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LINEAR INDEPENDENCE OF COSECANT VALUES

H. JAGER & H.W. LENSTRA jr.

1. INTRODUCTION

Let p be an odd prime and let m = %(p-1). It was proved by
S. CHOWLA [3], for p = 3 (mod 4) and later by HASSE [6], and by
AvouB [1], [2], for all odd p, that the m numbers

are linearly independent over Q. HASSE [6], also proved the analogous

result for the m numbers

tan 2nt P
P

]

1,...,m.

In the first part of this paper we study the similar problem for
the cosecant. It turns out that the m numbers

(1) csc gg£ , 2 =1,...,m,

are not always linearly independent over @®. We shall characterize,
partly by congruence propefties, partly by algebraic properties, those
primes p for which the numbers (1) are linearlv independent over @,
see theorem 1. Then we give a set of m numbers in terms of the cose-
cant, viz.

2 214
CcscC _P— ’ L = 1,...,m,
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which form, for every odd prime p, a Q-linearly independent set of
numbers, see theorem 2. Our first proofs of these results are analyti-
cal, using among others the partial fraction expansions of the csc and
the cscz, the functional equation for L-functions and the expressions
for L(0;x) and L(-1;x%) in terms of the generalized Bernoulli numbers.
In the second part we consider the problem from an algebraic point of
view, cf. also [6]. This algebraic approach reveals, in our opinion,
much more the real nature of the problem. It leads to the general
theorem 3, of which the theorems 1 and 2 are special instances. More-

over it contains Chowla's theorem for the cot and Hasse's for the tan.

2. TWO THEOREMS ON THE COSECANT

The analogue for the csc of Chowla's theorem on the cot reads as

follows:
THEOREM 1. Let p denote an odd prime and let m = %(p-1). The m numbers

274
csc —;— s 2 =1,...,m,

are linearly independent over Q, if and only <if the multiplicative

order of 2(mod p) is even.

PROOF. The starting point of the proof is the partial fraction expan-

sion of the csc, viz.

L n
1 (-1)

csc z = E-+ 2z Z S5 55 % #0, =1, ...

n=1 2" -nn
Putting z = 2%& , 2 =1,...,m, one obtains
o n n
ﬂ 2ng _ 1 (-1) (-1)
P ese p 2% * nzl (np+2£ np—22)'

By means of the well known orthogonality property of characters,
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1

— ) Xx()x(a) =1, 0,
p-1 X€eG

according to k = a (mod p) and k Z a (mod p) respectively, where G de-

notes the group of all Dirichlet characters to the modulus p, we see

that
Tesc 2 - Ly 3 ((-1>k>?(k)x(2n) ) (-1)k>"<(k)x(~2z)) _
P P p-1 xeé k=1 k k
© k-
=“E‘1‘ L. x(22) Z,—(:—ll%(—}i)—,rL:L...,m,
P XeG' k=1

where G' denotes the subset of G of the so-called odd characters, that
are the characters for which x(-1) = -1. Note that we used that k =

= np + 2% and n always have the same parity.
Now
o k
-1
] ) - G -nnax
k=1

and therefore

X(22) (X(2)-1)L(15%), £ = 1,...,m.

-~

XeG'

From the functional equation for L(s;x) with ¥ € é', see e.g. [77,

p.5, it follows that

(2) L(1;Y) = - fpi T(X) L(0:x),
2mit

p

where 1(X) denotes the ordinary Gauss sum zi;i x(t)e Hence

X (22) (X (2)-1)T () L0;X), & = 1,...,m.

The generalized Bernoulli numbers Bn X' n=20,1,..., X a primitive
12

Dirichlet character to the modulus f, are defined by

f-1 tz o n
x(t)ze - z B Z

fz n,x n!
t=1 e -1 n=0
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and one has

(3) L(1-n;x) = - =B _,
n n,x
. . . . 2m
see [7], §2, theorem 1. This yields our final expression for csc —E— '
viz.
2mL 2i - -
(4) csc —E—-~ E:T . x(2£)(x(2)-1)B1’X (), 2 =1,...,m.

XxeG"

Now the proof is finished in the same way'as AYOUB's proof in [1] of

Chowla's theorem. Suppose that the m rational numbers c ,2 = 1,...,m,

2
are such that

In view of (4) this implies

m
(5) L. [x@-18, L oex()1 10 = 0.
XeG' X =1

From the definition of the numbers Bn X it follows that with x a non-

7

principal character to the modulus p,

27i
p-1
B € e .
n,x of )
In fact, for the numbers B1 X we have
’
1 P2l
(6) B = = Z x(t)t, X non-principal,
Lix P gy

which follows from IWASAWA [7], p.10, last formula. Hence the whole

expression between square brackets in (5) belongs to the field
2mi

Q(ep—l). But, as AYOUB showed in [1], the numbers

T(x), X € G,
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are linearly independent over this field. Thus
— m -~
(x(2)-1)B ) c,x(8) =0, x € G'.
1,x 0=1 3

From (2), (3) and from L(1;Xx) # O we see that
Al
(7) Bllx%o,xec

and hence that
- m -
(x(2)=1) ] c,x(2) =0, x € G".
2=1

Let p be a prime for which the multiplicative order k of 2 (mod p) is
even, say k = 2. Then 2° = -1 (mod p) and therefore (x(2))° = x(-1) =
= -1, X € G'. Hence for those p we always have x(2) # 1, X € G' and
thus

m -
) c x(£) =0, x € G'.
=1
Since the matrix
(x(2)), 2 =1,...,m, X € é'r
is non-singular we must have
c, =0, 2=1,...,m,
which proves the if-part of theorem 1.

Suppose now that the order k of 2 (mod p) is odd; hence k < m.

For every complex number ¢ with ¢ # 0, %1, i, one has

(8) (Tl W C e ) S Y R

A repeated application of (8) on its own last term yields, with ¢ a

primitive p-th root of unity,
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k j j k .k .k
-1, -1 2 -2- =1 2 2 -2 -1
ic-z ) = ) (&5 - %) T+t -7
j=1
or
k-1 J j
2 - -
(9) R S
j=0

Observing that -1 is not contained in the multiplicative group gener-
ated by 2, modulo p, and that the cosecant is an odd function, we see

that (9) is nothing else than a relation

218

cgcsc 0 = 0, 1, not all CQ =0, 2=1,...,m.

p
! 0

=0, c

Io~38

L

In their studies on the representation of -1 as a sum of squares,
FEIN, GORDON & SMITH [5] and CONNELL [4], characterized the primes p
for which the condition of our theorem 1 is fulfilled. It is easy to
see that for p = 3, 5 (mod 8), the order of 2 (mod p) is always even

and that for p = 7 (mod 8) this order is always odd. In [4] and [5]

1

one finds a calculation of the asymptotic density of the primes p for
which the order of 2 is even, among all odd primes. This density is
17/24.

For every odd prime p a set of m @-linearly independent numbers,

in terms of values of the cosecant, is given by the following

THEOREM 2. Let p denote an odd prime and let m = %(p-1). Then the m
numbers

are linearly independent over Q.

PROOF. The proof is quite similar to that of theorem 1. Starting with

oo

2
csc z = 2 -——L——E-, z #0, £0,.%.,

n=-o (z-nm)
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one easily gets

2 2714 2 2 -
csc —— = —E-E———- Z- x(29)L(2;x), 2 = 1,...,m,
T (p-1) xeG"

where G" denotes the subgroup of index 2 of G of all even characters
to the modulus p, where even means that x(-1) = 1. The unit character
of G will in the sequel be denoted by Xg

From the functional equation for L(s;Xx) with ¥ € é", X # XO' see
e.g. [7], p.5, it follows that

2

L(2:%) = - 3%;-1(§)L(—1;x>
P

and hence, with (3), that

2
= ™ - A~
(10) L(25%) = =5 T(x)lex, X € G", x # Xy
p
Further,
2
- oL - N
L(2,X0) = (1 2)C(2) = (1 2) 3
p p
and so, in view of T(XO) = -1,
nz 1 - 22
(11) L(2;x0) = ;5 3 T(XO).

Now if we define for abbreviation the numbers CX, X € G", by

BZ,x’ X # X
2

1=
b

6 ' X0

we can combine (10) and (11) to

2
L(2;)) = IT-5-cxr(><), X € G".

te]
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Clearly,
2mi
—1 -ll
CX € Q(ep ) CX #0, X € G".
For future use we note'the following analogue to (6), which follows

from [7], p.10:

p-1

1 2

= 1 xS, x £ x,
P =1

(12) c =
X

: 2
So we have found the following expression for csc 2%& :

sc? 2 _ 27 (20 c,T(X)s & =1,...m.

P p_l XEG"
From this, every relation
m
2
X c, csc 21t _ 0, c, e @, £ =1,...,m,
0=1 2 L

leads to

and since the matrix
(x(2)), £ =1,...,m, x € G"

is non-singular, this is only possible when cy = 0, £=1,...,m. [J

3. AN ALGEBRAIC APPROACH

We consider a more general problem. Let K be a field, G a finite
abelian group of order n, with n prime to the characteristic of K,
and M a module over the group ring K[G]. For o ¢ M we are interested
in calculating the K-dimension of K[Gl.a = {r.a | r ¢ K[G]} and, more

generally, in finding all K-linear relations between the elements oa,
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g e G.

Define the map K[G] -~ M by sending r to ra, for r € K[G]. The
kernel I of this map is called the annthilator of a. It is an ideal
of K[G] which can be viewed as the space of linear relations between
the elements ca, 0 € G. Obviously, dimK K[Gl.a = n - dimK I; so the
question is how to determine I.

First we consider the case that K contains all e-th roots of

unity, where e is the exponent of G. Then the group of characters
- * .
G={x: G>K X is a group homomorphism}

has order n. If we put

x—l(o)c e k[G]

S

e = )
X oeG
then the set {eX | X € G} is a K-basis for K[G]. More precisely, an

element

r = Z ko.o
oeG
of K[G], with k0 € K, has the following representation on the basis

{e I X € é}:
X

(13) r= ] (] kx().e.
X€EG 0eG X
It is well known and easily proved that multiplication in K[G] is

performed componentwise on the basis {eX | X € G}:

() ke).() k' e ) =) kk'e
2 X X Z X X Z X XX

for kX,k'X € K. Thus we see that the ring K[G] is isomorphic to the
product of n copies of K, with componentwise ring operations. It fol-

lows that every ideal J of K[G] has the form -
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(14) J= ) K.e

for a subset S of G. So there are precisely 2" ideals of K[G]. We say
that J corresponds to S if (14) holds; clearly dimK(J) = #s.

The annihilator I of a now corresponds to

-~ -~ -1
{xeGle e1t=1{xec]| J x "(o)oa = 0}.
X oeG
We conclude that the space of linear relations between the oo, ¢ € G,
is completely determined by the set of characters ¥ for which

zceG x-l(o)cu = 0 (eM). In particular we have

dgim, K[Gl.a = #{x ¢ G | | x (oo # 0.
0eG
In order to deal with general K, we choose a field extension
K ¢ K' such that K' contains all e-th roots of unity, and apply the
above results to the K'[G]-module M' = K' eK M. Then the annihilators
I and I' of a(=1 8 a) in K[G] and K'[G], respectively, determine each

other by

I'=K'® IckKk"®KkK[c]=«x'lc],
= I' n K[G] (inside k'[G]).

[}
|

Further

dimK I= dimK, I’

and I' corresponds to

{x € G [ ) xal(o) 8 ca = 0}
0€EG

-~ *
where G is the group of characters G —+ K' .

Conclusion: Let K be a field and G a finite abelian group of order

prime to the characteristic of K. Let K' be an extension field of K
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containing the e-th roots of unity, with e = exp(G), and let G be the
*
group of characters x: G » K' . Then for every K[Gl-module M and every

o € M we have

dim, K[Gl.a = #{x ¢ G | ] X 1(c) 8 oo # 0 in K’ 8, M}
. 0eG
Further, the space of linear relations between {oa I 0 € G} is com-
pletely determined by the set of ¥ ¢ G for which zceG x_l(o) 8 oo = 0.
We apply this to the situationkK=9Q, M = Q(Cp) with p prime, and
G = Gal(Q(cp)/Q); here Cp denotes a primitive p-th root of unity and
M is a K[G]-module in an obvious way. We take K' = @.
For t e Z, p * t, let Ot be the element of G mapping CD to C;-
Then G = {ot | 1 <t <p-1}, and writing x(t) for x(ot) we see that G
can be identified with the set of Dirichlet characters with conductor
dividing p.
The condition zceG x-l(c) 8 oa = 0 can be expressed conveniently
in terms of the coefficients of a representation
-1
a = pZ a, c; (at € Q).
t=1
Notice that such a representation exists, since {C; | 1 <t <p-1} is
a Q-basis for Q(Cp). A short computation shows
p-1 p-l t,

Z an(o) 8 oo = ( Z x(t)at)-( Z X

u) 8 Cu).
0eG t=1 u=1 p

The second factor on the right (essentially a Gauss sum) is a nonzero
element of M', by the linear independence of {E; I 1 <u < p-1} over
Q; so

p-1

) X—1(0) 8 oa=0e> ) x(ta_ = 0.
oeG t=1

We have proved:

THEOREM 3. Let p be a prime number, and let o be an algebraic number
of the form
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with a €@ 1<¢t<p-1, where Cp denotes a primitive p-th root of
unity. Then the dimension of the @-vector space generated by the con-
Jugates of o s equal to the number of Dirichlet characters x to the
modulus p for which zi;i x(t)a_ # 0. Also, the set of these x com-
pletely determines the set of all linear relations between the conju—

gates of o.

In order to derive theorem 1 from theorem 3 we can take

o = 2p(gp—C;1)-1, since the set of conjugates of a equals

{tip.csc(2me/p) | 1 < & < m}.

An elementary computation shows

a= ) (t-p) z© + ) t gt
t odd p t even

where t ranges over the odd integers in the set {1,2,...,p-1} and over

the even ones, respectively. So we must determine for which X the sum

(15) L x(&)(t-p) + ) x(t)t
t odd t even

vanishes. We have

p-1 p-1 p-1
2(1-x(2)) ] x(®t=2 ) xvt-2 ) xot
t=1 t=1 t=1
=2 ) X(£) (t=%t) + 2 ) x(t) (t-}h(t+p))
t even t odd
= 2 x(t) (t-p) + z x(t)t.
t odd t even

Therefore the sum (15) vanishes if and only if

p-1
x(2) =1 or J x(t)t=0
t=1
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which by (6), (7) and B1 . =0 for Y € G", X # Xyr see 71, p.10, is

the same as
x(2) =1 or x(-1) = 1.

We conclude that the dimension of the Q-vector space generated by the
conjugates of o is equal to the number of odd characters x for which
x(2) # 1. So the dimension is m if and only if x(2) # 1 for every odd
character, which happens if and only if the multiplicative order of 2
mod p is even. ‘

This proves theorem 1. Theorem 2 is derived by analogous computa-
tions, using the non-vanishing of the sum

Zl )2, ¥ € a",
t=1

cf. (12).

Finally, we determine all linear relations between the conjugates
of o = 2p(r,p—;;1)'1, for an odd prime p. If I' < ¢[G] is the annihila-

tor of a(= 1 8 a) then by the above proof I' corresponds to
(16) {x | x(2 =1 or x(-1) = 1}.

2
Let J be the ideal of C[GJ] generated by 1 + o_, and 1 + o, + 0, + ...

1 2 2
.. + Ug-l, where k is the multiplicative order of 2 mod p. We claim
that I' = J, and to prove this it suffices to show that J also cor-

responds to (16).
By (13) we have eX e J if and only if some r = Z k oed

satisfies ZUEG kﬁxiO) # 0; since J is generated by 1 363_10and

1+ Oy ¥ vee + 0, 7, this happens if and only if 1 + x(-1) # 0 or

1+ x(2) + ... + )((Z)k_1 # 0, which in turn is equivalent to x(-1) =1
or x(2) = 1. So indeed 3 corresponds to the set (16).

It follows that the annihilator I of a in Q[G] is generated by

1+ 0_1 and 1 + 02 + ... + 0;—1- That means
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(17) o + o_l(u) =0
k-1 _
(18) o + 02(u) + ...+ 02 () = 0,

and all Q-linear relations between the conjugates of o can be derived
from these two by conjugation and linearity. (Further (18) follows ‘
from (17) if k is even).

Alternatively, one can prove this by verifying (17) and (18)
directly, cf. (9); dimension considerations then show that there can-

not be "more" relations.
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