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ABSTRACT

Necessary conditions for the existence of perfect Lee codes are ob-

tained.
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Neeessary conditions for the existence of perfect Lee codes

by

H.W. Lenstra, Jr.

l. 1NTRODUCTION

Let q, m, e be integers, with q > 2, m > l and e > 0. We denote by

Z/qZ the ring of integers modulo q. For χ e %/qZi, let |x) =

minilyl \ y € 27,, χ = (y mod q)}.

Let X denote the m-fold cartesian product

X = (Z/qZ) χ ... χ (25/qZ).

This is an abelian group of order q , which we write additively. We endow

X with a raetric d by

τη tu

daV^l* (y.).») = l |x..y.|,

i= l

the so~called Lee mekr-tc.

A pevfect Code of ovd&v e is a subset C of X with the property that

for every χ r X there exists a unique c e C for which d(x,c) < e. We are

interested in obtaining neccssary conditions for the existence of such a

code.

Put

Se - {s e X | d(05s) < e}.

Clearly, a subset C c X is a perfect code of order e if and only if every

χ e X has a unique decomposition χ = c + s, with c e C and s e S .



By G we denote the group of group automorphisms of X which are at the

same time isometries. Clearly, #G = 2 .ml for q > 2 and #G - ml for q=2„

Notice öS = S for every σ e C.
e e

Let ξ be a fixed primitive q-th root of unity in C. We define a pairing

<,·>: Χ χ X -> ff, by

ro , -. m i i

We have <ax,ay> ·= <x,y> for all σ e G, x,y e X.

Let

T = {0} u {x e X| J <xss> = 0} c χ.

For all σ e G we have σΤ = T . The set T does not depend on the choice of
e e e

ξ , since all primitive q-th roots of unity are conjugate over d}. For the

same reason, T is closed under multiplication by integers which are rela-

tively prime to q, but we will not use this.

If a group H acts on a set S, then the orbit space is denoted by S/H.

THEOREM l . Suppose a pevfeßt oode of order e ex-ists in X. Then #(T /H) > #(s /H)

for all subgroups H c G.

The case H = G of this theorem is equivalent to the "Lloyd"-theorem

which has been proved by L„A„ ßASSALYGO fU.

THEOREM__2. Suppose a perfeet code of ovder e exists in X. Then #S divides

^<T >, wheye <T > denotes the subgroup of X generated by Tg. More preoisely,

if

Υ = {y e X j <t,y> = l for all t c T }

then Υ is a subgroup of X of index equai to #<T >, and every perfeot oode

of ord&r e in X Is periodio modulo Υ (i.e.: a union of cosets of Υ ),
G "

Theorem 2 generalizes the "sphere packing bound" #Se|q , since

obviou&ly divides #X = q .



THE£REM 3. Suppose q i-s px"ime3 and #S = q. Then there exists a perfeot code

C c χ of Order e if and orily if fheve exists a subgroup C c X whose under·-

Ί-ying s et is a pevfect code of ovder e„

Section 2 gives sorne illustrations of theorems I, 2 and 3, and

section 3 contains the proofs. The pleasure of formulating and proving ana-

logues of these theorems for other situations (mixed perfect Lee-codes, for

example) is left to the reader.

2. EXAMPLES.

We only consider examples which satisfy the sphere packing bound

^S iqm.
e ^

(2.1) q=59 m=2, e=l . It is easily seen that in this case a perfect code exists,

We have

S, = {(0,0), (+1,0), (Ο, + l)} c (25/5Z) χ (2ζ/5Ζ) = Χ.

Let Λ = (a,b) e Χ, χ 4 (0,0). Then χ e T} if and only if l + ξ̂  + ζ̂  +

ξ t ζ" =0. U sing that X + X + X + X + l is the irreducible polynomial

of ξ_ over Q one arrives at

T = ί(Ο,Ο), (±2,±1), (±I,±2)}.

Thus we sec #T = 9 > 5 = #S, and ̂ (Tj/G) = 2 = ^(Sj/G), in accordance

with theorem l .

(2.2) q=13, m=2, e=2. Also in this case a perfect code exists. One finds

that T is the union of the G-orbits containing

(0,0), (1,5), (2,3), (4,6).

Hence #(T2/C) = 4 = #(S2/G).



(2.3) q=41, m=4, e=2 or q=61, m=5 , e=2. It has beert shown by E. Wattel

that no perfect group code exists with these parameters. Since #S„ = q

is prime, it follows from theorem 3 that no perfect code at all exists in

these cases.

(2.4) q=85, m=6, e=2. Using the methods of Γ2] and Computer results kindly

provided by A.E. Brouwer I checked that T consists of the G-orbits of

(0, 0, 0, 0, 0, 0) ,

(0, 0, 17, 17, 34, 34),

(0, 17, 17, 17, 17, 34),

(0, 34, 34, 34, 34, 17).

Hence ^(T„/G) = 4 = #(S„/G) so the necessary condition of Bassalygo's

theorem is satisfied (the case H=G of theorem 1). But by theorem 2 no per-

fect code exists in this case, since #S„ = 85 does not divide ^<T2> = 5 .

(2.5) (Bassalygo) q=5, m>2, e=2. If a perfect code exists, then theorem l

(with H=G) and the sphere packing bound imply

> 49

O T1 l
m + (m+1) = 5 (for some ke£) .

It can be shown that this leads to a contradiction [1], so no perfect code

with these parameters exists.

3. PROOFS.

ring. Let CFX] be the group ring of X over C; so CfXl has, äs a

C~vector space, a basis {e | χ e X}, and the multiplication is deterrained
X

by e .e = e . For each χ e X there is a ring homomorphism
χ y x+y

e > = λ <x,y> (λ eC)
y y ^yex y y



and it is well known that the map

cm ·* cx

f ̂  (<*,f»xex

X
is an isomorphism of C-algebras; here (C is the product of #X copies of C,

with addition and multiplication performed coinponentwise.

For a subset D of X, we denote the element J e of CfXl by Tu.
9 ^xeD x J L

The group G acts on CTX] in a natural way äs a group of algebra auio-

morphisms, by permutation of the basis vectors e . We have <0x,af> = <x,f>

for χ ε X, f e (ΠΓΧ], σ eG.

For a subgroup H c G we define €ΓΧ]Η = {f e <E[X] | VarH: af = f}.

Clearly, {\j \ y e X/H} is a basis for <E[X]H. Let f e ffi[X]H. Then for x e X

and σ e H we have <ax,f> = <ax,af> = <x,f>, so <x,f> only depends on the

H-orbit x of x. Hence for f e £[X]H, x e X/H we

where x e x. This gives us a ring homomorphism

H-orbit χ of x. Hence for f e £[X]H, χ e X/H we can define <x,f> = <x,f>.

(3.1) CfX]H -> <EX/H

which is easily proved to be an isomorphism (e.g. : injectivity follows from

injectivity of CfXl -> C , and surjectivity by comparison of dimensions) .

Per feot Codes, A subset C c χ is a perfect code of order ε if and only if

the relation

(3.2) (}>e).(£0 = IX

holds in CfX], From this we deduce:

(3.3) LEMMA. Let x e X, x 4 Tg. Then <x, )̂ C> = 0 for every perfe^- code

C c X o/ o^Jep e.

FROQF. Applying the ring homomorphism <xs-> to (3.2) we tind

<x, Ts > . <x, Tc> = ''x, Jx> (in C) .
' '- e L ^



Because of χ a T we have χ ̂  0 so
e

while further χ 4 T implies

<x, Ys > = T _ <x,s> i 0.L· 6 '_g ge g
e

We conclude <x, £θ = 0, äs required. Π

Let H c G be a subgroup, and for f e CfXl define

tH(f) =

H
Clearly, t is a linear map from CfX] to CfXl . Generalizing (3.3) we have:

(3.4) LEMMA. Let χ e Χ/Η, χ ί T /H. T/zen <x, tR(^C)> = 0 for every perfect

oode C <= Χ σ f ordev e.

PROOF. For χ e χ we have

(Ιθ> =

and by (3.3) we have <σ~ χ, Jc> = 0 for each σ e H. Π

From the isomorphism (3.1) and lemma (3.4) we conclude

(3.5). The C-vector space spanned by {tpC^C) | C c χ is a perfect code of

order e} has dimension at most #(Te/H), for every subgroup H c G.

PROOF OF THEOREM 1. Suppose a perfect code C c X of order e exists. Notice

that such a C has exactly one element in common wii.h Sg.

For every orbit κ e S /E, one can find, by translation, a perfect code

C- c χ of order e such that the unique element of C_ n S is contained in x.

Writirig t„(£c_) on the basis {£y l y e X/H> of €ΓΧ1Η:
rl X



we then find

λ_ = 0 for y e Se/H, y ̂  x,

λ- > 0
χ

(more precisely, λ- = #H/#x). It follows that {t (]>C-) [ χ e S /H} spans a
χ ri Χ θ

C-vector space of dimension #(S /H). Hence (3.5) implies #(Se/H) < #(T /H),

äs required. D

PROOF OF THEOREM 2. By the duality theory of finite abelian groups Yg is a

subgroup of X of index #<T >. Let

V = {f e C[X] | <x,f> = 0 for all χ e X, x 4 <Te>>-

We claim

e ~ 1/·Ε e X/Y At'^L ' ' t
e

In fact, the inclusion = follows from a direct calculation, and equality

follows by comparison of dimensions.

Let C c χ be a perfect Code of order e. Then £c € V& by lemma (3.3)

and the definition of V , so our claim says

for certain complex numbers λ-. This exactly means that C is periodic modulo

Y . In particular, #Y divides #C, and since ^C. #Sg = ^X it follows that

^S divides #Χ/ίΎ = #<T >. Π
e e c

PROOF OF THEOREM 3. We need only prove the "only if'-part. From theorem l

we see #T > ^S > l so there exists χ e T , x ̂  0. Hence
e e e

(3.6) Iges <x,s> = 0

e



for some χ e X. Thus we have a sum of q q-th roots of unity which vanishes.

Using the irreducibility of the polynomial Xq +· ... + χ + ] over (Q

(since q is prime) one easily sees that (3.6) is äquivalent to:

(3.7) for each i e {0,l,...,q-l} there is a unique s & S with

<x,s> = ξ .

Now let C be the kernel of the group homomorphism X -> {ξ | 0 < i < q} which

sends y to <x,y>. Then (3.7) is equivalent to:

for each y e X there is a unique s e S with y - s e C.

It follows that C is a perfect code of order e. Π

More generally, one can prove, using theorems l and 2 and the methods

of [21:

COROLLARY. Suppose #S = p is prime3 and suppose that there exists at most

one prime dividing q which is smaller than p. Then there exists a perfeat

code C c χ of order e if and only if there exists a subgroup C <= X whose

under'Lying set is a perfeot code of order e. Moreover, every perfect code

C c χ of order e is periodic modulo pX.
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