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Abelian Extensions of Arbitrary Fields 
W. Kuyk and H. W. Lenstra, Jr. 

0. Introduction and Summary 

Let k be an Hilbertian field, i.e. a field for which Hilbert's irreducibility theorem 
holds (cf. [1, 5]). It is obvious that the degree of the algebraic closure k of k is 
infinite with respect to k. It is not obvious that the same is true for the maximal 
p-extension of k, p a prime number. Let A be a finite abelian group. The question 
whether there exists a Galoisian extension l/k with Galois group A is, classically. 
known to be solvable if there exists a finite group G, and a surjective homo- 
morphism G ~ A ,  such that the following condition is satisfied. Suppose M is a 
faithful k[G]-module, and let Sk(M ) denote its symmetric algebra over k. The 
group G acts upon Sk(M ) and on its field of quotients k(M) in a natural way. 
Then the condition is that the subfield k(M) G of k(M) of all G-invariants is a 
purely transcendental field extension of k (of. [6, 5]). This applies in particular 
to the case G = A, and M is the group ring k[A]. In that case we denote k(M) ~ 
by ka. 

Let k be an arbitrary field. Recently, the second named author [4-] gave 
necessary and sufficient conditions in order that, for given k and A, the extension 
k~/k is purely transcendental, as follows. To check the pure transcendency of kA 
one has to look at a finite set of Dedekind domains Dq(A)=Z[~q~a)], where the 
positive integer q(A) runs through a finite subset of Z and (q~A~ is a primitive 
q(A)-th root of unity. Then one can determine in every Dq(A) an ideal Iq~A~ with the 
property: k A is purely transcendental over k if and only if the two following 
conditions are satisfied: 

(i) every ideal lq~A) is a principal ideal, 
(ii) if 2" is the highest power of 2 dividing the exponent of A and if the charac- 

teristic of k is not equal to 2, then the extension k((2,)/k has cyclic Galois group. 
This leads to 

Theorem 1 ([4], Corollary (7.5)). Let A be a finite abelian group. Let k be any 
field satisfying the condition (ii) above. There exists a natural number n such that 
the field of invariants kA, of the group A " = A @ . . . @ A  is a purely transcendental 
extension of k. 

A quadruple (G, qS, A, k), with ~b : G ~ A  a surjective continuous homomorphism 
of (not necessarily abelian) (pro-)finite groups and k a field, is called a Galoisian 
extension problem. Such an extension problem is said to be solvable if for every 
Galoisian extension field l/k with Gal(l/k)_~ A, there exists a Galoisian extension 
re~k, m ~ l, such that Gal(m/k) ~ G and the Galois map Gal(m/k)~Gal(l/k) coincides 
with q~. 
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For G = Z / p " Z ,  A =ZIp"Z,  p a prime number, n and m positive integers 
satisfying m > n > l ,  we denote the natural surjective homomorphism G ~ A  
by Or.,; if G = Z v, the additive group of p-adic integers, then we write qS~, instead 
of ~bm,. It is clear that the problem P(m, n, k)=(Z/pr.Z, c~m,, ZIp"Z, k) is solvable 
for all m and n, if and only if the problem P(oo, n, k)= (Zv, cb oo,, ZIp"Z, k) is solvable 
for all n > 1. With these notations we prove 

Theorem 2. Let k be any field. I f  p=char(k), then the extension problem 
P(oo, n, k) is solvable for all positive integers n > 1. I f  p =t: char(k), let Ep denote the 
set {x I xP" = 1 ~ K for some m e Z, m > 0} of all pr.-th roots of unity, and put K = k(Ep). 
Furthermore, suppose that the degree [K:  k] of K/k  is finite. I f  p :t= 2 then the 
extension problem P(oo, n, k) is solvable for all n > 1. I f  p = 2, then let 1/k be Galois 
with Gal(l/k)=Z/2"Z, n> 1. Then k admits a Z2-extension. If, on the contrary, 
[K : k] is infinite, then there exists at least one Galois extension of k with Galois 
group isomorphic to Z v. 

Corollary 1. Let k be a field, and let p be a prime number :4= 2. The following 
conditions (i) and (ii) are equivalent: 

(i) there exists a Galois extension l/k with Gal(l/k)~-Z/pZ, 
(ii) there exists a Galois extension 1/k with Gal( l /k )~Z r. 
For p = 2 there is equivalence between: 
(iii) there exists a Galois extension l/k with Gal(1/k)~Z/4Z, 
(iv) there exists a Galois extension 1/k with Gal(1/k)~-Z2. 
Putting Theorems 1 and 2 together we get: 

Corollary 2. Let k be an Hilbertian field and let A be a finite abelian 9roup 
satisfying the condition (ii) above. 

There exists a Galois extension 1/k with Gal(l/k)_~ Z x A, where Z = I I Z p  
is the pro-cyclic 9roup on one generator. 

Proof. Corollary 1 is immediately clear from Theorem 2. For Corollary 2 
one applies Corollary 1, taking into account that for G = Z/4Z  the field k(M) G 
is purely transcendental over k; whence the existence of a k-extension with 
Galois group Z 2. The existence ofa Zv-extension of k, p :t: 2, follows from Theorem 1 
and Corollary 1. The factor A does not give any difficulty, because k being Hil- 
bertian, there exists for every m an extension 1 of k with Gal(1/k)_~Ar. (Theorem 1, 
applying Galois theory). 

Remark 1. Note that the Hilbertian field Q admits only one Zp-extension for 
every p, and infinitely many (linearly disjoint) extensions with group A (well- 
known), where A is an arbitrary finite abelian group. However, the pair (Q, A) 
does not generally satisfy condition (ii). 

Remark 2. Corollary2 substantiates a claim made in [2] (p. 401) and [3] 
(p. 113) stating that for Hilbertian k, the maximal p-extension k(p) has infinite 
degree over k. Mr. Jarden drew attention to the incompleteness of the proof in [2]. 

1. Proof of Theorem 2 

Preserving the notations of the previous paragraph and Theorem 2, let 
p=  char(k). It is well-known that the extension problem P(n+ 1, n, k) is solvable 
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for all n > 1, e.g. using Witt vectors or  by induction. This means however, that  the 
extension problem P(m, n, k) is solvable for all m > n >  1. Next, let p=t=char(k). 

First we consider the case when [ K : k ]  is infinite. It is clear from infinite 
Galois theory, that  Gal(K/k) is a closed subgroup of  Z*. The latter g roup  is of  
the form Z* ~-Z/ (p-  1)ZOZp i f p ~ 2 ,  while Z * - ~ Z / 2 Z O Z  2 if p = 2 .  In both cases 
Gal(K/k)~-F®Zp, where F is a finite g roup;  Galois theory finishes this case. 

We are left with the case when [ K  : k] < oo. Again, there are two possibilities, 
viz. K = k and K =t= k. First, if K = k, then let I/k be an extension with Gal(l/k) ~- Z/qZ, 

and q=p". We have l=k  ( ~ a ) f o r  some a t  k*, a• k *v. The field L=U,_>_, k(~aa) 
/ k 

is a Galois  extension of  k = K  with Galois group Zp, satisfying our  desire. Let, 
alternatively, K+-k, Gal(K/k)=z.  The group  rt is cyclic of  order  dividing 
p -  1 if p #: 2, and of  order  2 if p = 2. Let now K(p) denote the maximal  abelian 
Galois p-extension of K. The fact that  K(p) is a Galois extension of  k gives the 
existence of  an exact sequence of  groups  

O ---~ A p ---~ G --. rc ---~ O , 

where Ap = Gal(K(p)/K) and G = Gal(K(p)/k). 
The fact that  over K the extension problem P(oo, m, K) is solvable, translates 

in terms of  g roup  theory as follows: 

Lemma 1. For every continuous surjective group homomorphism ~ : Av--. Z/qZ , 
q=pm, m > l ,  there exists a continuous surjective homomorphism fo :Ap~Zp  
such that the diagram 

Ap fo 

Z/qZ 

is commutative; here 4) denotes the natural homomorphism with kernel p" .Zp.  

N o w  the p roof  goes as follows. We are given an extension l/k with Gal(1/k) ~- 
ZIp"Z, where n > 1 if p # 2  and n > 2  if p = 2. We wish to construct  an extension 
M/k with Gal(M/k) ~ Z,. We have Gal(l • K/K)_~ Z/qZ, where q = 2"-  1 if p = 2, 
K C l, and q = p" otherwise;  so q > 1 in all cases. The natural  surjective map  

A p ~ G a l ( l  • K/K)  ~- Z /qZ 

is denoted by ~, and we let fo, ~b be as in Lemma 1. We are going to change fo 
in such a way that the kernel of  the new map Ap~Zp defines a Zp-extension of  K 
which is Galois and abelian over k. Then the construct ion of  M will be immediate.  

In order  to carry out  this p rogramme we need to know how the statement 
"L is Galois and abelian over k" [for an intermediate field K C L C K(p)] translates 
in terms of  group theory. 

The group n acts o n  Ap via a~=z*ar *-1 where a ~ Ap, z ~ 7~. and z * e  G a 
{ai[a E Ap, i ~ I}, where I is the augmenta t ion  ideal preimage of  z. Putt ing Ap = 
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of Z[rc], the cyclicity of rc entails Alp = [G, G], the commutator group of G. This 
follows by direct verification, taking into account that a ~-~ =T*az*-la  -1. The 
next lemma follows immediately from this consideration. 

Lemma 2. Let L be an intermediate field K C L C K(p). The following conditions 
are equivalent: 

(i) L/k is Galois with abelian Galois group, 
(ii) the subgroup Gal(K(p)/L) of Ap is invariant in G with abelian factor group, 
(iii) the natural map tp " Ap-+GaI(L/K) has the property A~CKer(~). 
It follows, in particular, that A~CKer(e). We define s'Ap--+Av by s(a)=a s 

where S = ~ r e Z[r@ Note that A~ C Ker(s), since I .  S is the zero ideal of Z[~z]. 

Proposition 1. Assume p 4 = 2, and let the notation be as above. The diagram 

p A i: i: 
Z/qZ  M , Z /qZ  I~1-1 Z/qZ  

where the map In[ denotes the (continuous) automorphism "multiplication by Ire r' 
on Zp and Z/qZ,  is commutative. Moreover, the surjective map fa=[rc[-a foos 
is such that A~CKer(fx). 

Proof. The commutativity ofthe diagram is easily verified by a straight-forward 
calculation; for the surjectivity of Ircl and [rc[- 1 one has to note that ([rt I, p)= 1. The 
inclusion A~ C Ker(fa) follows from A~ C Ker(s). Finally, the diagram tells us that 
the image of f~ is a closed subgroup of Zp mapping onto Z/qZ;  so the procyclic 
structure of Z e implies that f l  is surjective. This proves Proposition 1. 

Theorem 2 is now easily settled for p 4= 2. Let l, c~ be as before, let f l  be as in 
Proposition 1, and let LCK(p)  be the invariant field of Ker(fl). Then ICL, 
Gal(L/K)_~ Zp, and L/k is Galois and abelian by Lemma 2. Further, Galois theory 
gives us an exact sequence of abelian groups 

O--. Z p ~ G a l ( L / k ) ~  Tz--,O . 

The sequence splits by (Iz~l, p)= l, so L = M . K  where Gal(M/k)~Zp.  Finally, 
I C M again follows from (Iz~l, p)= 1. We conclude that M is the required extension 
of k and that the problem P(oo, n, k) is solvable for all n > 1. 

Proposition 2. Assume p = 2, and let the notation be as before. The diagram 

A2 s , A 2 fo , Z 2 

Z /qZ  2x , Z /qZ  

is commutative, but the homomorphism f l = fo " s not surjective. One has A~ C Ker ( f  0, 
=~fx, then f2 is a continuous surjective homomorphism Im(f0=ZZ2,  and, if f2 1 

satisfying AZ2 C Ker(fz). 
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Proof. The commuta t iv i ty  of  the d iagram and the inclusion A~CKer ( f l )  
go as before. Further,  the d iagram implies that Im(f l )  is a closed subgroup of  Z 2 
mapping  onto  2Z/qZ. If q > 2 this implies I m ( f l ) =  2Z 2 by the procyclic structure 
ofZ  z. In the case q = 2 we arrive at the same conclusion by an explicit computa t ion :  
q = 2 implies Gal(l/k) ~- Z/4Z and K C 1; let a* ~ Gal(K(p)/k) be such that a = a*[K 
generates n; then a*[I generates Gal(I/k) so the element z =(a*)  z of  Aa is not  the 
identity when restricted to l; this means ~(r)4= 0 s Z/2Z so f0(z)~ Z z \ 2 Z z ;  also 
z ~ : z  so fl(z)= fo(z 2) E 2 Z 2 \ 4 Z 2 ;  therefore 2Z 2 C Im(ft) ,  and since the opposite 
inclusion follows from the d iagram we conclude Im(fO=2Zz, as required. 
The assertions about  f2 follow immediately. This concludes the p roof  of  P ropo-  
sition 2. 

To finish the p roo f  of  Theorem 2, let l, e be as before and let f2 be as in P ropo-  
sition 2. Then  the invariant  field L C K(2) of  Ker(f2) has Galois g r o u p - - Z  2 over K, 
and L is Galois and abelian over k. There is an exact sequence 

0 ---)- Z 2 ~Gal(L/k)-~n~O. 

If this extension splits then Gal(L/k) ~- Z2Gn, and if it does not  split then Gal(L/k) ~- 
Z2. In both cases there exists an extension M of k with Galois group isomorphic  
to Z 2. 

This concludes the p roof  of  Theorem 2. 
Remark. A closer look at the construct ion reveals that in the case p = 2  the 

field M can be chosen such that the intersection Mc~l has degree 2 "-~ or  2" 
over k. 

2. Supplementary Remarks 

It is not  true that any field k, admit t ing a field extension ! with Gal( l /k)= V 4 
(cf. Theorem 2) admits  a Z/4Z-extension (and, by consequence,  a Z2-extension ). 
The field of  all totally-real algebraic numbers,  for instance, admits  V4-extensions 
and no Z/4Z-extensions. The following is an example of  a field admit t ing for 
an arbi t rary cardinal number  m an extension with Galois group (Z/2Z)% and no 
Z/4Z-extension. Let I be a set with [I[=m and let F=Q({tili6l}) be a purely 
transcendental  extension of  Q with transcendental  degree m. Choose  for every 
i 6 I  an ordering < i  o f F ,  in such a manner  that ti<~0 and 0<~t~, for j~=i. Let R i, 
F C R~ C F, be a real-closed field the ordering of  which is an extension of  < ~. Then  
k--  ( ~  ~ R i has the required proper ty :  one sees easily that Gal(/~/k) is topological ly 
generated by elements of  order  2. It is also possible to give a p roof  of  Theorem 2 
(p~2)  more  directly by using K u m m e r  theory. However,  this method  does not  
seem to be readily extendible to the case p = 2. 
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