorem. The idea is to use Fischer's result that /,4 is purely 
transcendental over l if l is a suitable cyclotomic extension of k. The 
"Galois  descent" problem which arises in going from 1 a to k A is discussed, 
in a more general setting, in Sections I and 2. Section 3 gives some useful 
technical information. The group A does not occur in these sections. 
In Section 4 we show that we may assume that char(k) does not divide 
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the order of A, and Section 5 contains the proof of the main theorem. 
Supplementary results are given in Section 6, and some corollaries are 
indicated in Section 7. 

The methods of this paper hardly exceed Galois theory and elemen- 
tary commutat ive algebra. From cohomology of groups we need some 
facts on H ~ and /~ - t ;  these results are easily proved from the explicit 
descriptions of H ~ and /~-1 given in [42, Ch. VII, VIE;  6, Ch. IV]. In 
the proof  of (2.6) we need that a projective module over an abelian group 
ring has a rank; but this will be clear for the modules to which (2.6) is 
applied. We shall use freely the theory of finitely generated torsion free 
modules over a Dedekind ring [18]. Finally, the proofs of some corollaries 
in Section 7 require some algebraic number theory. 

In the rest of this paper we write "rat ional"  instead of "purely 
transcendental". A field extension k c L  is called "stably rational" if 
there exists a field extension L c E of finite transcendence degree such 
that E is rational over both L and k. It is unknown whether "stably 
rat ional" implies " ra t ional"  [40, 9, 34]. 

The notations q~m, (m, Z(p) and k A have been introduced above. The 
characteristic of a field k is denoted by char(k), the degree of a field 
extension k c l  by [/:k] and the group of a Galois extension k c !  by 
Gal (l/k). For a prime p, a p-group is a group whose order is a power of p. 
The exponent of a group is the lowest common multiple of the orders 
of its elements. If a group n acts on a set S, then S~= {s e SIVa e n: cr (s)= s}. 
The action of ~z on S is called trivial if S = S ~ and faithful if for every 
ae:z, a:# 1, there is an s e S  with ~(s)aes. By a ~-module we mean a left 
module over the group ring Z [~], and we write |  and Horn, instead 
of | and Homzl~l, respectively. The group of units of a ring R with 1 
is denoted by R*. I f M  is a module and t is a nonnegative integer, then M t 
denotes the direct sum of t copies of M; the only exception is the definition 
of ar(A ) above, where we mean ideal power. Set theoretic difference is 
denoted by "-., and [S[ is the cardinality of a set S. The end or the absence 
of a proof  is marked by •. 

1. Permutation Modules and Rationality of Field Extensions 

Let :z be a finite group. A 7z-module is called a permutation module 
if it is free as an abelian group and has a Z-basis which is permuted by ~. 
For example, free :z-modules are permutation modules, and Z, with 
trivial :z-action, is a permutation module. 

Every permutat ion module is a direct sum of modules Z [n/:z']; here 
:z'~ :z is a subgroup and 

Z [~/~']  = Z In] | Z (as ~-module) 
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where :z' acts trivially on Z We call a n-module N permutation-projective 
if N O N '  is a permutat ion module for some n-module N'. One can 
take N r to be finitely generated if N is, cf. the proof  of (1.2). 

(1.1) Proposition. Let N be a permutation-projective :z-module. 7hen 
( t -  l (p, N) = H z (p, N) = 0 for every subgroup p c ft. 

Proof Since any permutation module over :z is a permutation module 
over every subgroup p c z ,  we may assume p=Tt. Also we may take 
N = Z [:z/n'], for a subgroup r t ' c  n. Then by Shapiro's lemma [6, Ch. IV, 
Prop. 2] we have HI(Tz, N)=HZ(:Z',Z)=O, and the proof  for /~-1 is 
analogous. D 

(1.2) Proposition. Let N be a :z-module. The jollowing statements about N 
are equivalent: 

(a) N is permutation-projective; 

(b) for every n-homomorphism M 1 ~ m 2 which induces surjective maps 
M~---~ MR for all subgroups p ~ n, the induced map 

H o m , ( N ,  M1)---~ Hom~(N, Mz) 

is surjective ; 

(c) i f  L is a z-module such that HI(p, L ) = 0  for all pc:z ,  then every 
exact sequence of rt-modutes 

13--~ L---~ M--+ N---~ O 
splits. 

Proof (a) ~ (b). We may take N = Z In/p] for some subgroup p ~ n. 
Then the functors H o m , ( N ,  - )  and ( - ) P  are equivalent, and (b) follows. 

(b) ~ (c). Let O---~L-~M---~N~O be a sequence as in (c). By the exact 
sequence of cohomology, the map M P ~ N  p is surjective for every 
subgroup p=rc. Applying (b) to M 1 = M  and M z = N  we find that the 
sequence splits. 

(c) ~ (a). One easily constructs a permutat ion module M over n and 
a n -homomorphism M---,N such that M P - ~ N  p is surjective for every 
p ~ zt. Let L be the kernel of M ~ N. The exact sequence of cohomology of 

O---~ L--* M--~ N--~ O 

and (1.1) show that HZ(p, L)=O for every pc :z .  By (c), the sequence 
splits, and (a) follows. 0 

Note the analogy with the well known characterization of projective 
modules as direct summands  of free modules. 

Let I be a field, M a free abelian group of finite Z-rank r, and l[M] 
the group ring of M over L I f M  is written multiplicatively and {bl . . . . .  br} 
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is a Z-basis  for M, then 

I [M] = l[b 1 . . . . .  b,, b f  1 . . . . .  b;-1]. 

Thus  we see that  l [ M ]  is i somorphic  to the ring of Laurent  polynomials  
in r variables over  l. It follows that l [M]  is a unique factorization domain  
with g roup  of units t [ M ] * = I * - M .  We denote the field of fractions of  
l [M] by I(M). This field is rational over l of transcendence degree r. 

N o w  suppose  that  7r acts faithfully on I as a group of field 
au tomorph i sms ,  and that  M has a ~-module structure. We make  
act on I [M]  by 

~C Z 2 r e ' m ) =  E <7('t'm)'~(m), for aETr, 
m E M  ra~M 

if 2,,~l, and 2,,4:0 for only finitely many  mEM.  The action is extended 
to l(M) by r~(ab-~)=c;(a)o(b) -1, for a, b s l [ m ] ,  and b + 0 .  

In T h e o r e m  (1.7) we give a necessary and sufficient condition, in 
terms of M, that  I(M) ~ be stably rat ional  over  1 ~, cf. [45, 10]. Theorem (2.6) 
states that  in a special si tuation this condition even implies that I(M) ~ 
is ra t ional  over  l". 

R e m a r k  that  I(M) ~ is rational over l" if and only if a certain torus, 
defined over P and splitting over  l, is rational over l ~, cf. [38]. This will 
not be used in the sequel. 

We usually write the group law in M additively, a l though M is a 
sub-Tr-module of the multiplicative group of l(M). 

(1.3) Proposition [43]. Let W be an l-vector space on which 7z acts 
semitinearly, i.e. W is a 7t-module and cr (2 w) = (a 2)- (~ w) for all a ~ rt, 2 ~ t 
and we  W. Then W ~ contains an l-basis for W. 

Proof  Put S = ( ~ "  ~r)EZ[Tt]. We show that S W c  W ~ contains an l- 

basis by proving  that  any /-linear function ~: W - , I  annihilating S W  
must  be the zero function. Fix such a ~b, and fix wE W. Then for every 
2~1 we have 

0 = q~ (s- ~ w) = y~ q~(G w). ~(x). 

By the linear independence of field au tomorph i sms  [2, Ch. V, w 7.5] we 
conclude ~b (a w) = 0 for all crs g. In part icular  4)(w) = 0, and (l.3) follows, 

(1.4) Proposit ion [30]. Let N be a finitely generated permutation module 
over ~. Then I(N) ~ is rational over P. 

Proof Let {xl . . . . .  x,} c I(N)* be a Z-basis  forN which is permuted by ~r. 

Applying  (1 .3) to  W =  ( ~, l" xi) ~ l ( N )  we find yl '  ' ' ' '  y ~ l ( N ) "  such 

I(y~ . . . . .  y , )=l (N) .  It follows that  I(N)"=P(y~,  . .- ,y,).  D 
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(1.5) Proposition. I f  N is a permutation-projective n-module, and 
O- -~MI-*ME-~N--~O is an exact sequence of  f ini tely  generated Z-free 
n-modules, then the fields t(M2) ~ and l (M 1 O N )  ~ are isomorphic over lL 

Proo f  The  field t(M1) is natural ly contained in I(M2). Let l(M1)*. 
M E c / ( M E ) *  be the subgroup generated by l(M1)* and M 2 . Consider  the 
exact sequence of  n-modules  

O~l (M1)* -~ t (M1)*  . M 2 - ~  N-+O 

where the map f :  I(M1)*. M2--*N is defined by 

f ( 2 . m ) = ( m m o d M l ) e N ,  for 2el(M1)* and m ~ M  2. 

By Hilbert  T h e o r e m 9 0  and (t.2)(c) this exact sequence splits. The 
resulting n -homomorph i sm N - *  t(M2)* easily yields a field isomorphism 
I ( M I G N ) ~ - I ( M 2 )  which respects the action of n, and (1.5) follows, 
Compare  [39, Prop.  1.2.2]. [3 

(1.6) Proposition. I f  N is a permutation module o~'er n, and 

O --~ M1--~ M 2 -~ N ---~ O 

is an exact sequence o f  f ini te ly  generated Z-free n-modules, then l(M2) ~ 
is rational over l(M1) ~. 

Proof  From  (1.5) we get I ( M E ) ~ - I ( M 1 0 N )  ~, and (1.4), applied to 
the base field l (Mt)  instead of l, says that I ( M I ~ N F  is rat ional over 
I(M1) ~. [q 

(1.7) Theorem [45, 10]. Let  M be a f ini te ly  generated Z-free n-module. 
Then l(M) ~ is stably rational over l ~ i f  and only if  there is an exact 
sequence o f  n-modules 

O---~M--~N2 --~ N1 ---~ 0 

in which N 1 and N 2 are f ini te ly  generated permutation modules. 

Proof  If O ~  M ~ N z -~  N 1 ~ 0 is an exact sequence as in the theorem, 
then I(N2) ~ is rational over both  1 ~ and I(M) ~, by (1.6). This proves the 
" i f "pa r t .  

Next  suppose l ( M F  is stably rational over l ~, so 

I(M)'~(xl . . . . .  xs) = P(Yt . . . . .  Y,+s) 

where {x~, ..., x,} is algebraically independent  over I (MF and {Yl . . . . .  Y,+ s} 
is algebraically independent  over l ". Let n act on 

l (M)(x l ,  . . . ,  x~) = I(M) | l(M)'~(xl . . . . .  x~) 

via the first factor. Put  

R x = l [ M ] [ x  ~ . . . . .  xs] and R 2 = l [ y  ~ . . . . .  y,+~] 
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inside the field l(M)(xl,  ...,x~). By [-44, L e m m a  8] there are nonzero 
elements  a leR  ~ and a 2 e R~ such that R 1 [ a (  I] = R 2 [ a ~ l ] ;  call this last 
ring R. L e m m a  7 of [44] tells us that  there are exact sequences of n- 
modules  

O - .  R * --~ R * ---, N I --~ O 

O-~ R~-+ R*--~ N2 ~ O  

in which N 1 and N 2 are finitely generated permuta t ion  modules, 
Replac ing  R*, R~ and R* by R*/I* R*/l* and R~/l* we get 

O--~ M ~ R*/I* ~ N 1 -*0  

0---~ 0 ~ R*/I* ~ Nz---,O. 

The  theorem follows. 

(1.8) Corollary.  Let M be a finitely generated Z-free n-module, and 
suppose HI(p ,M)=O for every subgroup p c n .  Then l(M) ~ is stably 
rational over 1 ~ if and only if M �9 N1 ~- Nz for certain finitely generated 
permutation modules N 1 and N 2. 

Proof (1.7) and (1.2)(c). I-I 

2. A Special Case 

In this section n is a finite abelian group, and l is a field on which n 
acts faithfully as a group  of field automorphisms.  If n" c n is a subgroup,  
then we call n '=n/n"  a factor group of n. The canonical m a p  n---,n' 
allows us to view every n :modu le  as a n-module in a natural  way. 

Let  p be a cyclic factor  group of n. Then there is a natural  surjective 
ring h o m o m o r p h i s m  Z [~] --, Z(p)  (see the introduction for the definition 
of Z(p)), which allows us to view every Z(p)-module  as a n-module.  
If  M is a n-module ,  we put 

F,, p ( M ) =  (M | Z(p))/{elements of finite additive order}.  

Then F,,p is a functor  f rom the category of n-modules  to the category 
of tors ion free Z(p)-modules ,  left adjoint to an obvious functor the 
other  way. 

(2.1) Proposition. Let S(n) denote the set of cyclic factor groups of n, 
and let n' be a factor group of n. Then there is a natural inclusion S (n') ~ S (n), 
and for every n'-module M we have: 

(i) 7f pES(n'), then F,,p(M) ~-F,, o(M) over Z(p);  

(ii) if peS(n)  but p(sS(n'), then F, ,p (M)=0 .  

Proof The inclusion S(n ' )c  S(n) is induced by the surjection n-- ,  n'. 
Asser t ion (i) is clear from M |  [n ' ]  ~ M .  We prove (ii). Since pr 



306 H.W. Lenstra, Jr. 

we can choose an element a~n, which has image 1 in n' while its image 
or* in p is 4= 1. Then a acts trivially on M, so 

(~* - ~). (M | O, 

where a * - I  is a nonzero element of Z(p). Since a * - i  divides some 
positive integer in Z(p), it follows that M|  is torsion, so 
F.,p(M)=0. 17 

This proposition says that F,,R does not depend on re, in a certain 
sense. From now on we will write F a instead of F~,p. 

(2.2) Proposition. Let N be a n-module, and M c N a  sub-n-module such 
that N / M  is a torsion group. Then Fp(M) is isomorphic to the image of M 
under the natural map N---~ FR(N), for every cyclic factor group p of n. 

Proof. Let J be the kernel of Z [n] ~ Z (p). Then for every n-module 
P there is a natural surjection P ~  Fp(P) with kernel 

{pePI3kEZ,  k4:O: k . p e J . P } .  

Since N / M  is torsion, we have 

{m~Ml3k~Z,  k#:0: k.  m~J .  M} =Mc~{neNl3k~Z ,  k4:0: k.  neJ .  N}, 

and (2.2) follows. 

(2.3) Proposition. I f  N is a permutation module over n, then Fp(N) is 
Z(p)-free for every cyclic factor group p of n. 

Proof. It suffices to treat the case N = Z [ n ' ] ,  where n' is a factor 
group ofn.  Then Fp(N)~ Z(p) or Fp(N)=0, by (2.1). 

(2.4) Theorem. Let n be a finite cyclic group, and M a finitely generated 
projective K-module. Then the fields l(M) ~ and l((~ Fp(M)) ~ are isomorphic 

p 

over l ~; here p ranges over the set of cyclic factor groups of n. 

The proof of this theorem is given at the end of this section. An 
analogous result is given in [10]. Compare also [11]. 

(2.5) Corollary. Let n be a finite abelian group, and let M be a finitely 
generated K-module of the form 

M = ( ~ M ~ , ,  

where each M,, is a projective n'-module, and where n' ranges over the set 
of cyclic factor groups of n. Then 

l ( M ) ~ l ( ( ~  Fp(M)) ~ over t ~, 
p 

with p ranging over the set of cyclic factor groups of n. 
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Proof Let re'= ~/~" be a cyclic factor group of ~. Applying (2.4) to 
the cyclic group ~', the module M~, and the field U', we find, using (2.1): 

I(M,~,)"'~I((~Fo(M,~,)) ~ over l ~. 
P 

Tensoring with I over l ~ gives an/-isomorphism 

I(M,,)'~I((~Fp(M,,)) 
p 

which respects the action of 7z. Combination yields an l-isomorphism 

l(M) ~- l (Q  Fa(M) ) 
p 

which respects the action of n, and (2.5) follows. 

(2.6) Theorem. Let 7~ be a .finite abelian group, and let M be a finitely 
generated z-module of the form 

M = ( ~ M , , ,  

where each M~, is a projective 7r'-module, and where n' ranges over" the set 
of cyclic factor groups of zc. Then the following three statements are 
equivalent: 

(a) the field l(M) ~ is rational over l~; 
(b) the field l(M) ~ is stably rational over l~; 
(c) for every cyclic factor group p of 7z, the Z(p)-module Fo(M) is free. 

Proof. The implication (a) =~ (b) is obvious. 
(b) =-(c). Since M is permutation-projective over ~, we can apply 

(1.8). Using (2.3) we find that for every cyclic factor group p of re there exist 
finitely generated free Z(p)-modules P1 and Pz such that Fp(M)OP1-~P2 
over Z(p), Since Z(p) is a Dedekind domain, this implies that Fo(M) is 
Z(p)-free, as required. 

(c) =~ (a). Let r(rc') be the rank of M~, over Z [zt'], and put 

N = (~) Z [zt'] r(,c). 

Let p be a cyclic factor group of r~. Then the Z(p)-modules Fp(M) and 
Fa(N) are isomorphic; in fact, by assumption and by (2.3), they are both 
Z(p)-free of rank ~ r(n'), the sum ranging over those cyclic factor groups 

z' of z for which p is a factor group of 7z'. Therefore 

OFp(M)~--GFp(N), 
p P 
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so I(M)"~I(N) ~ by a twofold application of (2.5). But t(N) ~ is rational 
over 1 ", by (1.4), and (a) follows. [3 

The remainder of this section is devoted to the proof  of Theorem (2.4). 
We assume that n is a cyclic group of order m with generator z. The set 
of positive divisors of m is denoted by E(m). For deE(m), the unique 
factor group of 7t of order d is denoted by n a. If C = E (m) is a subset, then 
we write q~c = ~ 4~a; for example, 4~Er X m -  1. I f M  is a n-module and 

d,EC 
C~E(m), we write Mc=m/~c(r  ) M, 

(2.7) Lemma.  I f  M is re-projective, and deE (m), then M~dt is permutation- 
projective over re. 

Proof The module ME(u) ~ M |  Z [=n] is ~ta-projective, hence a direct 
summand o f Z [ ~ a ]  t for some t eZ ,  t>0 .  B 

(2.8) Lemma.  Let M be re-projective, and C, C ' c E ( m )  disjoint subsets. 
Then there is an exact sequence of re-modules 

O--, Mc-* Mc~c,~ Mc,-* O. 

Proof The map  Mc~,c,--,M C is the natural one, and the map 
Mc---*Mc~ c, is induced by multiplication with q~c,(Z). For M=Z[Tz] ,  
exactness of the resulting sequence is easily checked. The general case 
follows since everything preserves direct sums. 

Let G(m) denote the set of  all equivalence reIations on E(m). For 
us G(m), we denote by [u] the set of non-empty equivalence classes of u. 
Let S(m)= G(m) x G(m) be the set of (u, v)eG(m) x G(m) for which 

(2.9) there exist deE(m) and De[u], such that E(d)=D, E(d)+l) and 
E v] = { E(d), D \ E (d), C[ C e [u], C 4= D}. 

(2.10) Lemma.  The graph (G(m), S(m)) is connected. 

Proof The statement means that for all u, vsG(m) there is a finite 
sequence (u3)~= o of elements of G(m) such that u o = u and u, = v, and such 
that for every j with O<j<a, either (uj, Uj+l)eS(m ) or (u~+ t, ui)eS(m), 
We call such a sequence a "path  from u to v". 

Let the two "trivial" equivalence relations i(m),w(m)eG(m) be 
defined by 

[i(m)]={{d}ldeE(m)} and [-w(m)]={E(m)}, 

Clearly, it is sufficient to show that for each ueG(m) there is a path from 
u to i(m). This is done by induction on m. For  fixed m, we use induction 
on n(u)= Ig(mll- I [u]r .  

If  n(u)=0 then u=i(m) and obviously the required path exists. 
Suppose that n(u)> 0, and let e be the smallest element of E(m) for which 
there exists a class De  [u] with eeD and IDt > 1. Clearly e < m. Therefore, 
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the induction hypothesis  on m may be applied, yielding a path (vj)~= 0 from 
i(e) to w(e) in the graph (G(e),S(e)). For O<j<b, let D~e[vfl be such 
that  e~D3. Define ufiG(m), for 0 < j = < 2 b +  1, by 

[uj-I = { C ~ i-u] I C n E (e)-- 0} w {O u Dfl w (I-v j] \ {D;}) 

i f 0 < j < b ,  and  

[u~] = { C~[u] I CnE(e)=~}  w {D\ {e}} w [v2~.t _y] 

t~ d ]2b+ l  is a if b +  l < j < 2 b +  1. We leave it to the reader to check that ~ j~j=o 
well defined pa th  f rom u = u o to U2b+~, and that 

[UEb+, ] = {D'-. {e}, {e}} u ( [ u ]  "-. {D}). 

It follows that  n(Uz~+~)=n(u)-1, and the induction hypothesis on n(u) 
yields a path  f rom u2b+~ to i(m), Combina t ion  yields a path from u to i(m). 
This proves  the lemma.  B 

Let l and M be as in (2.4). For  u~G(m) we put m ( u ) =  (~) M c. 
C~[u] 

(2.11) Lemma.  Let u, ve G (m). Then l(M (u))~'~ l(M (v)) ~ over l ~. 

Proof By L e m m a  (2.10) we may  assume that  (2.9) holds. Then by (2.8) 
there is an exact sequence of n-modules  

0 --~ M D ~ Eta) --" MD --~ ME(a)--~ O. 
Adding a s u m m a n d  

N-- | Mc 
Ce[u], C :~ D 

yields an exact sequence 

0--~ N G Mo.. e(,~)--~ N Q MD ~ MEta~ ~ O. 

These modules  are Z-free, since M is projective. Using (2.7) and (1.5) 
we get an i somorph ism of fields 

l(N @ M D ~ Ela) @ MEId)) ~ ~ l (N @ Mo) ~ 

over 7. Because of (2.9) this is exactly the same as l(M(u))~'~l(M(v))" 
over 1". [3 

Proof of  (2.4). Let i(m), w(m)~G(m) be as in the p roof  of (2.10). Then 

M(i(m)) = (~ M/•(z)  M ~ ( ~  Fp(M), 
dim P 

M(wIm)) :  M/(~ m -  1)M = M. 

So (2.4) follows from (2.1l) if we put  u=i(m) and v=w(m). 0 
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Remark. T h e o r e m  (2.4) can be generalized to the case M is per- 
muta t ion-pro jec t ive  over  ~. The  only modif icat ion in the p roof  is that 
for C c E ( m )  the module  M c has to be redefined as follows: 

Mc= M / { x E M I 3 k ~ Z ,  k4:0:  k. xeq~c(z). M},  

and that  C' in (2.8) must  be equal  to E(d), for some deE(m). 

3. The Modules 14 and Jq 

Let p be a pr ime number ,  and let q=p~ be a power  of p, with s=> 1. 
In this section l denotes  a field of  characterist ic  4=p which contains a 
primit ive q-th root  of  unity ~q, and n is a finite abelian group of auto- 
m o r p h i s m s  of t. We put  k = 1 ~ and ~ (q) = {a s ~ [ a (~q) = ~q} = Gal  (l/k(~q)). 
Let p(q)=Gal(k(~q)/k)=~/~(q). The  m a p  ~ ( Z / q Z ) * ,  which sends z 
to (t rood q) if ~(~q)= ~ ,  gives rise to an injective group h o m o m o r p h i s m  
~pq: p(q)---~ (Z/qZ)*.  This m a p  makes  Z / q Z  into a p(q)-modute  and hence 
into a n-module .  

We consider first the case when p(q) is non-cyclic, and afterwards 
the case when p(q) is cyclic. 

So assume that  p(q) is non-cyclic. Then  q is divisible by 8. Put 
C ( q ) = ( Z / q Z ) \  {0}, and  let Z c~q) be a free abelian group  of rank q - 1  
with Z-basis  {eclc~C(q) }. We m a k e  Z c~q) into a p(q) -module  by 
~(G)=G~, for a~p(q) and c~C(q). Then the group  h o m o m o r p h i s m  
ZC(q)--~Z/qZ, m a p p i n g  G to c for c~ C(q), is p(q)-linear, and we call its 
kernel  lq. So there is an exact sequence of  p (q)-modules 

0-~ lq ~ Z c~q) ~ Z/q Z ~ O. 

(3.1) Proposition. For every subgroup ~' ~;z we have H10z ', Iq)=O. 

Proof. Obvious  f rom the exact sequence of cohomology .  [] 

(3.2) Proposition. For some subgroup ~z' c ~ we have ~I- 1 (~,, [q) 4= O. 

Proof (sketch). Since Iq is tors ion free, we m a y  assume ~ =  p (q). We 
assumed that  ~ is non-cyclic, so there is a subgroup  ~' with ~bq [-~'] = 
{1, u - l , u + l , - 1 } c Z / q Z ,  where u=�89 We are going to prove 
ffI- ~ Oz', Iq)~- Z/2Z.  

Put  C={1,  u - l , u , u + l , - t } ~ C ( q ) ~ Z / q Z .  Then  Z c is a sub-~'- 
modu le  of Z c(q) in an obvious  way, and  restricting the m a p  zC(q)---~ Z/q Z 
to Z c we get an exact sequence of  n ' -modules  

O --~ M ---~ z C ---~ Z / q Z --o O 

where M = Z C ~ l q .  The  exact sequence of c o h o m o l o g y  easily yields 
H ~ (n", M ) =  0 for all five subgroups  n " ~  n', and an explicit computa t ion  
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inside M shows /4-~(n ' ,M)~Z/2Z.  By diagram chasing one gets an 
e x a c t  s e q u e n c e  

0 ---, M--- lq--* Z c(q)\c --~ O, 

which splits by (1.2). Using (1.1) we find/4-a (~', Iq)~- Z/2 Z, as required. D 

For the remainder of this section we assume p(q) is cyclic. The ring 
homomorphism Z ip (q ) ] -*Z /qZ  induced by ~bq is p(q)-linear, and we 
call its kernel Jq. So there is an exact sequence of p(q)-modules 

0 --~ Jq --* Z iv (q)] --, Z/q Z ---, O. 

(3.3) Proposition [10]. Let p(q) be cyclic. Then Jq is a projective p(q)- 
module except if (3.4) holds: 

( 3 . 4 )  q = 0 m o d 4  and ~q[p(q)]={+l,-1}=(Z/qZ)*.  

Proof Suppose (3.4) does not hold. Let p = 4'q [P (q)] c (Z/q Z)* and 
n= lp [=  ]p(q)]. Let Pl ~(Z/pqZ)* be the inverse image of p under the 
canonical map (Z/pqZ)* ~ (Z/q Z)*. Then Pl has order np, and we claim 
that Pl is cyclic. 

Suppose, in fact, that pl is non-cyclic. Then (Z/pqZ)* is non-cyclic, 
so p = 2  and q=-0 mod4. Moreover, ( - 1  modpq)~pl, so - l ~ p .  But 
the only cyclic subgroup of (Z/qZ)* containing - 1 is { + 1, - 1}, so 
p =  { + I , -  1}. Hence (3.4) holds, contradicting our assumption. We 
conclude that pl is cyclic. 

Choose t e Z  such that (t rood pq)generates p~. Since [p~[> n, we have 
t " ~ l  modpq.  Clearly, ( tmodq)  generates p, so t"---1 modq. Hence 
t " -  1 = a - q, where a and q are relatively prime. 

Let zEp(q) be such that qSq(z)=(t modq). Then ~ generates p(q), 
and the Z[p(q)]-ideal J~ is generated by z - t  and q. Denote by M the 
Z[p(q)]-ideal generated by z - t  and a. Then Jq+M=Z[p(q)], so 
Jqc~M=Jq. M. Hence we have an exact sequence of Z[p(q)]-modules 

O--~ J~. M ~ JqGM-* Z[p(q)]-*O 

where the map J~GM--, Zip(q)] is defined by (j,m)~--*j-m. The ideal 
Jq- M is generated by the four elements {(z- t) 2, a ( z -  t), q ( z -  t), aq} 
where a q = t" - z". It follows that Jq. M = Z[p  (q)]- (z - t) is a free Z [-p (q)]- 
module, and since the above sequence splits we find that Jq is p(q)- 
projective. D 

Remark. If (3.4) holds, then Jq is not projective. In fact, suppose 
q-=0 rood4 and p(q)= {1, r}, where q~q(Z)=- 1. Then J~ has a Z-basis 
{ l+z ,  ~q-~q.1 1 z}, so J q ~ Z O Z ' ;  here p(q) acts trivially on Z, while 
the p(q)-module Z' has underlying abelian group Z and p(q)-action 
z - m =  - m ,  for m~Z. 
21 lnveationes math~, Vol. 25 
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(3.5) Proposition. Suppose q is a power of 2 and p(q) is cyclic. Then 
l(Jq) ~ is rational over 1 ~. 

Proof Replacing I by 1 € we may assume ~z =p(q). Suppose first that 
(3.4) holds. Then by the above remark l(Jq)=l(x, y), where "c(x)=x and 
z (y )=y-~ ;  here z denotes the non-trivial element of ~. Choose a~l  with 
z(c04:~. Then l(x,y)~=I~(x,z), where z=(cty+z(~)) /(y+l) .  So in this 
case l(Jqy is rational over l ~. 

Suppose now that (3.4) does not hold. By (3.3), the 7~-module Jq is 
projective, so we are in a position to apply (2.6). Hence we need only 
check that F,(Jq) is Z(p)-free for every factor group p of ~z. 

So let p4:{1} be a factor group of ~ of order 2 ~. Since Jq has index q 
in Z[-rt], it follows from (2.2) that Fp(Jq) may be considered as a sub- 
module of 2-power index in F,(Z[~z])~Z(p). But Z(p)~Z[(2~  ], and 
every ideal of 2-power index in Z ['(2 ~'] is generated by the corresponding 
power of 1 -~2, ,  and is therefore free. It follows that Fp(J~) is Z(p)-free, 
as required. [5 

If K is a subfield of I which is a cyclic extension of k, then Gal(K/k) 
is a cyclic factor group of z~, and we will write F K instead of FG~t~K/k~. 

(3.6) Proposition. Suppose q is odd. Let K be an intermediate field 
k ~ K ~ l  such that p r=Ga l (K /k )  is cyclic. Let aK(-- ) be as in the intro- 
duction. Then 

Fr(Jq)~aK(Z/qZ) as Z(pK)-modules if K ck((q) ,  

FK(Jq)=O if K ~zk(~q). 

This is proved after the proof  of (3.7). 

(3.7) Lemma. Let q=pS be odd, let r be a generator of p(q)=zc/rc(q)= 
Gal(k(~q)/k), and choose t e Z  such that z(~q)=(tq. We denote the order 
of  (t mod p)~(Z/p Z)* by f and we put p '= g.c.d. (q, t l -  1); here re Z and 
l <r<<_s. 

In this situation, any intermediate field k c K c k ( ( q )  is uniquely 
determined by its degree [K:k]  over k. Moreover, if K is such a field, 
then PK = Gal (K/k) is a cyclic group, generated by the image %c of  r in PK" 
We have: 

(i) /f K=k(~p), then K=k(~p,) for all l <-i<_r, the degree [K:k] 
equals f and Fr(Jq) is, as a Z(pr)-module, isomorphic to the r-th ideal 
power of the Z(pr)-ideat generated by p and z r -  t e Z (PK); 

(ii) If K=k((p, )  with r < i<_s, then [K:k] = f  . pi-,, and FK(Jq) is, as a 
Z(pr)-module, isomorphic to the Z(pr)-ideal generated by p and z ~ - t ;  

(iii) for alt other K ~ k (~q), we have F~ (J~) ~ Z(p~) as Z(pK)-modules. 



Rational Functions Invariant under a Finite Abelian Group 313 

(3.8t Lemma. For m~Z, let ord(m) denote the number of factors p in m. 
Let t and f be as in (3.7). Then: 

(i) ord(~bj-(t))=ord(t ~ -  1)>0, 
ord(r162 1 for all ieZ, i>0, 
ord (<ha(t)) =0  for all other deZ, d>0.  

(ii) ord(t '~-  1 ) = 0 / f  mEZ, m > 0  and m~O rood f, 
o rd (P ' -  1)= ord(t I -  1)+ ord(m)/f meZ, m>0  and m-O m o d f  

Proof of (3.8). See [t, Lemma 1], 0 

Proof of (3.7). Since k((q) is a cyclic extension of k, it is clear that an 
intermediate field K is determined by its degree over k, and that PK is 
generated by the image of ~. 

Let l<_i<_s. By Galois theory, [k((p,):k] is the smallest positive 
integer m for which zm((v,)=(p,, i.e., for which t "~- 1 - 0  mod pl. From 
(3.81 (ill it follows then that [k ((p,): k] - - f i f  1 < i-< r, and [k((p,): k] - - f -  i f -"  
if r < i_-< s. This proves the statements concerning the degrees [k ((p,):k]. 
In particular, [k((q):k] = f -p~ - ' .  

Now let kcKck(~q)  be such that [K:k]=d, where d l f . p  ~-'. 
Tensoring the exact sequence defining Jq with Z(p K) over Z [-p (q)-], we 
find an exact sequence of Z(pr)-modules 

J~ | Z (PK) ~ Z[p  (q)] | ~,~ Z (PK) -~ (Z/q Z) | Z (PK)-* 0. 

Since J~ is projective, the first two modules in this sequence are FK(Jq) 
and FK(Z l-p(q)])~ Z(pK), and the first arrow is injective by (2.2). Using 
Z (t~ Fc) = Z [p (q)]/cba (z) Z[P (q)] we find for the cokernel: 

(Z/q Z) | Z (OK) ~ (Z/q Z)/~d(z) - (Z/q Z) 

= Z/(q- Z + ~e(t)-Z) 

since ~ acts on Z/qZ as multiplication by t. 
Summarizing, we have an exact sequence of Z(pK)-modules 

0-* FK(Jq)--* Z(pr)--+ Z/(q. Z +  ~a(t) �9 Z)--. 0 

where the map Z(pr)--~Z/(q.Z+~d(t)'Z) sends z K to the residue 
class of t. 

In case (iii) we have g.c.d.(q, q~a(t))---1, by (3.8)(i), so Fr(J q) is iso- 
morphic to Z(pr). In case (ii), we have g.c.d.(q, ~e(t))=p, by (3.8)0), 
so F~(J,) is isomorphic to (p, z r - t ) cZ(pr ) .  Finally, in case (i) we have 
g.c.d.(q, cba(t))=p', so Z(pK)/Fr(Jq)~-Z/p rZ is a local ring. Therefore 
FK(Jq) is an ideal power of (p, z r -t) ,  and computing norms we find that 
the exponent has to be r. D 
2l* 
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Proof of (3.6). For KCk(~q) we have FK(Jq)=0 by (2.1). Therefore it 
suffices to consider subfields K ck (~ ) .  These fields are described in 
(3.7), and for each of them FK(J~) is computed. Comparing the outcome 
with the definition of oK(Z/qZ) (see introduction) one finds that 
FK(Jq)~-ax(Z/qZ), as required. D 

4. A Reduction 
Let k be a field, and A a finite abelian group. The field k A has 

been defined in the introduction. We write A~_POB,  such that [B]#g0 
rood char(k) while IPI is a power of char(k). 

(4. I) Proposition. The field k A is k-isomorphic to a rational field extension 
of kB. 

Before proving (4.1) we state two lemmas. 

(4.2) Lemma. Let K o c K 1 ~ . . .  c Ka be a chain of fields of characteristic 
p+O, such that for each i with 1 <_i<_d there is an element ui~K i such that 
Ki = Ki -  1 (ui). Let P be a finite p-group of field automorphisms of K a such 
that 

(i) the action of P on K o is trivial; 

(ii) a(u i ) -u i~Ki_  1 for all aEP  and 1 <_i<_d. 

Then KPa = K o (zl, ..., Z d) for some z I . . . . .  zd6 K d. 

Proof of(4.2). This lemma is Satz 2 of [16]. For  a short proof, see 
[33]. [~ 

(4.3) Lemma. Let K be a field of characteristic p~eO, and let P be a 
finite p-group. Let M be a nonzero K [P]-modute. Then MP:~ O. 

Proof See [42, Ch. IX, Th. 2; 6, Ch. IV, w 9; 33]. D 

Proof of (4.1). Put p = char (k). Clearly we may assume p ~= 0. 

We denote by V the k-vector space inside k({xg[g6A}) generated by 
{xg]g~A}. Clearly, V is a k[A]-module isomorphic to the left module 
k [A]. Let W c  V be the subspace W= V e. This is a k [B]-module iso- 
morphic to k [B]. Therefore, to prove (4.1) it suffices to show that k(V) A 
is rational over k(W)B; here k(W) denotes the field generated by k and W 
inside k(V)=k({xglg6A}) .  The codimension of W in V is denoted by d; 
we have d =  1AI- ]BI. 

By U we denote the k(W)-vector space spanned by V inside k(V). 
It is easy to see that U has dimension d +  1 over kiW),  that 1 e U, and that 
B acts semilinearly on U Put T =  U s. Then from (1.3) it follows that T is 
a (d + 1)-dimensional vector space over k (W) B with 1 ~ T. 

The definition of T implies a T = T  for a~P, so T is a k(W)B[P] - 
module. We choose a sequence of k(W)B[P]-submodules YI of T, for 
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0 < i < d ,  such that  Yo=k(W) v. 1 and such that  for each i with l<_i<d 
we have: 

I1//-1 = Yi, and Y~/Y~-I is a one-dimensional  vector space over  k(W) 8 

on which P acts trivially. 

Such a sequence (Y~)~= o is easily constructed by induction on i: just apply 
(4.3) to M =  T/YI_ 1 to find Y~. Of course, Ya= T. 

Let ui~ Y~ be such that  Y~ as a k(W)tLvector space is generated by 
Y~-I and ui, for 1 <i<d.  Let K~ be the field generated by k(W) ~ and Y/, 
for 0 _< i < d. Then  K o = k (W) B and we claim 

(4.4) K~ = k (V) B. 

Assume (4.4) for a moment .  The conditions of (4.2) are satisfied, by 
construct ion,  so 

K~ e = K o (z 1 . . . . .  za) 

for some z~ . . . . .  zd~K,~, or, what  is the same, 

k(v) A =(k(v)~) ~ = k ( w )  B(z, . . . . .  z~). 

Count ing  t ranscendence degrees we conclude that k(V) ~ is rational 
over  k(W) s, as required. 

It remains  to p rove  (4.4). By definition, 

Kn=k(W)n(T)=k(W)8(UB), 

so the inclusion K ~ k ( V )  B is obvious.  We prove equality by a degree 
calculation.  

Using (1.3) we choose a B-invariant  k(W)-basis {b o . . . . .  b,} for U 
Then  {bo, . . . ,  bd} is a k(W)B-basis for U" so 

K,=k(W)B(bo, ..., b,) 

while 

Therefore  

and since 

it follows tha t  K d = k(V) B. This completes  the p roof  of (4.1). 

k(V)  = k (W) (U) - -  k(W)(bo,  ..., b~). 

[k(V): Kd] < [k(W): k (W)  B] = IBI, 

[k(V):k (V)  ~] = IBI 

5. Proof of the Main Theorem 

Let k be a field and A a finite abelian group. We write A - ~ P O B  
as in the preceding section. By e we denote the exponent  of B, and we 
p u t / = k ( ( e ) .  The  Galois  g roup  o f / o v e r  k is called n. As is well known, 
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the character group D = H o m ( B ,  I*) is, as an abelian group, isomorphic 
to B (non-canonically).We make D into a ~-module by (o d)(g)=a(d(g)) 
for a ~ ,  d~D and goB. Let Z D be a free abetian group with {ea]d~D ) 
as a Z-basis, and make Z ~) into a permutation module over ~z by c; e a = e~e , 
for a ~  and deD. The group homomorphism Z D ~ D  sending e d to d, 
far deD, is ~-linear, and we call its kernel J. So we have an exact sequence 
of 1r-modules 

0 --. J - +  ZD-+ D - .  0. 

(5.1) Proposition [12, 31]. The fields k s and I(J) ~ are isomorphic over 
k =l ~. 

Proof Let l(x) = l({x~]ge B}) and k (x) = k ({Xg [g ~ B}). First we describe 
tB = l ( x )  

For  d~D, let 
Ya = (• d(g)- ' .  Xg)~ l(x). 

g~B 

Then l(x)= l({yatd~D}), and the action of B on l({.va]d~D}) is given by 

g(ya)=d(g).ya, for g6B and d6D. 

Let F=l(x)* be the multiplicative subgroup generated by {ya]d~D}. 
Clearly, F is Z-free of rank IDI = ]B[. Define the homomorphism qS: F ~ D  
by sending Ya to d, for d~D. Then 

g(Y)=4~(Y)(g)'Y for y~F and g~B. 

So if y~ker(qS) then g (y )=y  for all y~B, i.e. y~l~. This means 

l(ker (~b)) c 1~ c l(x)= I(F). 

The index of  ker(qS) in F equals IDI. Therefore we find, by extracting 
roots successively: 

[I(F): l(ker (4,))] < [DI. 

But [I(F): la] = ID[ by Galois theory, so we conclude l(ker(4)) = I B. Since 
a Z-basis for ker(r is algebraically independent over l, the field l(ker(~b)) 
is isomorphic to the field of fractions of the group ring of ker(qS) over 1. 
This removes a slight ambiguity in our notations, cf. Section 1. 

Next we let come in k. We let rc act on l(x)~-I| via the first 
factor. Then the actions of rc and B on l(x) commute, so 

= = = ( t . r .  

One easily checks 

a(yd)=y~a for a~rc and d~D, 
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so F is a sub-n-module of l(x)*, and F ~ Z v. The map ~b: F--, D is n-linear, 
so ker(qS) is a sub-It-module of F, and clearly ker(~b)~J. It follows that 
there is an /-isomorphism of fields tB=l(ker(O))~t(J)which respects 
the action of n. Hence there is an isomorphism 

k s = ( l y  ~ l (Jl ~ 

over k =/~, as required. 

We write 
B-~@ (Z/qZ) "lq) (as abelian groups) 

q 

with non-negative integers n(q), where q ranges over the set of prime 
powers > 1. We define the n-modules I 1, I 2 and 13 by 

q, q is odd 

q, p(q) is non-cyclic 

q, q iS even, r is ~yr 

(See Section 3 for the definitions of 14, Jq and p(q).) Finally, we put 

I=I i@I  2. 

(5.2) Proposition. The field I(J) ~ is l"-isomorphic to a rational extension 
oft(It. 

Proof By a ~z-set we mean a set E on which rt acts as a group of 
permutations (the action need not be faithful). The corresponding 
permutation module is denoted by Z E. A subset E' of a K-set is called a 
~-subset if ~r(e')eE' for all t rsn and e'~E'. 

The decomposition 
B _~ @ (Z/q Z) "to) 

t~ 

gives rise to a decomposition of re-modules 

o -~@ (Z/q Z) "~, 

each direct summand Z/qZ  being a 1r-module as described in Section 3. 

We first consider a direct summand Z/qZ for which p(q) is non- 
cyclic. If Z/qZ---,D is an injective 7z-homomorphism identifying Z/qZ 
with one of the direct summands, then the resulting injection of 7z-sets 
C(q)~Z/qZ---,D (see Section 3 for the definition of C(q)) gives rise to 
a ~r-linear map Z C ~  Z ~ It is easily checked that the following diagram 
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with exact rows is then commuta t ive :  

0 , lq ' Z ctq~ ' Z / q Z  --~ 0 

0 ' J ~ Z D - - ~  D ~0. 

Analogously,  if p (q) is cyclic, and we have a ~ -homomorph i sm Z/q  Z - ~  D 
which identifies Z / q Z  with one of  the direct summands,  then an injective 
map  of ~-sets p ( q ) - ~ ( Z / q Z ) * c Z / q Z - + D  is induced (here the map 
p ( q ) - * ( Z / q Z ) *  is the map  ~ defined in Section3). The resulting ~z- 
h o m o m o r p h i s m  Z [-p (q)] ~ ZPtq)--. Z ~ then makes the following diagram 
with exact rows commuta t ive :  

0 --, Jq ~ z D @ 3  , z / q  z - -  , o 

0 - , J  ~Z  D ~ D ,0 .  

So with each direct summand  Z/q Z of D we have associated a diagram, 
and all these diagrams have the same second row. Taking the direct sum 
of all first rows we find the commutat ive  diagram with exact rows 

~ I 1 G I 2 0 I  3 ~ Z e ~ ( ~ ( Z / q Z )  " tq)-  , 0  

! ~ 
i 

~ J -  ~Z ~  , D +0 

0 

O _ _  

where E is some n-set which is a disjoint union of n-sets of  the form 
C(q) and p(q), with certain multiplicities. Since O r  and 
OCd?q[p(q)]cZ/qZ ,  the images of  these ~-sets in D do not overlap. 
This means that  E may be considered as a re-subset of  D, and that the 
map  Z E ~  Z D is injective and has a cokernel N which is itself a permuta-  
tion module  over ~. Since the second vertical arrow in the above diagram 
is an isomorphism, we get an exact sequence of g-modules  

O - .  I O I 3 -+ J --~ N -~ O 

in which N is a permuta t ion  module.  F r o m  (1.6) it follows that l ( J :  is 
/~-isomorphic to a rational field extension of 1(I~)13) ~. Applying (3.5) 
we find that l ( I G I 3 )  ~ is rational over l(I) ~. This proves (5.2). D 

(5.3) Proposition. The f ie ld  k: ~s k-~somorphic to a rational f ield extension 
of  l(I) '~. 
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Proof  Combine  (4.1), (5.1) and (5.2). 

(5.4) Proposition. For every subgroup n' c n  we have Hl(n ', I ) = 0 .  

Proof  This follows from (3.1), (3.3) and the definition o f / .  [q 

(5,5) Proposition. Let k c  K c t be an intermediate field such that PK 
Ga|(K/k)  is cyclic. Then FK(II) is Z(p~]-free if and only if the Z(pK)-ideaf 
aK(A ) is principal. 

Proof  This is immedia te  from (3.6), the definitions of 11 and aK(A), 
and the following fact on modules over a Dedekind domain:  if a I . . . . .  a t 
are nonzero  ideals in a Dedekind domain R, then the direct sum 
al G " "  (~ at is R-free if and only if the ideal product  a 1 ... a , c  R is a 
principal  ideal [18]. 

(5.6) Proposition. The following three assertions are equivalent: 

(a) the field 1(I1) ~ is rational over l"; 

(b) the field I(Ii) ~ is stably rational over P; 

(c) condition (i) of the main theorem is satisfied. 

Proof  From the definitions of la and (3.3) it is clear that (2.6) may 
be appl ied to M =11. Therefore  it suffices to prove that  condit ion (c) 
of (2.6), with M = I~, is equivalent to condition (i) of the main theorem. 
But this is precisely (5.5). 0 

Proof of the Main Theorem. First suppose k A is rational over  k. 
Then l(I) ~ is s tably rat ional  over k, by (5.3). Using (5.4) and (1.8) we find 
t �9 N1 - N 2  for some permuta t ion  modules  N~ and N z over n. F rom (1.1) 
and (3.2) we conclude that  n (q )=0  if p(q) is non-cyclic, that is, we have 
proved (it) of the main  theorem. It follows that I = I~, and applying (5,6) 
we find that  (i) is also satisfied. 

Secondly, assume that  (i) and (it) of the main theorem hold, Then 
t = 11 and (5.6) tells us that  I(I) ~ is rational over  t ~ = k. Applicat ion of (5.3) 

concludes the proof.  El 

(5.7) Remark. Note  that  the p roof  implies: if k A is stably rational 
over  k, then k a is rat ional  over k, for abeIian A. 

6. Supplementary Results 
Two extension fields K and L o f  a field k are called stably isomorphic 

over k if there exist rat ional  field extensions K o K '  and L e E  of finite 
t ranscendence degree, such that K '  and E are k-isomorphic. 

Let k be a field, and A and A' finite abelian groups. Write 

A'~-P 'GB ' ,  B '~- (~  (Z /qZ)  "'~) 
q 

just as we did for A in Sections 4 and 5. 
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(6.1) Theorem. Let k be a field, and A and A' finite abelian groups. 
Then k A and k A, are stably isomorphic over k if and only if the following 
two conditions are satisfied: 

(i) for every intermediate field k c K  c kcyr for which (0.1) holds, tile 
Z(pr)-ideals aK(A) and a~(A') are in the same ideal class: 

(ill /f char(k)4:2, then n(q)=n'(q) for every power of two q = 2  ~ for 
which the Galois group of k(~q) over k is non-cyclic. 

Proof. Analogous to the proof of the main lheorem. I7 

Following Burnside, we consider a generalization of the problem 
posed in the introduction. Let k be a field, A a finite group, and V a 
finitely generated faithful k[A]-module. The symmetric algebra of V 
over k is denoted by Sk(V ). The field of fractions k(Vl of Sk(V ) is rational 
over k of transcendence degree dimk(V), and the A-action on V induces 
an action of A on k(V) as a group of field automorphisms over k. We ask 
under which conditions k(V) a is rational over k. If V has a k-basis which 
is permuted by A, this is the question of the introduction. For A abelian 
and V = k [A], as k [A]-module, the answer is given by the main theorem. 
Theorem (6.4) below gives a partial solution for abelian A. 

(6.2) Proposition. Let V be a finitely generated faithful k [A]-module, 
and W c  V a faithful k [A]-submodule. Then k(V} A is rational over k(W) A. 

Proof. This follows easily from (1.3). Compare [33]. 1~ 

(6.3) Proposition. Suppose A~-POB,  where [P[ is a power of char(k) 
and IBIS0 modchar(k).  Let V be a finitely generated faithJul k[A]- 
module. Then V e is a faithful k[B]-module, and k(V) a is rational over 
k(VP) ~. 

Proof. We show that V e is a faithful k[B]-module. Let beB, with 
b=l= 1. Then ( b -  1) V is a nonzero P-module, so by (4.3) there is a nonzero 
element w ~ ( b -  1) Vc~ V e, say w = ( b -  1) v. Let m be the order of b. Then 
b . w = w  would imply m . w = ( b m - t + . . . + b + l ) w = ( b " - l ) v = O ,  but 
m- 1 =1=0 in k, so w=0,  contradiction, Hence b. w+w, and V v is faithful 
over k [B]. The proof  that k(V) a is rational over k(VP) s follows exactly 
the same lines as the proof of (4.1). 

(6.4) Theorem. Let k be a field, A a finite abelian group, and V a finitely 
generated faithful k[A]-module. Then k(V) a is stably rational over k if 
and only if k a is rational over k. Moreover, if dimk(l/)>lA[, then k(V) a 
is rational over k if and only if k(V) a is stably rational over k. 

Proof Write A = P @ B  as in (6.3). Combination of (6.3) and (6.2) 
(with W= V P) shows that k(V) a and k(V) s are k-isomorphic, so it suffices 
to do the case A =B,  i.e. [AJ 5 0  rood char(k). 
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By (6.2), the field k(V  @ k [ A ] )  A is rational over both k(V)  A and ka, 

so k (V)  A and k a are  stably isomorphic over k. Also, by (5.7), the field k A 

is rational over k if and only if it is stably rational over k. We conclude 
that k (V)  A is stably rational over k if and only if k A is rational over k. 

I 

Finally, assume dim~(V)> IA[. We may write V~ @ V9 ) over k [A], 
i = 1  

where each V~ is an irreducible k [-A]-module, n(i) is a positive integer, 
t 

and V~ and Vj are non-isomorphic for i4:j. Put W = @  Vii. Then Wis a 
i = 1  

faithful k[A]-module, and there are injective k[A]-homomorphisms 
W--, V and W - - , k [ A ] .  Therefore k A and k(V)  A are both rational over 
k ( W )  A. Since dimk(V)>[A[, it follows that k(V) a is k-isomorphic to a 
rational extension of k A. Application of (5.7) completes the proof, fl 

The argument in our solution of the case V= k [A] which does not 
carry over to the general case is the proof of (5.2). But by exercising a 
little more care one can show that the bound [A[ in (6.4) may be replaced 
by IAI-  ]q~(A)[, where ~b(A) denotes the Frattini subgroup of A (i.e., the 
intersection of the maximal subgroups of A). 

7. Corollaries 
We note some consequences of our main theorem. Some of them 

appeared already in [10, 48]. 

(7.1) Corollary. Let  k be a f ield and p a prime number. 7he splitting f ield 
of  X p -  1 over k is denoted by l, and d =  [l:k]. Then kzjpz is rational over k 
if and only if  the ring Z[~a] contains a principal ideal of  index p. 

Proo f  We may assume 24:p4:char(k). By the main theorem, kz/pz 
is rational over k if and only if a~(Z/pZ) is a principal ideal of Z(p~). 
This implies (7.1), since at (Z /pZ)  has index p in Z(pl)~ Z [~]  and since 
any two ideals of index p in Z[~a] are conjugate over Z. D 

(7.2) Corollary. Let  n>= 1 be an integer. Then Qzj,z is rational over Q 
if and only if the following two conditions are satisfied: 

(i) the integer n is not divisible by  8; 
(ii) for  every divisor q o f  n of the form q = pS with p an odd prime and 

s a positive integer, the ring Z [~,~q)] contains a principal ideal o f  index p; 
here fro (q) = p~- 1. (p _ 1 ). 

Proo f  This is just a translation of the main theorem for this case. E] 

(7.3) Corollary. Let  k be a field and A a f ini te  abelian group such that 

the exponent of  A divides 
22. 3" .  52.72- 1t �9 13 .17-  19- 23 .29 .31  - 37 .41 .43 -  61-67- 71 

for some non-negative integer m. Then k A is rational over k. 
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Proof It suffices to show that for each odd prime power q = p~ dividing 
the exponent of A the ring Z [~e~q~] contains an element of norm p. This 
has been done in [10]. D 

(7.4) Corollary. Let k be a field and A a finite abelian group such that: 

(i) for every odd prime p which divides the exponent of A, the splitting 
field of X p -  1 over k has degree 1 or 2 over k : 

(ii) if r is the highest power of 2 dividing the exponent of A, then the 
splitting field of X r -  1 over k is a cyclic extension of k. 

Then k A is rational over k. 

Proof This follows from the main theorem and the remark that 
1-~r is an element of norm p in the ring Z[~p,]=Z[~2pt ], for every 
odd prime power ft. rl 

Corollary (7.4) confirms a conjecture of Kuniyoshi V32] for p4=2; 
for p = 2 the conjecture is false. 

(7.5) Corollary. Let k be a field and A a finite abelian group. Assume that 
condition (ii) of the main theorem is satisfied. Then there exists a rational 
field extension k c L of finite transcendence degree, and a Galois extension 
L ~ E, such that Gal (E/L) ~- A. 

Proof Let e be the exponent of A, and let l be the splitting field of 
X e -  1 over k. Denote by h the lowest common multiple of the class 
numbers of the rings Z(pK), where K runs over the fields k ~ K c l which 
are cyclic over k. Put G = A n. Then the main theorem implies that k G 
is rational over k. Hence we can take L = ka and E equal to a suitable 
intermediate field k G c /2  c k({x~lge G}). D 

(7.6) Corollary. Let k be a field, which, as a field, is finitely generated 
over its prime field. Let Pk denote the set of prime numbers p for which 
kz/pz is rational over k. Then Pk has Dirichlet density 0 inside the set of all 
prime numbers. 

Proof (sketch). We need some algebraic number theory [26]. 
First we consider the case char(k)=0. Then [k((p):k] = p - 1  for all 

but finitely many prime numbers p, so by (7.1) it suffices to do the case 
k = Q .  

For a prime number m, let K,,=Q(~,,), let L m be the Hilbert class 
field of Kin, and let h(m)= [L,,:K,,] be the class number of K,,. We put 

S,, = {PIP is a prime number, which either splits completely in L,,, 

or does not split completely in K,,} w {m}. 

We claim PocSm, for every prime number m. In fact, if pePQ is a prime 
number unequal to m which splits completely in K,,, then m [ p -  1 ; but 
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by (7.11 the ring Z [~p_~] contains a principal ideal of norm p, and there- 
fore also Z[~',~] contains a principal ideal of norm p. This means that p 
splits completely in L m, as required. 

Using Tchebotarev's theorem and an easily proved linear disjointness 
statement, we find that for any finite set M of prime numbers the set 

S,, has Dirichlet density 
r n ~ M  

1-I (l -(h(m)- 1)/h(m). (m- 11). 
m~M 

Since h(m)>2 for all prime numbers m>23, cf. [29], it follows that 
0 S,, has Dirichlet density 0. Therefore aIso the subset PQ of 0 S,, 

m p r i m e  m p r i m e  

has Dirichtet density O. 
The case of nonzero characteristic is slightly more complicated. We 

may assume that k is a finite field, say k = Fq, where q = r" and r = char(k). 
For  a prime number m, let K.,, L,, and h(m) be as above, and put 

E m = K, , (q l / ' ) .  We define: 

Tm={pIp is a prime number, which splits completely in L,,, 

or splits completely in E,,, 

or does not split completely in K,,} w {m, r}. 

We show PkC T,, for every prime number m. Namely, assume that P~Pk 
does not divide m r  and splits completely in Kin. We distinguish two cases. 
If the order of (q rood p)eF~ is divisible by m, then [k((p):k] is divisible 
by rn. Using (7.1), we then conclude in the same way as for k = Q  that p 
splits completely in L,., so pc T=. On the other hand, if the order of 
(q mod p) in F* is not divisible by m, then it is relatively prime to m, so 
(q mod p) is an m-th power in Fp. Since we assumed that p splits completely 
in K,,, this implies that p splits completely in E,,, so pc T,,, as required. 

I fM is any finite set of prime numbers m not dividing n, r, the Dirichlet 
density of ~ T,, is 

m E M  

[-[ (1 - ( h ( m ) -  1)/h(m). m). 
raeM 

Hence 0 T,, 
m p r i m e ,  r does  no t  d i v i d e  n r  

has Dirichlet density 0, so the same is true for Pk" D 

Finally, we remark that for k = F 2 the set Pk contains all Mersenne 
and Fermat prime numbers. 
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