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Abelian Extensions of Arbitrary Fields
W. Kuyk and H. W, Lenstra, Jr.

0. Introduction and Summary

Let k be an Hilbertian field, i.e. a field for which Hilbert’s irreducibility theorem
holds (cf. [1,5]). It is obvious that the degree of the algebraic closure k of k is
infinite with respect to k. It is not obvious that the same is true for the maximal
p-extension of k, p a prime number. Let A be a finite abelian group. The question
whether there exists a Galoisian extension I/k with Galois group A4 is, classically.
known to be solvable if there exists a finite group G, and a surjective homo-
morphism G— A, such that the following condition is satisfied. Suppose M is a
faithful k[G]-module, and let S, (M) denote its symmetric algebra over k. The
group G acts upon S, (M) and on its field of quotients k(M) in a natural way.
Then the condition is that the subfield k(M)¢ of k(M) of all G-invariants is a
purely transcendental field extension of k (cf. [6, 5]). This applies in particular
to the case G=A, and M is the group ring k[ A]. In that case we denote k(M)°
by k,.

Let k be an arbitrary field. Recently, the second named author [4] gave
necessary and sufficient conditions in order that, for given k and A4, the extension
k,/k is purely transcendental, as follows. To check the pure transcendency of k,
one has to look at a finite set of Dedekind domains D, =Z[{,4], where the
positive integer g(A4) runs through a finite subset of Z and (,,, is a primitive
q(A)-th root of unity. Then one can determine in every D, 4, an ideal I, ,, with the
property: k, is purely transcendental over k if and only if the two following
conditions are satisfied:

(i) every ideal I 4, is a principal ideal,

(i1) if 2" is the highest power of 2 dividing the exponent of A and if the charac-
teristic of k is not equal to 2, then the extension k({,.)/k has cyclic Galois group.

This leads to

Theorem 1 ([4], Corollary (7.5)). Let A be a finite abelian group. Let k be any
field satisfying the condition (ii) above. There exists a natural number n such that
the field of invariants k 4. of the group A"=A®...@®A is a purely transcendental
extension of k.

A quadruple (G, ¢, 4, k), with ¢ : G— A a surjective continuous homomorphism
of (not necessarily abelian) (pro-)finite groups and k a field, is called a Galoisian
extension problem. Such an extension problem is said to be solvable if for every
Galoisian extension field I/k with Gal(l/k)= A, there exists a Galoisian extension
m/k, m>1, such that Gal(m/k)= G and the Galois map Gal(m/k)—Gal(l/k) coincides
with ¢.
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For G=Z/p"Z,A=Z/p"Z, p a prime number, n and m positive integers
satisfying m=n=1, we denote the natural surjective homomorphism G—A
by ¢,,,; if G=Z,, the additive group of p-adic integers, then we write ¢, instead
of ¢,,. It is clear that the problem P(m, n, k)=(Z/p"Z, ¢,.., Z/p"Z, k) is solvable
for all m and n, if and only if the problem P(oo, n, k)=(Z,, ¢, Z/p"Z, k) is solvable
for all n=1. With these notations we prove

Theorem 2. Let k be any field. If p=char(k), then the extension problem
P(oo, n, k) is solvable for all positive integers n2 1. If p+char(k), let E, denote the
set {x|x*" =1€ K for someme Z,m20} of all p™-th roots of unity, and put K = k(E ).
Furthermore, suppose that the degree [K:k] of K/k is finite. If p=+2 then the
extension problem P(co, n, k) is solvable for all n= 1. If p=2, then let I/k be Galois
with Gal(l/k)=2Z/2"Z,n>1. Then k admits a Z,-extension. If, on the contrary,
LK : k] is infinite, then there exists at least one Galois extension of k with Galois
group isomorphic to Z ,.

Corollary 1. Let k be a field, and let p be a prime number 2. The following
conditions (i) and (ii) are equivalent:
(1) there exists a Galois extension l/k with Gal(l/k)~Z/pZ,
(ii) there exists a Galois extension l/k with Gal(l/k)=Z,.
For p=2 there is equivalence between :
(111) there exists a Galois extension I/k with Gal(l/k)=Z/AZ,
(iv) there exists a Galois extension l/k with Gal(l/k)=Z,.
Putting Theorems 1 and 2 together we get:

Corollary 2. Let k be an Hilbertian field and let A be a finite abelian group
satisfying the condition (ii) above. A )

There exists a Galois extension l/k with Gal(l/k)x Zx A, where Z=11Z,
is the pro-cyclic group on one generator.

Proof. Corollary 1 is immediately clear from Theorem 2. For Corollary 2
one applies Corollary 1, taking into account that for G=Z/4Z the field k(M)¢
is purely transcendental over k; whence the existence of a k-extension with
Galois group Z,. The existence of a Z -extension of k, p # 2, follows from Theorem 1
and Corollary 1. The factor 4 does not give any difficulty, because k being Hil-
bertian, there exists for every m an extension [ of k with Gal(l/k)=~ A™ (Theorem 1,
applying Galois theory).

Remark 1. Note that the Hilbertian field Q admits only one Z -extension for
every p, and infinitely many (linearly disjoint) extensions with group A (well-
known), where A4 is an arbitrary finite abelian group. However, the pair (Q, 4)
does not generally satisfy condition (ii).

Remark 2. Corollary 2 substantiates a claim made in [2] (p.401) and [3]
(p. 113) stating that for Hilbertian k, the maximal p-extension k(p) has infinite
degree over k. Mr. Jarden drew attention to the incompleteness of the proof in [2].

1. Proof of Theorem 2

Preserving the notations of the previous paragraph and Theorem 2, let
p=char(k). It is well-known that the extension problem P(n+ 1, n, k) is solvable



Abelian Extensions of Arbitrary Fields 101

for all n= 1, e.g. using Witt vectors or by induction. This means however, that the
extension problem P(m,n, k) is solvable for all mzn=1. Next, let p=char(k).

First we consider the case when [K:k] is infinite. It is clear from infinite
Galois theory, that Gal(K/k) is a closed subgroup of Z%. The latter group is of
the form Z} =Z/(p— )Z®Z, if p+2, while Z3=Z/2ZDZ, if p=2. In both cases
Gal(K/k)=F@®Z ,, where F is a finite group; Galois theory finishes this case.

We are left with the case when [K : k] < c0. Again, there are two possibilities,
viz. K=k and K k. First, if K =k, then let I/k be an extension with Gal(l/k)=Z/qZ,

and g=p™ We have =k (il/(_l) for some ae k*, a¢ k*?. The field L=}, , k(%)
is a Galois extension of k=K with Galois group Z,, satisfying our desire. Let,
alternatively, K=k, Gal(K/k)=n. The group = is cyclic of order dividing
p—1if p%2, and of order 2 if p=2. Let now K(p) denote the maximal abelian
Galois p-extension of K. The fact that K(p) is a Galois extension of k gives the
existence of an exact sequence of groups

0-4,-G->n-0,

where A,=Gal(K(p)/K) and G = Gal(K(p)/k).
The fact that over K the extension problem P(co, m, K) is solvable, translates
in terms of group theory as follows:

Lemma 1. For every continuous surjective group homomorphism a: A,—~Z/qZ,
q=p",mz1, there exists a continuous surjective homomorphism fy:A,—Z »
such that the diagram

Ap_ﬁ'_ézp
°\ / ’
Z/qZ

is commutative; here ¢ denotes the natural homomorphism with kernel p™-Z ,.

Now the proof goes as follows. We are given an extension I/k with Gal(l/k)=
Z/p"Z, where n21 if p+2 and n=2 if p=2. We wish to construct an extension
M/k with GalM/k)=Z, We have Gal(l- K/K)=Z/qZ, where q=2""" if p=2,
Kl and g=p" otherwise; so g>1 in all cases. The natural surjective map

A,~Gal(l-K/K)=Z/qZ

is denoted by «, and we let f,, ¢ be as in Lemma 1. We are going to change f,
in such a way that the kernel of the new map 4,—Z, defines a Z -extension of K
which is Galois and abelian over k. Then the construction of M will be immediate.

In order to carry out this programme we need to know how the statement
“L is Galois and abelian over k” [for an intermediate field K ¢ L C K(p)] translates
in terms of group theory.

The group 7 acts on A4, via a'=t*at*~! where ac A4, ten, and t*eG a
preimage of t. Putting A} ={d'lac A, i€ I}, where I is the augmentation ideal
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of Z[n], the cyclicity of = entails A} =[G, G], the commutator group of G. This
follows by direct verification, taking into account that a* ' =1*at* "'a~!. The
next lemma follows immediately from this consideration.

Lemma 2. Let L be an intermediate field K C L CK(p). The following conditions
are equivalent :
(i) L/k is Galois with abelian Galois group,
(ii) the subgroup Gal(K(p)/L) of A, is invariant in G with abelian factor group,
(iti) the natural map vy : A,—~Gal(L/K) has the property A}CKer(yp).
It follows, in particular, that 4} CKer(x). We define s: 4,—4, by s(a)=d°
where S=) .., 7€ Z[n]. Note that A CKer(s), since I - § is the zero ideal of Z[n].

Proposition 1. Assume p=2, and let the notation be as above. The diagram

A,—2—a, Lz 7

P p 14

P

Z/qZ I~ ZjgZz N 7)q2

where the map |n| denotes the (continuous) automorphism “multiplication by |n|”
on Z, and Z/qZ, is commutative. Moreover, the surjective map fi=|rn|"'f,°s
is such that A} Ker(f}).

Proof. The commutativity of the diagram is easily verified by a straight-forward
calculation; for the surjectivity of |z| and || ~! one has to note that (|z|, p)=1. The
inclusion A C Ker(f,) follows from AL CKer(s). Finally, the diagram tells us that
the image of f is a closed subgroup of Z, mapping onto Z/qZ; so the procyclic
structure of Z, implies that f] is surjective. This proves Proposition 1.

Theorem 2 is now casily settled for p+2. Let [, » be as before, let f; be as in
Proposition 1, and let LCK(p) be the invariant field of Ker(f;). Then ICL,
Gal(L/K)=Z,, and L/k is Galois and abelian by Lemma 2. Further, Galois theory
gives us an exact sequence of abelian groups

0-Z,—Gal(L/k)—»n—0.

The sequence splits by (|zf,p)=1, so L=M - K where Gal(M/k)=Z, Finally,
IC M again follows from (|n], p)=1. We conclude that M is the required extension
of k and that the problem P(co, 1, k) is solvable for all n>1.

Proposition 2. Assume p=2, and let the notation be as before. The diagram
A,— A1 7,
al ld’
2x

Z/qZ ———— Z/qZ

is commutative, but the homomorphism f, = fq ° s not surjective. One has A5 CKer(f,),
Im(f,)=2Z,, and, if f,=3f\, then f, is a continuous surjective homomorphism
satisfying A% CKer(f,).
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Proof. The commutativity of the diagram and the inclusion 4% cCKer(f;)
go as before. Further, the diagram implies that Im( f,) is a closed subgroup of Z,
mapping onto 2Z/qZ. If g>2 this implies Im(f;)=2Z, by the procyclic structure
of Z,. In the case g =2 we arrive at the same conclusion by an explicit computation:
qg=2 implies Gal(l/k)=Z/4Z and K CI; let ¢* € Gal(K(p)/k) be such that ¢ =a*|K
generates 7; then o*}l generates Gal(l/k) so the eclement t=(0*)? of 4, is not the
identity when restricted to [; this means a(t)+0¢e Z/2Z so fy(t)e Z,\2Z,; also
=1 s0 f,(t)= fo(t?) € 2Z,\4Z,; therefore 2Z, CIm(f,), and since the opposite
inclusion follows from the diagram we conclude Im(f;)=2Z,, as required.
The assertions about f, follow immediately. This concludes the proof of Propo-
sition 2.

To finish the proof of Theorem 2, let [, « be as before and let f; be as in Propo-
sition 2. Then the invariant field L C K(2) of Ker( f;) has Galois group=Z, over K,
and L is Galois and abelian over k. There is an exact sequence

0—Z,—Gal(L/k)~>n—0.

[f this extension splits then Gal(L/k) =~ Z ,@® =, and if it does not split then Gal(L/k) =
Z,. In both cases there exists an extension M of k with Galois group isomorphic
to Z,.

This concludes the proof of Theorem 2.

Remark. A closer look at the construction reveals that in the case p=2 the
field M can be chosen such that the intersection M~/ has degree 2"~ ! or 2"
over k.

2. Supplementary Remarks

It is not true that any field k, admitting a field extension [ with Gal(//k)=1V
(cf. Theorem 2) admits a Z/4Z-extension (and, by consequence, a Z ,-¢xtension).
The field of all totally-real algebraic numbers, for instance, admits V,-extensions
and no Z/4Z-extensions. The following is an example of a field admitting for
an arbitrary cardinal number m an extension with Galois group (Z/2Z)", and no
Z/4Z-extension. Let I be a set with |I|=m and let F=Q({t,lie I}) be a purely
transcendental extension of Q with transcendental degree m. Choose for every
i€ I an ordering <; of F, in such a manner that t;<;0 and 0<;¢;, for j#i. Let R,,
FCR;CF, be a real-closed field the ordering of which is an extension of <, Then
k={"):c1 R; has the required property: one sees easily that Gal(k/k) is topologically
generated by elements of order 2. It is also possible to give a proof of Theorem 2
(p+2) more directly by using Kummer theory. However, this method does not
seem to be readily extendible to the case p=2.
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