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1. Introduction

In general a splitting of the isogeny type of the formal group of an abelian varie-
ty should not give an analogous splitting of the isogeny type of the abelian variety.
Honda gave an example of an abelian surface (in characteristic p) where the formal
group up to isogeny splits into two different factors, but such that the abelian va-
riety is simple (cf. [3, p. 93] ). However, Manin asked whether it could be possible
that the isogeny class of any abelian surface with no points of order p (the analogue
of supersingular elliptic curves) is split (cf. [4, p. 79, line 16 from below] ). Surpris-
ingly the question by Manin has a positive answer in any dimension: a *“‘supersin-
gular” abelian variety is isogenous to a product of elliptic curves (cf. [5, Theorem
3.2]). However, this is the only exception to the general principle alluded to above:
in this paper we prove that for any formal isogeny type which has at least one fac-
tor different from G 1.1 (the condition ¢ > 0 in Section 2 below), there exists a sim-
ple abelian variety having this isogeny type for its formal group.

Using the classification, due to Honda and Serre, of isogeny classes of abelian
varieties over finite fields with the help of Weil numbers, in fact a proof of this is
nothing but an exercise in algebraic number theory.

Notations. We fix a prime number p. For an abelian variety 4 we denote by 4
its formal group, and we freely use the classification of such formal groups over an
algebraically closed field of characteristic p as given by Manin (cf. [4, I1.4] ). We use
~ to indicate the isogeny relation. By §2 we denote an algebraic closure of the prime
field in characteristic p; by F q We denote the field having g elements.

2. The construction of a simple abelian variety

Let (nl-),t-=1, (mi)§=1 be two sequences of integers such that
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t>0,
ni>ml-20 for 1 <i<y
(n;,m)) =1 for 1 <i<t¢ (son;=1ifm;=0),

and let 4 be a nonnegative integer. We want to construct a simple abelian variety
A over 2 such that

R t t
A~ ( ® Glo) @ (G * ) Th Gy

Put

'
g= 2, (nj+my)+h.
i=1

In Section 3 we shall construct two field extensions Q C K C L such that:

(2.1) [K:Q] =¢;

(2.2) K is totally real;
(2.3) there are no intermediate fields Q ;,Q_ K' % K;
(2.4) the prime ideal factorization of p in K is

t . h
o=(I1 ™) (1)

where p;, q; are different prime ideals in the ring of integers in K, and
all residue class degrees f{p;/(p)) and flg j/(p)) are 1;

(2.5) [L : K] = 2;let the nontrivial K-automorphism of L be denoted by p;
2.6) L is totally imaginary (i.e. there is no field homomorphism L — R);
2.7) eitherg=1,in which case t=1,n; =1,m; =0,h=0and K =Q, or

K # Q, and then there is no 7 € Q for which L = K(\/r);
(2.8) the primes p; (1 < i< 1) split completely in L ;
pi=vp@), Fe@),

and the q; (1 <j < h) ramify:

szf’]z . 8;=pG;)).
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By (2.2) and (2.5), (2.6), L is a CM-field [3]. Let the ideal a in L be defined by

t h
n. m.
a= [T (;Fpa) D113
i=1 j=1

Then we have
a-p(a)=(p),
so a is an “ideal of type (4) of order 1 (terminology from [3]).

2.9. Lemma. Let v > 0 be an integer, and suppose m € L is an algebraic integer for
which

mp(m=p”, (m=a”.
Then L = Q(m).
Proof. We first show
(2.10) T¢EK .

In fact, 7 € K would imply 7% = 7+ p(7) = p*, s0 a?” = (n2) = (p)’, which means

v(ng+my)

t h t
- 2wn; 2vm;

[ p@) ™" 187 = 11 (i p(ry)
=1 j=1 i=1

h
A+,
Ry s
| 1

1

This contradicts unique factorization, since > 0, ny > my, 1 * p(rl), v# 0, so
(2.10) is proved. It follows that

(2.11) L=K(m).

If K = Q, we are done. So assume K # Q. We assert

(2.12) 7+p(mM)EQ.

Otherwise we would have 7 + p(m) € Q and 7+ p(7) = p” € Q. But then 7 is imagi-
nary quadratic over Q, so Q(m) = Q(+/7) for some r € Q. By (2.11) this implies

L = K(/r), r € Q, contradicting (2.7). This proves (2.12).
We do have 7 + p(m) = Try g (m) € K, 50 (2.12) and (2.3) yield K = Q(m + p(m)).
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Using p(m) = p”[n, we find

Q(m) = Q( +p”/m)(m) = Q( + p(m))(m) = K(m) =L ,
thus proving the lemma.

By [3, Lemma 1] there exists av € Z, v > 0, and an algebraic integer 7 € L such
that

mep(m=p’, (m=a”.
Applying (2.9) to n* we find
(2.13) Q") =L for every integer u > 0.
In the terminology of [3] this means
L=Q(a")=Q(r").

Let A be a simple abelian variety over F_,, corresponding to 7, by the main
theorem of [3]. We show that A4 satisfies our requirements. As in [6], we put

EndM(va)(A) = Q ® EﬂdeV(A) .

We identify m with the Frobenius endomorphism 7, € EndM(Fp,,)(A)-
2.14. Lemma. EndM(va)(A) = Q(m).

Proof. F = EndM(va)(A) is a division algebra with center Q(w) = L. To show E =1L,

it suffices to check that £ splits locally everywhere. This is done with the help of
[6, théoréme 1] :

(a) by (2.6), L does not have real places;

(b) E splits automatically at finite places v not lying over p;

() let v lie over p. If v corresponds to t;, then
n;-v

Gy Ot m) == 0(mod 1.

inv (E) = um, (L,:Q,] =
v(p")

Similarly, for p(t;) we get

inv (F)=m;=0(mod 1) .
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If v belongs to 8;, then

v, ()= [ Q=" -2=1=0(mod 1).
IHVU( ) U(p”) [ v p] 2 mo

This proves the lemma.

From Lemma 2.14 it follows that the characteristic polynomial of the Frobenius
endomorphism is equal to the irreducible polynomial of  over Q. Since we know
all p-adic values of m, we can apply [4, Theorem (4.1)] to compute 4. We find

“ t t
A~ ( ® GIO) t O (G TGy ) Th Gy
i=1 © i=1 My i ’
mi=0 mi>0

as desired.
Let u be a positive integer. The degree of the characteristic polynomial of m is
equal to

2dimA=[E: L]} [L:Q] =[L:Q] = 2¢.

By (2.13) it follows that this polynomial is irreducible over Q. Hence A remains
simple over FpVM for every u. We conclude that 4 remains simple over §2, as required.

3. The construction of the desired CM-field

For a field F, let Mon(g, F') denote the set of monic polynomials of degree g
over /. If I is a topological field, Mon(g, F) has a natural topology such that
Mon(g, F) = F¥ as topological spaces.

Suppose /€ Mon(g, Q) satisfies

3.1 f has g real zeros;

3.2) the Galois group of the splitting field M of f over Q is isomorphic to the
full permutation group Sy of order g!;

t
33)  Q,X1/fQ,[x] = (H Q,,(p‘“"i*'"f)))x Q.
i=1

Then K = Q[X] /fQ[X] is a field (by (3.2)) which obviously satisfies (2.1), (2.2)
and (2.4). We assert that also (2.3) holds. In fact, the intermediate field Q C K C M
corresponds to the subgroup Sg 28, 12 {1}. Since there are no subgroups

Se ZH2S,_|,(2.3) follows by Galois theory.
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Let py, py, p3 be three rational primes, different from p. Choose monic poly-
nomials /1, f5, f3 € Z[X] of degree g such that:

(3.4) (f; mod py) is irreducible over Fy, ;

(3.5) if g > 2, then (f;, mod p,) € sz [X] is the product of a linear factor
and an irreducible factor of degree g — 1;

(3.6) ifg>3,thenfz € Fp3 [X] is the product of an irreducible quadratic
factor and one or two different irreducible factors of odd degree.

By [7, §66], condition (3.2) is satisfied if for i = 1, 2, 3 we have:
(3.7); the coefficients of f are integers at p;, and /= f; (mod p;).

So to construct K it suffices to show that conditions (3.1), (3.3), (3.7) 5 3 can be
satisfied simultaneously. Each one of the sets

U_, = {f€Mon(g, R): (3.1) holds},
U, = {f€Mongg, Q,): (3:3) holds} ,
U; = {f€Mon(g, Qpi): (3.7);holds}  (i=1,2,3)

is nonempty and open (cf. [1, ch. 2, §6] for Uj). By the approximation theorem
[1, ch. 1, §4], Mon(g, Q) is dense in

3
Mon(g, R) X Mon(g, Q,) X [ Mon(g, Q)
i=1
under the natural inclusion. Hence there exists a polynomial

3
f€Mon(g, Q)N [1 U; .

i=—1

Therefore, a field K satisfying (2.1)—(2.4) exists.

Next we construct L. If K# Q, let [}, [, be different primes of K lying over the
same rational prime /, /# p. Such / and [; exist, cf. [2]. Let vy denote the normal-
ized exponential valuation at the prime p. By the approximation theorem, there
exists an ¢ € K such that:

(3.8) if K # Q, then vll(a) = vlz(a) (mod 2);

(3.9 qu(a) =1(1<j<h);
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(3.10) a is a square in each of the local fields Kp , 1 <i<pg
3.11) o(a) < 0 for every field homomorphism o : K = R.

From (3.8) we see thata & Q K2 if K # Q. Therefore L = K(v/a) satisfies (2.5)
and (2.7). Also (2.6) and (2.8) hold, by (3.11) and (3.9), (3.10). This finishes the
construction of L and K.
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