Abelian Extensions of Arbitrary Fields

W. Kuyk and H. W. Lenstra, Jr.

0. Introduction and Summary

Let k be an Hilbertian field, i.e. a field for which Hilbert's irreducibility theorem holds (cf. [1, 5]). It is obvious that the degree of the algebraic closure \bar{k} of k is infinite with respect to k. It is not obvious that the same is true for the maximal p-extension of k, p a prime number. Let A be a finite abelian group. The question whether there exists a Galoisian extension l/k with Galois group A is, classically, known to be solvable if there exists a finite group G, and a surjective homomorphism $G \rightarrow A$, such that the following condition is satisfied. Suppose M is a faithful k[G]-module, and let $S_k(M)$ denote its symmetric algebra over k. The group G acts upon $S_k(M)$ and on its field of quotients k(M) in a natural way. Then the condition is that the subfield $k(M)^G$ of k(M) of all G-invariants is a purely transcendental field extension of k (cf. [6, 5]). This applies in particular to the case G = A, and M is the group ring k[A]. In that case we denote $k(M)^G$ by k_A .

Let k be an arbitrary field. Recently, the second named author [4] gave necessary and sufficient conditions in order that, for given k and A, the extension k_A/k is purely transcendental, as follows. To check the pure transcendency of k_A one has to look at a finite set of Dedekind domains $D_{q(A)} = Z[\zeta_{q(A)}]$, where the positive integer q(A) runs through a finite subset of Z and $\zeta_{q(A)}$ is a primitive q(A)-th root of unity. Then one can determine in every $D_{q(A)}$ an ideal $I_{q(A)}$ with the property: k_A is purely transcendental over k if and only if the two following conditions are satisfied:

(i) every ideal $I_{q(A)}$ is a principal ideal,

(ii) if 2^r is the highest power of 2 dividing the exponent of A and if the characteristic of k is not equal to 2, then the extension $k(\zeta_{2^r})/k$ has cyclic Galois group. This leads to

Theorem 1 ([4], Corollary (7.5)). Let A be a finite abelian group. Let k be any field satisfying the condition (ii) above. There exists a natural number n such that the field of invariants k_{A^n} of the group $A^n = A \oplus ... \oplus A$ is a purely transcendental extension of k.

A quadruple (G, ϕ, A, k) , with $\phi: G \to A$ a surjective continuous homomorphism of (not necessarily abelian) (pro-)finite groups and k a field, is called a *Galoisian extension problem*. Such an extension problem is said to be solvable if for every Galoisian extension field l/k with $Gal(l/k) \cong A$, there exists a Galoisian extension $m/k, m \supset l$, such that $Gal(m/k) \cong G$ and the Galois map $Gal(m/k) \to Gal(l/k)$ coincides with ϕ . For $G = \mathbb{Z}/p^m \mathbb{Z}$, $A = \mathbb{Z}/p^n \mathbb{Z}$, p a prime number, n and m positive integers satisfying $m \ge n \ge 1$, we denote the natural surjective homomorphism $G \to A$ by ϕ_{mn} ; if $G = \mathbb{Z}_p$, the additive group of p-adic integers, then we write $\phi_{\infty n}$ instead of ϕ_{mn} . It is clear that the problem $P(m, n, k) = (\mathbb{Z}/p^m \mathbb{Z}, \phi_{mn}, \mathbb{Z}/p^n \mathbb{Z}, k)$ is solvable for all m and n, if and only if the problem $P(\infty, n, k) = (\mathbb{Z}_p, \phi_{\infty n}, \mathbb{Z}/p^n \mathbb{Z}, k)$ is solvable for all $n \ge 1$. With these notations we prove

Theorem 2. Let k be any field. If $p = \operatorname{char}(k)$, then the extension problem $P(\infty, n, k)$ is solvable for all positive integers $n \ge 1$. If $p = \operatorname{char}(k)$, let E_p denote the set $\{x \mid x^{p^m} = 1 \in K \text{ for some } m \in \mathbb{Z}, m \ge 0\}$ of all p^m -th roots of unity, and put $K = k(E_p)$. Furthermore, suppose that the degree [K:k] of K/k is finite. If p = 2 then the extension problem $P(\infty, n, k)$ is solvable for all $n \ge 1$. If p = 2, then let l/k be Galois with $\operatorname{Gal}(l/k) = \mathbb{Z}/2^n\mathbb{Z}, n > 1$. Then k admits a \mathbb{Z}_2 -extension. If, on the contrary, [K:k] is infinite, then there exists at least one Galois extension of k with Galois group isomorphic to \mathbb{Z}_p .

Corollary 1. Let k be a field, and let p be a prime number ± 2 . The following conditions (i) and (ii) are equivalent:

- (i) there exists a Galois extension l/k with $Gal(l/k) \cong \mathbb{Z}/p\mathbb{Z}$,
- (ii) there exists a Galois extension l/k with $Gal(l/k) \cong \mathbb{Z}_p$.
- For p = 2 there is equivalence between:
- (iii) there exists a Galois extension l/k with $Gal(l/k) \cong \mathbb{Z}/4\mathbb{Z}$,
- (iv) there exists a Galois extension l/k with $Gal(l/k) \cong \mathbb{Z}_2$.

Putting Theorems 1 and 2 together we get:

Corollary 2. Let k be an Hilbertian field and let A be a finite abelian group satisfying the condition (ii) above.

There exists a Galois extension l/k with $\operatorname{Gal}(l/k) \cong \hat{\mathbf{Z}} \times A$, where $\hat{\mathbf{Z}} = \prod \mathbf{Z}_p$ is the pro-cyclic group on one generator.

Proof. Corollary 1 is immediately clear from Theorem 2. For Corollary 2 one applies Corollary 1, taking into account that for $G = \mathbb{Z}/4\mathbb{Z}$ the field $k(M)^G$ is purely transcendental over k; whence the existence of a k-extension with Galois group \mathbb{Z}_2 . The existence of a \mathbb{Z}_p -extension of $k, p \neq 2$, follows from Theorem 1 and Corollary 1. The factor A does not give any difficulty, because k being Hilbertian, there exists for every m an extension l of k with $\operatorname{Gal}(l/k) \cong A^m$ (Theorem 1, applying Galois theory).

Remark 1. Note that the Hilbertian field Q admits only one Z_p -extension for every p, and infinitely many (linearly disjoint) extensions with group A (well-known), where A is an arbitrary finite abelian group. However, the pair (Q, A) does not generally satisfy condition (ii).

Remark 2. Corollary 2 substantiates a claim made in [2] (p. 401) and [3] (p. 113) stating that for Hilbertian k, the maximal *p*-extension k(p) has infinite degree over k. Mr. Jarden drew attention to the incompleteness of the proof in [2].

1. Proof of Theorem 2

Preserving the notations of the previous paragraph and Theorem 2, let p = char(k). It is well-known that the extension problem P(n+1, n, k) is solvable

for all $n \ge 1$, e.g. using Witt vectors or by induction. This means however, that the extension problem P(m, n, k) is solvable for all $m \ge n \ge 1$. Next, let $p \neq \text{char}(k)$.

First we consider the case when [K:k] is infinite. It is clear from infinite Galois theory, that $\operatorname{Gal}(K/k)$ is a closed subgroup of \mathbb{Z}_p^* . The latter group is of the form $\mathbb{Z}_p^* \cong \mathbb{Z}/(p-1)\mathbb{Z} \oplus \mathbb{Z}_p$ if $p \neq 2$, while $\mathbb{Z}_2^* \cong \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}_2$ if p=2. In both cases $\operatorname{Gal}(K/k) \cong F \oplus \mathbb{Z}_p$, where F is a finite group; Galois theory finishes this case.

We are left with the case when $[K:k] < \infty$. Again, there are two possibilities, viz. K = k and $K \neq k$. First, if K = k, then let l/k be an extension with $\operatorname{Gal}(l/k) \cong \mathbb{Z}/q\mathbb{Z}$, and $q = p^m$. We have $l = k \begin{pmatrix} q \\ \sqrt{a} \end{pmatrix}$ for some $a \in k^*$, $a \notin k^{*p}$. The field $L = \bigcup_{n \ge 1} k \begin{pmatrix} p^{n,n} \\ \sqrt{a} \end{pmatrix}$ is a Galois extension of k = K with Galois group \mathbb{Z}_p , satisfying our desire. Let, alternatively, $K \neq k$, $\operatorname{Gal}(K/k) = \pi$. The group π is cyclic of order dividing p-1 if $p \neq 2$, and of order 2 if p=2. Let now K(p) denote the maximal abelian Galois *p*-extension of *K*. The fact that K(p) is a Galois extension of *k* gives the existence of an exact sequence of groups

 $0 \rightarrow A_n \rightarrow G \rightarrow \pi \rightarrow 0$,

where $A_p = \operatorname{Gal}(K(p)/K)$ and $G = \operatorname{Gal}(K(p)/k)$.

The fact that over K the extension problem $P(\infty, m, K)$ is solvable, translates in terms of group theory as follows:

Lemma 1. For every continuous surjective group homomorphism $\alpha: A_p \rightarrow \mathbb{Z}/q\mathbb{Z}$, $q = p^m, m \ge 1$, there exists a continuous surjective homomorphism $f_0: A_p \rightarrow \mathbb{Z}_p$ such that the diagram

is commutative; here ϕ denotes the natural homomorphism with kernel $p^{\mathsf{m}} \cdot \mathbf{Z}_{p}$.

Now the proof goes as follows. We are given an extension l/k with $\operatorname{Gal}(l/k) \cong \mathbb{Z}/p^n\mathbb{Z}$, where $n \ge 1$ if $p \ne 2$ and $n \ge 2$ if p = 2. We wish to construct an extension M/k with $\operatorname{Gal}(M/k) \cong \mathbb{Z}_p$. We have $\operatorname{Gal}(l \cdot K/K) \cong \mathbb{Z}/q\mathbb{Z}$, where $q = 2^{n-1}$ if p = 2, $K \in l$, and $q = p^n$ otherwise; so q > 1 in all cases. The natural surjective map

$$A_p \rightarrow \operatorname{Gal}(l \cdot K/K) \cong \mathbb{Z}/q\mathbb{Z}$$

is denoted by α , and we let f_0 , ϕ be as in Lemma 1. We are going to change f_0 in such a way that the kernel of the new map $A_p \rightarrow \mathbb{Z}_p$ defines a \mathbb{Z}_p -extension of K which is *Galois* and *abelian* over k. Then the construction of M will be immediate.

In order to carry out this programme we need to know how the statement "L is Galois and abelian over k" [for an intermediate field $K \in L \in K(p)$] translates in terms of group theory.

The group π acts on A_p via $a^{\tau} = \tau^* a \tau^{*-1}$ where $a \in A_p$, $\tau \in \pi$, and $\tau^* \in G$ a preimage of τ . Putting $A_p^I = \{a^i | a \in A_p, i \in I\}$, where I is the augmentation ideal

of $Z[\pi]$, the cyclicity of π entails $A_p^I = [G, G]$, the commutator group of G. This follows by direct verification, taking into account that $a^{\tau-1} = \tau^* a \tau^{*-1} a^{-1}$. The next lemma follows immediately from this consideration.

Lemma 2. Let *L* be an intermediate field $K \in L \in K(p)$. The following conditions are equivalent:

- (i) L/k is Galois with abelian Galois group,
- (ii) the subgroup $\operatorname{Gal}(K(p)/L)$ of A_p is invariant in G with abelian factor group,
- (iii) the natural map $\psi: A_p \to \operatorname{Gal}(L/K)$ has the property $A_p^I \subset \operatorname{Ker}(\psi)$.

It follows, in particular, that $A_p^I \in \text{Ker}(\alpha)$. We define $s: A_p \to A_p$ by $s(a) = a^S$ where $S = \sum_{\tau \in \pi} \tau \in \mathbb{Z}[\pi]$. Note that $A_p^I \in \text{Ker}(s)$, since $I \cdot S$ is the zero ideal of $\mathbb{Z}[\pi]$.

Proposition 1. Assume $p \neq 2$, and let the notation be as above. The diagram

where the map $|\pi|$ denotes the (continuous) automorphism "multiplication by $|\pi|$ " on \mathbb{Z}_p and $\mathbb{Z}/q\mathbb{Z}$, is commutative. Moreover, the surjective map $f_1 = |\pi|^{-1} f_0 \circ s$ is such that $A_p^I \subset \operatorname{Ker}(f_1)$.

Proof. The commutativity of the diagram is easily verified by a straight-forward calculation; for the surjectivity of $|\pi|$ and $|\pi|^{-1}$ one has to note that $(|\pi|, p) = 1$. The inclusion $A_p^I \subset \text{Ker}(f_1)$ follows from $A_p^I \subset \text{Ker}(s)$. Finally, the diagram tells us that the image of f_1 is a closed subgroup of Z_p mapping onto Z/qZ; so the procyclic structure of Z_p implies that f_1 is surjective. This proves Proposition 1.

Theorem 2 is now easily settled for $p \neq 2$. Let l, α be as before, let f_1 be as in Proposition 1, and let $L \subset K(p)$ be the invariant field of $\text{Ker}(f_1)$. Then $l \subset L$, $\text{Gal}(L/K) \cong \mathbb{Z}_p$, and L/k is Galois and abelian by Lemma 2. Further, Galois theory gives us an exact sequence of abelian groups

 $0 \rightarrow \mathbb{Z}_n \rightarrow \operatorname{Gal}(L/k) \rightarrow \pi \rightarrow 0$.

The sequence splits by $(|\pi|, p) = 1$, so $L = M \cdot K$ where $Gal(M/k) \cong \mathbb{Z}_p$. Finally, $l \in M$ again follows from $(|\pi|, p) = 1$. We conclude that M is the required extension of k and that the problem $P(\infty, n, k)$ is solvable for all $n \ge 1$.

Proposition 2. Assume p = 2, and let the notation be as before. The diagram

$$\begin{array}{c} A_2 \xrightarrow{s} A_2 \xrightarrow{f_0} Z_2 \\ \downarrow^{\alpha} & \downarrow^{\phi} \\ Z/qZ \xrightarrow{2X} Z/qZ \end{array}$$

is commutative, but the homomorphism $f_1 = f_0 \circ s$ not surjective. One has $A_2^I \subset \text{Ker}(f_1)$, $\text{Im}(f_1) = 2\mathbb{Z}_2$, and, if $f_2 = \frac{1}{2}f_1$, then f_2 is a continuous surjective homomorphism satisfying $A_2^I \subset \text{Ker}(f_2)$.

Proof. The commutativity of the diagram and the inclusion $A_2^I \in \text{Ker}(f_1)$ go as before. Further, the diagram implies that $\text{Im}(f_1)$ is a closed subgroup of \mathbb{Z}_2 mapping onto $2\mathbb{Z}/q\mathbb{Z}$. If q > 2 this implies $\text{Im}(f_1) = 2\mathbb{Z}_2$ by the procyclic structure of \mathbb{Z}_2 . In the case q = 2 we arrive at the same conclusion by an explicit computation: q = 2 implies $\text{Gal}(l/k) \cong \mathbb{Z}/4\mathbb{Z}$ and $K \in l$; let $\sigma^* \in \text{Gal}(K(p)/k)$ be such that $\sigma = \sigma^* | K$ generates π ; then $\sigma^* | l$ generates Gal(l/k) so the element $\tau = (\sigma^*)^2$ of A_2 is not the identity when restricted to l; this means $\alpha(\tau) \neq 0 \in \mathbb{Z}/2\mathbb{Z}$ so $f_0(\tau) \in \mathbb{Z}_2 \setminus 2\mathbb{Z}_2$; also $\tau^{\sigma} = \tau$ so $f_1(\tau) = f_0(\tau^2) \in 2\mathbb{Z}_2 \setminus 4\mathbb{Z}_2$; therefore $2\mathbb{Z}_2 \in \text{Im}(f_1)$, and since the opposite inclusion follows from the diagram we conclude $\text{Im}(f_1) = 2\mathbb{Z}_2$, as required. The assertions about f_2 follow immediately. This concludes the proof of Proposition 2.

To finish the proof of Theorem 2, let l, α be as before and let f_2 be as in Proposition 2. Then the invariant field $L \in K(2)$ of $\text{Ker}(f_2)$ has Galois group $\cong \mathbb{Z}_2$ over K, and L is Galois and abelian over k. There is an exact sequence

 $0 \rightarrow \mathbb{Z}_2 \rightarrow \operatorname{Gal}(L/k) \rightarrow \pi \rightarrow 0$.

If this extension splits then $\operatorname{Gal}(L/k) \cong \mathbb{Z}_2 \oplus \pi$, and if it does not split then $\operatorname{Gal}(L/k) \cong \mathbb{Z}_2$. In both cases there exists an extension M of k with Galois group isomorphic to \mathbb{Z}_2 .

This concludes the proof of Theorem 2.

Remark. A closer look at the construction reveals that in the case p=2 the field M can be chosen such that the intersection $M \cap l$ has degree 2^{n-1} or 2^n over k.

2. Supplementary Remarks

It is not true that any field k, admitting a field extension l with $\operatorname{Gal}(l/k) = V_4$ (cf. Theorem 2) admits a $\mathbb{Z}/4\mathbb{Z}$ -extension (and, by consequence, a \mathbb{Z}_2 -extension). The field of all totally-real algebraic numbers, for instance, admits V_4 -extensions and no $\mathbb{Z}/4\mathbb{Z}$ -extensions. The following is an example of a field admitting for an arbitrary cardinal number m an extension with Galois group $(\mathbb{Z}/2\mathbb{Z})^m$, and no $\mathbb{Z}/4\mathbb{Z}$ -extension. Let I be a set with |I|=m and let $F=\mathbb{Q}(\{t_i|i \in I\})$ be a purely transcendental extension of \mathbb{Q} with transcendental degree m. Choose for every $i \in I$ an ordering $<_i$ of F, in such a manner that $t_i <_i 0$ and $0 <_i t_j$, for $j \neq i$. Let R_i , $F \subset R_i \subset \overline{F}$, be a real-closed field the ordering of which is an extension of $<_i$. Then $k = \bigcap_{i \in I} R_i$ has the required property: one sees easily that $\operatorname{Gal}(\overline{k}/k)$ is topologically generated by elements of order 2. It is also possible to give a proof of Theorem 2 $(p \neq 2)$ more directly by using Kummer theory. However, this method does not seem to be readily extendible to the case p = 2.

References

- Hilbert, D.: Über die Irreduzibilität ganzer rationaler Funktionen mit ganzzahligen Koeffizienten. J. Reine Angew. Math. 110, 104–129 (1892)
- 2. Kuyk, W.: Generic approach to the Galois embedding and extension problem. J. Algebra 9 (4), 393-407 (1968)
- 3. Kuyk, W.: Extensions de corps hilbertiens. J. Algebra 14 (1), 112-124 (1970)

- 4. Lenstra, Jr., H.W.: Rational functions invariant under a finite Abelian group. Invent. Math. 25, 299-325 (1974)
- 5. Lang, S.: Diophantine geometry. Interscience Tracts 11. New York-London: 1962
- 6. Noether, E.: Gleichungen mit vorgeschriebener Gruppe. Math. Ann. 78, 221-229 (1918)

W. Kuyk Department of Mathematics Antwerp University B-2020 Antwerp, Belgium

H. W. Lenstra, Jr. Mathematisch Instituut Universiteit van Amsterdam Roetersstraat 15 Amsterdam The Netherlands

(Received October 30, 1974)