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Necessary conditions for the existence of perfect Lee codes are ob-

tained.
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Necessary conditions for the existence of perfect Lee codes

by

H.W. Lenstra, Jr.

1. INTRODUCTION

fet g, m, e be integers, with q 2 2, m 2 1 and e 2 0. We denote by
Z/qZ the ring of integers modulo q. For x € Z/qZ, let |x]| =
min{lyl | vy ¢ Z, x = (y mod ¢)}.

Let X denote the m-fold cartesian product
X = (Z/gZ) x ... x (Z/q2).

This 1s an abelian group of order qm, which we write additively. We endow

X with a metric d by

m m m
d((XJ'_)]'_=1’ (yi)i=l) = Z [x, -~ Y;h

the so-called Lee metric.

A perfect code of order e is a subset C of X with the property that
for every x ¢ X there exists a unique ¢ ¢ C for which d(x,c) £ e. We are
interested in obtaining necessary conditions for the existence of such a
code.

Put
Se = {g e X | d(0,s) < e}.

Clearly, a subset C ¢ ¥ is a perfect code of order e if and only if every

% ¢ X has a unique decomposition x = ¢ + s, with ¢ ¢ C and s « Se°



By G we denote the group of group automorphisms of X which are at the
same time isometries. Clearly, #G = Qm.mi for q > 2 and #G = m! for q=2.

Notice oSe = Se for every o e GC.

Let £ be a fixed primitive g-th root of unity in €. We define a pairing

<2 X ¥ X+ @ by
m m . 1
= 1<ix L1
<(Xi)i=l’ (Yi)i=1> E 1=m

We have <ox,0y> = <x,y> for all 0 ¢ G, x,y € X.

Let
Te = {0} u {x ¢ X| ZSESe <x,8> = 0} < X.

For all o ¢ G we have OTe = Te' The set Te does not depend on the choice of
& , since all primitive q-th roots of unity are conjugate over Q. For the
same reason, T 1is closed under multiplication by integers which are rela-

tively prime to q, but we will not use this.
If a group H acts on a set S, then the orbit space is denoted by S/H.

THEOREM 1. Suppose a perfect code of order e exists tn X. Then #(Te/H) > #(Se/H)

for all subgroups H < G.

The case H = G of this theorem is equivalent to the "Lloyd"-theorem

which has been proved by L.A. BASSALYGO [1].

THEOREM 2. Suppose a perfect code of order e exists in X. Then #Se divides
#<Te>, where <T > denotes the subgroup of X generated by T, . More precisely,
if

Y, ={yeX | <t,y» = 1 for all t ¢ T}

then Y, s a subgroup of X of index equal to #<Te>, and every perfect code

of order ¢ in X ls periodic modulo Y, (Z.e.: a unton of cosets of Y_).

Theorem ? generalizes the "sphere packing bound" #Selqm, since #<Te>
obviously divides #X = q".



TBEOREM 3. Suppose q is prime, and #Se = q. Then there exists a perfect code
C c X of order e if and only ©f there exists a subgroup C c X whose under—

. . .
lying set is a perfect code of order e.

Section 2 gives some illustrations of theorems 1, 2 and 3, and

section 3 contains the proofs. The pleasure of formulating and proving ana-

logues of these theorems for other situations (mixed perfect Lee-codes, for

example) is left to the reader.

2. EXAMPLES.

We only consider examples which satisfy the sphere packing bound

(2.1) gq=5, m=2, e=]. It is easily seen that in this case a perfect code exists.

s, = {(0,0), (+1,0), (0,+D)} < (#/57) x (Z/5D) = X.

Let x = (a,b) ¢ X, x # (0,0). Then x € T, if and only if 1 + Eg + g;a +

ég ¥ g;b = 0. Using that xa + X3 + Xz + X + 1 is the irreducible polynomial
of &5 over @ one arrives at

T, = {(0,0), (¥2,x1), (£1,x2)}.

1

Thus we sec #Tl =9 > 5= #Sl and #(TI/G) = 2 = #(SI/G), in accordance

with theorem 1.

(2.2) g=13, m=2, e=2. Also in this case a perfect code exists. One finds

that T2 is the union of the G-orbits containing

(0,0), (1,5), (2,3), (4,6).

Hence #(TZ/G) = 4 = #(SZ/G)'



(2.3) g=41, m=4, e=2 or q=61, m=5, e=2. It has been shown by E. Wattel
that no perfect group code exists with these parameters. Since #Sz = q

is prime, it follows from theorem 3 that no perfect code at all exists in

these cases.

(2.4) q=85, m=6, e=2. Using the methods of [2] and computer results kindly

provided by A.E. Brouwer I checked that T2 consists of the G-orbits of

(0, 0, 0, 0, 0, 0),

(0, 0, 17, 17, 34, 34),
(0, 17, 17, 17, 17, 34),
(0, 34, 34, 34, 34, 17).

Hence #(TZ/G) =4 = #(SzlG) so the necessary condition of Bassalygo's

theorem is satisfied (the case H=G of theorem 1). But by theorem 2 no per-

. .. 6
fect code exists in this case, since #SZ = 85 does not divide #<T2> = 5,

(2.5) (Bassalygo) q=5, m>2, e=2, If a perfect code exists, then theorem I

(with H=G) and the sphere packing bound imply

#(TZ/G) > 4,

k

m2 + (m+l)2 = 5 (for some keZ).

It can be shown that this leads to a contradiction [1], so no perfect code

with these parameters exists.

3. PROOFS.

The group ring. Let C[X] be the group ring of X over €; so CI'X] has, as a

C-vector space, a basis {e_ | x e X}, and the multiplication is determined
X

by e .e = ex+y' For each x ¢ X there is a ring homomorphism

<x,->: C[X] » €

X, )

A > = G
yex yey Zyéx Ay<x,y> (Ayed)



and it is well known that the map

erx] > cX
f - (<X’f>)xeX

is an isomorphism of C-algebras; here CX is the product of #X copies of ¢,
with addition and multiplication performed componentwise.

For a subset D of X, we denote the element zxeD e of €I X] by )D.

The group G acts on C€'X] in a natural way as a group of algebra auto-~
morphisms, by permutation of the basis vectors e - We have <ox,0f> = <x,f>
for x ¢ X, f ¢ C[X], o €G.

For a subgroup H ¢ G we define mrxiﬁ = {f ¢ €[X]| VocH: of = f}.
Clearly, {}§ | § ¢ X/H} is a basis for erx1®, Let £ ¢ €x1%. Then for x ¢ 1
and o ¢ H we have <ox,f> = <ox,0f> = <x,f>, so <x,f> only depends on the
H-orbit X of x. Hence for f ¢ C[X]H, % ¢ X/H we can define <x,f> = <x,f>.
where x ¢ ¥, This gives us a ring homomorphism

(3.1) erxt » X/

£ (P xm

which is easily proved to be an isomorphism (e.g.: injectivity follows from

injectivity of ¢[X] - GX, and surjectivity by comparison of dimensions).

Perfect codes. A subset C ¢ X is a perfect code of order e if and only if

the relation
(3.2) (05,)-()0) = )X

holds in €[ X]. From this we deduce:

(3.3) LEMMA. Let x ¢ X, x ¢ T . Then <x, JC> = 0 for every perfec: code

C c X of order e.

PROOF. Applying the ring homomorphism <x,-> to (3.2) we tind

<X, XSe> . <X, ZC> = <x, ZX> (in ©).



Because of x { Te we have x # 0 so

<X, ZX> = <x,y> = 0

zyeX

while further x ¢ Te implies
<x, zse> = ZseS <x,s> # 0.
e

We conclude <x, )C> = 0, as required. []

Let H ¢ G be a subgroup, and for f ¢ C[X] define

tg(E) = L g o(E).

H . .
Clearly, t, is a linear map from ClX] to C[X] . Generalizing (3.3) we have:

H
(3.4) LEMMA. Let %X ¢ X/H, X ¢ Te/H, Then <x, tH(ZC)> = 0 for every perfect

code C c X of order e,

EBQOF. For x ¢ X we have
_ -1
<Xy tH(ZC)> = <x, XceH O(ZC)> = zceH <o %, )C>

and by (3.3) we have <o—1x, ZC> = 0 for each o ¢ H. []

From the isomorphism (3.1) and lemma (3.4) we conclude:

(3.5). The C-vector space spanned by {tH(ZC)| C ¢ X is a perfect code of

order e} has dimension at most #(Te/H), for every subgroup H < G.

PROOF OF THEOREM 1. Suppose a perfect code C ¢ X of order e exists. Notice

that such a C has exactly one element in common with Se

For every orbit X € Se/H’ one can find, by translation, a perfect code
C- c X of order e such that the unique element of Ci n Se is contained in X.
X

Writing tH(zci) on the basis {)y | ¥ ¢ X/H} of C[XTH:

) =I5 ¢ x/m -9, Og € 0,



we then find
A? =0 for ¥ ¢ Se/H, v # X,
A= > 0
X

(more precisely, A = #H/#x). It follows that {tH(Xci) | X € Se/H} spans a
C-vector space of dimension #(Se/H). Hence (3.5) implies #(Se/H) < #(Te/H),

as required. [J

PROOF OF THEOREM 2. By the duality theory of finite abelian groups Ye is a

subgroup of X of index #<Te>. Let

<
1

{f e €[X1| <x,f> = 0 for all x ¢ X, x ¢ <Te>},

We claim
t € X/Y Xt e € for t e X/Y R
{ / e At'( ) ' At / 1

In fact, the inclusion o follows from a direct calculation, and equality

follows by comparison of dimensions.
Let C ¢ X be a perfect code of order e. Then XC € Ve by lemma (3.3)

and the definition of Ve’ so our claim says

le =1z . x/y_ g (0
e

for certain complex numbers AE. This exactly means that C is periodic modulo
Ye. In particular, #Ye divides #C, and since #C. #Se = #X it follows that

#3  divides #X/#Y = #<T7 >, []
e e (2]

PROOF OF THEOREM 3. We need only prove the "only if'-part. From theorem I

we see #Te > #Se > 1 so there exists x € T, X # 0. Hence

(3.6) ESES <x,s> = 0
e



for some x ¢ X. Thus we have a sum of q q-th roots of unity which vanishes,

ey e . . -1
Using the irreducibility of the polynomial x4 + ... +X + 1 over @

(since q is prime) one easily sees that (3.6) is equivalent to:

(3.7 for each i ¢ {0,1,...,q-1} there is a unique s ¢ Se with

1
<X,8> = £,
q

Now let C be the kernel of the group homomorphism X - {gél 0 < i < q} which

sends y to <x,y>. Then (3.7) is equivalent to:

for each y € X there is a unique s ¢ Se with y - s ¢ C.

It follows that C is a perfect code of order e. [J

More generally, one can prove, using theorems | and 2 and the methods

of [21:

COROLLARY. Suppose #Se = p 78 prime, and suppose that there exists at most
one prime dividing q which is smaller than p. Then there exists a perfect
code C < X of order e If and only if there exists a subgroup C c X whose
underlying set is a perfect code of order e. Moreover, every perfect code

C © X of order e is periodic modulo pX.

REFERENCES.

[17 BASSALYGO, L.A., 4 necessary condition for the existence of perfect
codes in the Leec metric, Mat. Zametki 15 (1974), 313-320 (russian).

[2] MANN, H.B., On linear relations between roots of unity, Mathematika 12

(1965), 107117,



