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Euclidean number fields of large degree.

..

H.W. Lenstra, Jr.

Introduction.

Let K be a number field, and let R be the ring of algebraic
integers in K. We say that K is Euclidean, or that R 1is Euclidean

with respect to the norm, if for every a, b e R, b = 0, there exist

¢, d € R such that a = cb +d and N(d) < N(b). Here N -denotes the
’absolute value of the field norm K - Q.

This paper deals with a new technique of proving fields to be
Euclidean. The method, which is related to an old idea of Hurwitz [14],
is based on the observation that for K to be Euclidean it suffices
that R contains many eiements all of whose differences are units; see
section 1 for details. Some remarks about the existence of such elements
are made in section 2. In section 3 we illustrate the method by giving
132 new examples of Euclidean fields of degrees four, five, six, seven
and eight. A survey of the known Euclidean fields is given in section 4.

Acknowledgements are due to B. Matéat for making available [1] and
[23]; to E.M. Taylor for communicating to me the results of (35]; and to

P. van Emde Boas, A.K. Lenstra and R.H. Mak for their help in cemputing

discriminants.
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§1. A sufficient condition for Euclid's algorithm.

In this sectién K denotes an algebraic number field of finite degree
n and discriminant A over the field of rational numbers Q. By r and
$ we mean the number of real and complex archimédean primes of K,
respectively. The ring of algebraic integers in K 1is denoted by R. We
regard K as being embedded in the R-algebra KR = K QQ R, which, as
an R-algebra, is isomorphic to R" x ¢°. As an R-vector space we
identify € with R2 by sending a + bi to (a + b, a -.b), for a, b € R.
This leads to an identification of KR =R" x ¢® with the n-dimensional
Euclidean space R®. It is well known that this identification makes R

1
into a lattice of determinant |Al? in R".

The function N: R® x €° > R is defined by

S

r+s r
e RW x €C .

j=1

r r+s 9
(1.1) N(x) = T |x.|- T |x.]", for x = (x.)
j=1 3 j=r+l J

The restriction of N to K is just the absolute value of the field’

norm K - Q.

Writing R* for the group of units of R, we define

(1.2) M = sup{m| there exist Wy Wos eees W€ R such that

w, ~ oW, € R* for all i, j, 1 €1 < j < m}.

In section 2 we shall see that M 1is finite.
We recall some notions from packing theory, referring to Rogers's

book [32] for precise definitions. Let U c¢ R" be a bounded Lebesgue
©0

. is a
1=]

measurable set with positive Lebesgue measure u(U). If (ai)
sequence of points in R" which is sufficiently regularly distributed
throughout the space, then with the system U = (U + ai)?;] of translates
of U we can associate a density, denoted by p(U). It méy be described
as the limiting ratic of the sum of the measures of those sets of: the

system U, which intersect a large cube, to the measure of the cube, as

it becomes infinitely large. The system (I = (U + ai):;l is called



a packing of U if (U + ai) n (U + aj) =@ for all i, j, i = j. The

packing constant 6&(U) of U is defined by

§(U) = sup p(l),
u

the supremum being over all the packings U of U for which p(ll) 1is

defined. The centre packing constant §*(U) of U is defined by

(1.3) §*(U) = s(U)/u(),

cf. [17, sec. 3.17.

(1.4) Theorem. Let K Eg_gg'algebraic number field of degree n and

discriminant A over Q, and let N and M be defined by (1.1) and (1.2).

Further, let U c R" be a bounded Lebesgue measurable set with positive

Lebesgue measure, having the property

(1.5) N(u - v) < 1 for all u, v e U,

and let &*(U) denote its centre packing constant, defined by (1.3).

With these notations, K is Euclidean if the inequality

(1.6) M > s*U)-|a|?

is satisfied.

Proof. For any a, b € R, b # 0, we must find ¢, d € R such that
a=cb+d and N(d) < N(b). Writing x = a/b we see that it suffices to
find an element ¢ ¢ R with N(x = ¢c) < 1.

By (1.6) and (1.2) there exists a sequence w,, Wy eoes W of

elements of R such that
wy - wj € R¥*, for all i, j, 1 <i < j < m,
m > 6*(U)‘|Al%~

The latter inequality is, by (1.3), equivalent to

(r.7) m-u(U)/IAI% > §(U).

Consider the system



= 4 . .
u g wix * 0‘)1515111, a€eR

of translates of U. Using [32, theorem 1.5] we find that its density is
given by

p(U) = meu(v)/lal?
so (1.7) tells us that

p(U) > 8(U).
By the definition of &(U), this implies that the system U is not a
packing of U, so there are different pairs (i, a) and (j, B), with
I'<i, j<m and o, B € R, such that (U + w, X +a) n (U +mjx + B) =0,

say
u + w.x + o= v+ wjx + B (u, v € U).

If i=3j, then B~a=u-=-v, and (1.5) gives N(B - a) < 1. Since

B - a 1is an algebraic integer, this is only possible if B - a = 0,
contradicting that the pairs (i, a) and (i, B) are different. Therefore
i=j, so w - w; is a unit and N(wi - wj) =1, Put c = (B - a)/(wi - wj).

Then ¢ belongs to R, and

N(x - ¢) = N((u - V)/(wj - w)) =N@u-v) <1,

as required. This concludes the proof of theorem (1.4).

A slight modification of the argument shows that, under the condition
(1.6), the inhomogeneous minimum of N with respect to R (cf. [19, sec. 461])

1
does not exceed &*(U)-|A|?%/M.

(1.8) Corollary. Let K be an algebraic number field of degree n and

discriminant , over @, having precisely s complex archimedean primes.

Suppose thét the number M defined by (1.2) satisfies the inequality

n
n

s
(1.9) M o> El-[%}-IAIZ-

Then K 1s Fuclidean.



Proof. We apply (1.4) with

‘ I+s r_ s, I ris
U = {(x.)f=] eR x €| I |x.|+2 ¥ |x.| < in}.
373 j=1 j=r+l

The verification of condition (1.5) consists of a direct application of the
arithmetic-geometric mean inequality, which we leave to the reader. A classical

computation shows that
o (S
u(U) = ;1—]. [Z] 3
cf. [16, Ch. V, lemma 3] (the discrepancy by a factor of 2% is caused by the

difference in identifying € with R2). Thus, (1.8) is an immediate

consequence of (1.4) and the ineqdality
§(U) <1
which is generally valid [32, theorem 1.3]. This proves (1.8).
Let S be a regular n-simplex in Rn, with edge length 2. Denoting

by T the subset consisting of all points in S with distance < 1 from

some vertex of S, we define

(1.10) o = u(T)/u(s).

(1.11) Corollary. Let K be an algebraic number field of degree n and

discriminant A over Q, and suppose that

ra s gw (42,
TTn/2

1
L i
(1.12) M > o [al2.

n

Here M and o are defined by (1.2) and (1.10), respectively. Then K is

Euclidean.

Proof. We apply (1.4) with

r+s r s r 2 r+s 2
U={(x). ] ecR x¢C | £ x.“+2 5 |x.]1° < In}.
17 j=1 j=r+l

Our identification of RF x ¢° with R" makes U into an n-dimensional
sphere of radius i/n :

n
|

t M3
«
A
I
jo]
[

n
U= {(v.). € R
(/J)J=]



Property (1.5) is again a simple consequence of the atithmetic—geométri;v

mean inequality. The measure of U 1is given by

n/2 n/2
W = 17| e
H A ra + in)

and a theorem of Rogers [32, theorem 7.1] asserts that
§(U) < o,
Corollary (1.11) is now immediate from (1.4).

n/2

Table 1 gives approximate values of on-F(l + in) /7 for 1 < n< 12,

For n < 2 the tabulated value is exact; for n > 2 the table gives an
upper bound exceeding the exact value by at most 10—5. The table is derived

from a similar table of lower bounds computed by J. Leech [18].

n n

1 0.5 7 0.06982
2 /3/6 8  0.06327
3 0.18613 9 0.06008
4 0.13128 10 0.05954
5  0.09988 11 0.06137
6  0.08113 12 0.06560

Table 1. Upper bounds for on-P(l + %n)/ﬂn/z.

Straightforward computations show that (1.11) is to be preferred to (1.8)
if
(1.13) n=2, s =1 or 4<n<7, s22 or 8<n<12, s=>3
and that (1.8) is sharper in all other cases with 2 < n < 12. Applying

Stirling's formula and Daniels's asymptotic formula:
(1.14) on~%-2— (n - )

(cf. [32, ch. 7, sec. 5]) one finds that (1.11) is superior to (1.8) for all



sufficiently large n, regardless of the value of s; probably n 2 30
suffices. But the significance of this statemeﬁt is doubtful, since in the
next section we shall see that on the assumption of the generalized Riemann
hypothesis the inequality (1.12) is satisfied for only finitely many number

fields K, up to isomorphism.

We generalize theorem (1.4) by considering multiple packings. We fix

an integer k > 1.

As before, let U c R" be a bounded Lebesgue measurable set with

positive Lebesgue measure p(U). A system U = (U + ai)?;l’ with a; e Rn,

is called a k-fold packing of U if for every system of k + 1 different

positive integers (h(0), h(1), ..., h(k)) thebintersection

(U + a Y n (U + ah(])) N e.on (U + ah(k))

h(0)

is empty. The k-fold packing constant 6k(U) of U 1is defined by

Gk(U) = sup p(l),
u

the supremum being over all the k-fold packings U of U for which p(U)

is defined. Further let
. " _
(1.15) 5k(U) 5k(U)/u(U)-

Clearly, GI(U) = §(U) and 6T(U) = §*(U).
Returning to the algebraic number field K we define
(1.16) Mk = sup{ml there exist Wps Wy eoes W € R sugh that among
any k + 1 distinct indices h(0), h(1), ..., h(k)
e {1, 2, ..., m} there are two, h(i). and h(j) (say),

: - *
such that Oh (i) wh(j) € R¥*},

Notice that it is not required that the ws are different. In (2.7) we shall

see that Mk is finite. Clearly, Ml = M.
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(1.17) Theorem. Let K be an algebraic number field gf;degree n and

discriminant A over @, and let U c R" be a bounded Lebesgue measurable

set with positive Lebesgue measure satisfying (1.5). Further, let 6:(0), and

Mk, for ke Z, k 21, be defined by (1.15) and (1.16). With these

notations, K 1is Euclidean if the inequality

M > 8- falt

is satisfied for some integer k > 1.

Proof. The proof of (1.17) is completely similar to the proof of (1.4) and

is left to the reader.

(1.18) Corollary. Let K be an algebraic number field of degree n and

discriminant A over @, having precisely s complex archimedean primes.

Suppose that for some integer k 2 1 the number Mk defined by (1.16)

satisfies the inequality

M > k-E%-{%JS'IAI%.

n

Then K iE_Euclidean.

Proof. Choose U as in the proof of (1.8) and use the trivial upper bound

6k(U) < k. This proves (1.18).

The methods of this section apply to a wider class of rings. For example,
they can be used to prove a quantitative version of 0'Meara's theorem, stating
that for any algebraic number field K there exists a e R, a = 0, such
that R[a_l] ~is Euclidean with respect to a natural generalization of the
norm map, cf. [28, 31, 22]. Replacing packing theory by Riemann-Roch's
theorem one obtains similar results on rings of affine curves over arbitrary

fields of constants, cf. [22].




§2. Estimates for M.

~ The notations of section | are preserved. We define L to be the

smallest norm of a proper ideal of R:
(2.1) L= min{#(R/I)| I cR 1is an ideal, I = R}.
Clearly, L is a prime power.

(2.2) Proposition. We have 2 <M< L < 2",

Proof. The sequence 0, 1 shows M 2 2, and consideration of the ideal
I = 2R 1leads to L < 2n. To prove M < L, let Wyps Woy eees WO be any
sequence of elements of R as in (1.2), and let I ¢ R be any ideal
different from R. Then I does not contain any of the units w; = wj,

1 <1i<j<m so the elements Wyy eees W~ are pairwise incongruent

‘modulo I. Therefore m < #(R/I), which implies that M < L. This proves
(2.2).

We use (2.2) to show that no infinite sequence of Euclidean fields can
be expected to result from (1.8) or (1.11). For bounded n this is a
consequence of Hermite's theorem [16, Ch. V, theorem 5], so by the femark
following (1.14) we need only consider fields satisfying (].]é). For these

fields, (1.12) and (2.2) imply
.

r¢ o+ %n)2~0
n

Using Stirling's formula and Daniels's formula (1.14) we obtain

[A] < 5 .

1/n

la] < b4rme + o(1) (n -+ ),

where 4me = 34.1589.. . On the other hand, Serre [30] has shown on the
assumption of the generalized Riemann hypothesis (GRH), that

1/n

|A] > 8re! + o(l) (n - )

with 8we' = 44.7632.. (y 1is Euler's constant). Thus, assuming GRH, we °
conclude that n 1is bounded and that (1.12) holds for only finitely many

number fields K, wup to isomorphism. Without any unproven hypothesis,



_.]0._

. 0dlyzko [30] has shown that

I/n

[A| > ér/n-4neY + o(1) (n - ).

While this result does not allow us to draw the same conclusion unconditionally,
it does handle the totally real case (r = n, s = 0). More precisely, it
follows that for every e > 0 we have r/n <1 -y + ¢ for almost all K
satisfying (1.12); here 1 = y = 0.42278.. .

It remains undecided whether there exists a better upper bound for M,
in terms of n alone, than the bound 2" implied by (2.2). In (3.1) and
(3.3) we shall encounter fields K of arbitrarily large degree for which M > n.

From (2.2) it follows that (1.6) can only be satisfied if
1
(2.3) L > 6*%(U)-|al?

(with U as in (1.4)). It is curious to notice that (2.3) already implies

that K has class number one, since by a classical argument every ideal class

Do
.

contains an integral ideal of norm at most &*(U)-|A|
Using a multiple packing argument one can establish the following

lower bound for M:

e i ]

Its practical value is limited.

We show that for a given number field the constant M can be effectively

determined. Replacing a sequence (wi)?=l as in (1.2) by ((mi - wl)/(wzk— w‘))m
we see that it suffices to consider only sequences for which w, = 0 and wy = 1.

Then for 3 < j <m both wj and 1 - wj are units. In the terminology of

Nagell [26] this means that w,, ..., w_are exceptional units. Let E be
& 3 n exceptional
the set of exceptional units:

E = {e e R¥| 1 -~ ¢ ¢ R¥}.

Both Chowla [4] and Nagell [24] proved that E 1is finite. In fact, the set E

can be effectively determined by Baker's methods [12, lemme 4], and it is

i=1’
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clear that a search among the subsets of E suffices to determine M.

The hard step'in this procedure is the determination of E by Baker's
methods. It has not yet been carried out for a single algebraic number field.
For a few fields classical diophantine techniques have been applied to
determine E, cf. [25, 26, 361, (3.3), (3.9-11). A substantial portion of
E can often be detected by starting from a few exceptional units and
applying the following rules:

ee€eE = 1 -¢ ¢8E, e—] € E;

-1
€y Ny EN e E = (1 -¢€¢)/(1 -n) € E;

e € E = oe ¢ E for every automorphism o of K.

Most of the examples given in section 3 rely on the following proposition.

(2.4) Proposition. Let x be an element of R, and denote by f its

irreducible polynomial over Q. Further, let g denote a primitive m-th

root of unity and let 6 be a zero of X2 - X - 1. We then have:

(a) M =23 if £(0) and £(1) are both =1;
(b) M =4 if each one of £(0), £(1) and £(-1) equals #1;
(c) M=25 iﬁ each one of the algebraic integers £(0), £(1), f(ce) ig

a unit;

d) M=25 if each one of the algebraic integers £(0), £(1), £(-1), £(8)

~~

is a unit;

(e) M =26 if each one of the algebraic integers £(0), £(1), £(-1), f(§3),
f(c4) is a unit;
(f) M =6 if each one of the algebraic integers £(0), £(1), f(-1), £(8),

f(-0) is a unit.
Proof. In the cases (a), (b), (c), (d), (e),’(f) éonsider the sequences

0, 1, x,

0, 1, x, x + 1,
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0, 1, x, 1/(1 - x), (x - 1)/x,

0, I, x, x+ 1, xz,

0, 1, x, }'{2’ X3, Xa’

0, I, x, x+ 1, xz, x2 + x,

respectively. That, in each case, the sequence satisfies the requirement in
the definition of M 1is a consequence of lemma (2.5), applied to g =X, X -'],

X+ 1, X2 -X+1, X2-%x-1, X +X+1, X241 and X2 + X - 1.

(2.5) Lemma. Let f, g e ZI[X] be irreducible polynomials with leading

coefficient 1, and let x and vy be zeros of f “and g, respectively.

Then f(y) i§_§_unit i£~and only if g(x) 15.3 unit.

Proof. Suppose that g(x) 1is a unit. Then g(x)—l is integral over Z, which

easily implies
g0 € 2g()] < zlx].

Thus, there exists a polynomial hl ¢ Z[X] such that h](x)-g(x) =1, 1i.,e.

hl-g + hz‘f = ]
for some h2 € Z[X]. Substituting y for X we find hz(y)-f(y) =1, so
f(y) 1is a unit. This proves the if-part, and the converse follows by

symmetry. This finishes the proof of (2.4) and (2.5).

A second fruitful method to estimate M 1is given by the following

trivial result.

(2.6) Proposition. Writing M(K)‘ for M, we have M(K) 2 M(KO) for every

subfield K, of K.

Some of the above results can be extended to the numbers Mk' For

example, (2.2) generalizes to

2.7) 2k < k-M1 < Mk < keL (k = 1).
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As before, it follows that (1.18) cannot be expected to yield infinitely
many Euclidean fields.
I do not kno& whether the numbers Mk’ for k 2 2, can be effectively

determined for a given algebraic number field.
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§3. Examples,

This section contains 132 new examples of Euclidean fields; 128
of these are given in tabular form, and the other four can be found in (3.3),

(3.5), (3.11) and (3.17).

Cyclotomic fields. We denote by L, 2 primitive m-th root of unity.

(3.1) Let p be a prime number, and let q > 1 be a power of p.
Then the field K = Q(cq) has L = p, and consideration of the sequence

°

P _ i_ _ -, . -
'(wi)i=l’ ws (cp l)/(gp 1), shows M 2 p, so (2.2) implies M = p.
For q =p =2, 3, 5, 7, 11 the right hand side of (1.12) is approximately
equal to I, 1, 1.47, 3.12, 29.61, respectively. This gives new proofs

that Q(CS) and Q(§7) are Euclidean. The method does not handle Q(Cll)’

which is known to be Euclidean [20].

(3.2) Let K = Q(gm), where m 1s any integer = 1. Then M 2

Qalg o

for any prime p dividing m, by (2.6) and (3.1). Further, M > 1 +

b

where q is the largest prime power dividing m; this follows by

considering the sequence 0, 1, gm, sz’ cees Cm(m/Q)“l

(1.11) we find the known Euclidean fields Q(clz) (for which in fact

. Applying

M > 2 suffices) and Q(z,.), cf. [20].

15
-1
P

Then L = p, except if p 1is a Fermat prime, in which case L =p - 1.

(3.3) Let p be an odd prime number and K = Q(gp) n R = Q(Ep +7 ).

The sequence (wi)gzil)/z defined by

j

w.: = b Ep

1 ¢ e s
~i<j<i
shows that M > (p + 1)/2. The right hand side of (1.9) is for p=3, 5,
7, 11, 13, 17 approximately equal to 1, 1.12, 1.56, 4.65, 9.40,
48.68, respectively. This yields a new proof that for p < 11 the

field Q(Cp + Ep_l) is Euclidean, cf. [10] for p = 11. For p =13 we

can sharpen M 2 7 to M > 11 by considering the sequence

0, | 04 P s =004s 70y ngs (010 (o007 00,2, -
» 4 92 > Q[‘a QS s 0104; p2 043 0102 s 0205 ’ 9294 ’ 010204
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where .pi = §l31 + ;13—1. Thus we obtain the new Euclidean field

Q(Cl3 + C13‘l). It has n=6, r=6, s=0 and A = 13° = 371293,

The precise value of M remains open. Clearly M = L for P =3,

and in (3.9) we shall see that the same holds for p = 5. In the case

p = 7 all exceptional units have been determined by Nagell [26], and
his results imply that M =L = 7; in fact, writing n; = ;71 + C7—l

we have M 2 7 because of the sequence
(3.4) o0, 1, Ny I+ IUE 1 + ﬂ] + Nys 2 + Nys 2 + U + nz.

In the same way one proves that also for p = 11 one has M 2> 7.

. ~ -1 -1
(3.5) The field K = Q(c7 + ;7 ’ c5 + c5

A= 53-74 = 300125 and L = 29. It is known to be the totally real sextic

) has n=r =6, s =0,

field with the smallest discriminant [29]. The right hand side of (1.9) is

about 8.454, so by (1.8) and (1.18) the field K 1is Euclidean if M] > 9

.. B i -1 o _
or M2 2 17. Writing n, = ;7 + C7 and 6 CS ;5 we see, by

adjoining 6 as an eighth member to the sequence (3.4), that M] > 8:
(3.6) 0, 1, n;, 1+ Ny bAmp 4y, 240y, 240+ Ny, 6.

I do not know whether M] 2 9; a near miss is provided by

(3.7) 1 + 8

which differs from each of the numbers (3.6) except n, by a unit. Replace

the non-zero elements in (3.6), (3.7) by their inverses, and apply the

field automorphism sending n, to itself and 6 to -6 J. Then we obtain

another sequence showing Ml z 8:

-1 -1 -1 | -1
(3.8) 0, 1, ny o (1 + ”1) , (1 + Nyt ”2) ,» (2 + ”2) s (2 4 n, ot ”2) » —6

and since 1 + 6 1is replaced by itself we conclude that it differs by

17

a unit from each of (3.8) except nl_l. We claim that the sequence - (wi)i=l

obtained by juxtaposition of (3.6), (3.7) and (3.8) shows M2 2 17. To

prove this, let w_, w., w. be three members from this sequence; we must

h 1

show that at least one of w_ - w., Wy - Wi Wy 7w is a unit. If two
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of s Wy mj both belong to (3.6) or both belong to (3.8) this is clear.

So we may assume that wp is among (3.6), that w, = 1 + 6, and that wj

is among (3.8). Then Wy T oWy is a unit except if Wy = Ny and similarly

_ . . . LS B P _ _ -1
ws wj 1$ a unit except if wj no. Finally, if O, =M and mj =,
then W - wj is a unit. We conclude that M2 >z 17 and that K 1is
Euclidean.

Fields of small unit rank. All exceptional units in the fields with

r + s £ 2 have been determined by Nagell, see [25] for re?erences. The
resulting information about M 1is collected in (3.9), (3.10) and (3.11).

(3.9) For quadratic K,h we have M =3 if K = Q(§3) (cf. (3.1)),
M=4 o if K=QU5) = Qg+t ) (apply (2.4)(b) with £ =X° - X - 1),
and M = 2 in all other cases.

(3.10) If K 1is complex cubic, i.e., n = 3, r=s5=1, then

a),

[
1]

Q(a), a3 ~—a-1=20, A=-23 (apply (2.4)(c) to x

=
]
o
b
]
=~
I

Y)s

i
]

Q(y), Y3 +y=-1=0, A

=
i
L2
e
h
~
1l

=31 (apply (2.4)(a) to x
and M = 2 in all other cases.

(3.11) For totally complex quartic K, i.e., n=4, r=0, s=2,

we have:
M=6 if K = Q(c3; B)» 82 *I8-1=0, A=117 = 32-13 (see below),
M=5 if K=Q(g), A=125=5" (see (3.1)),

M=4 if Ko=), &=144=2%37 (ef. (3.2)),

Q(v), va -v+1=0, A=229 (prime) (see below),

oz, £), & -E-1, =0, a=272=2%17 (cf. (2.0)(a)),

M=3 if K

i

]

M=3 if K
and in all other cases
M=4 Iif /geK,

M=3 if /5 ¢ K&, e K,

t3
M=2 if /5 ¢k, ty ¢ K.
For the field Q(cg, g), 32 + CBB -1 =0, a sequence showing M > 6 1is

given by 0, 1, g, Bz, “La» ~536—1. The field with A = 229 1is a ncw
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Euclidean field: by (2.2) and (2.4)(a) it has M = 3, while (1.11) only

requires M 2 2, ,

Explanation of the tables. 1In tables 2 to 9 one finde 128 new Euclidean

fields obtained by means of (1.8) and (1.11). In the head of each table
one finds n, r and s, and which one of (1.8), (1.11) is applied.

Every row corresponds to a field K, represented as K = Ko(x), where

KO is a subfield of K. If n is composite, then a generator for KO

is given in the second column; the symbols used are explained in table 10,
If this subfield generator is 0, them K has only trivial subfields and
K0 = Q. We also take KO =@ if n 1is a prime number. Iﬁ the first
column one finds the absolute value of the discriminant of K and its
prime factorization. Further the table contéins the coefficients ags ;s
cees @ of the irreducible polynomial ag + aIX + .. + ame of x over
KO; here m 1is the degree of K over KO. In the column headed 'M 2"
one finds the lower bound for M required by (1.8) or (1.11) to prove
that K is Euclidean. The final column mentions which of our results
apply to prove this lower bound.

The fields in the tables have been found in three ways. First, the
methods of section 2 were applied to the quartic fields listed by Godwin
[6-8], the quintic fields given by Cohn [5, cf. 2] and Matzat [23], and
the totally real and totally complex sextic fields listed by Biedermann
and Richter [1]. Not all fields could be decided; for example, the field
K = Q(x), xS + x3 - xz -x+1=0, with n=5, r=1, s=2, A=
4897 = 59+83, has M 2 4 by (2.4)(b), but the right hand side of (1.12)
is about 4.001. The field has L =5, and it remains undecided whether
M=4 or M= 5.

Secondly, many examples were found by considering extension fields

of a given field K and applying (2.6).

0’

Our third approach consisted in constructing polynomials f satisfying
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one of ghe conditions (a)-(f) of (2.4), and computing their discriminants
on an electronic computer., Two programs were usea; one written by P. van
Emde Boas and one by A.K. Lenstra and R.H. Mak. Every irreducible f

whose discriminant was found to be sufficiently small gave rise to a
Euclidean field, by (2.4) and (1.8), (1.11). All fields in table 8 (degree
7) were discovered in this way. It occurred often that two polynomials

had the same discriminant. These discriminants are listed only once. We

did not test the corresponding fields for isomorphism.

Special fields. A few fields deserve special mention or require special

treatment.

(3.12) The fields Q(8) and Q(e), defined by table 10 and also

occurring in table 2, have

A = -283, Mz26 (by (2.4)(e))
and |

A = -331, M=L=5 (by (2.4)(c)),
respectively.

(3.13) The totally complex sextic fields with A = -12167 and A =
=29791 occurring in table 5 are the Hilbert.class fields of Q(/=23) and
Q(/=31), reépectively. There are two other fields in table 5 which are
normal over @: the abelian field acz, + ;7", ty) with & = -64827 and
the class field over Q(v=11) with conductor (2), having A = -21296.

It has M 2 4 because of the sequence 0, 1, x, —sz, where x + kx + 1
= 0, K3 + K2 -k + 1 = 0, The subfield Q(x) has n=3, r=3s-=1
and A = -44,

(3.14) The only other normal field in our tables is the Hilbert class
field of Q(V=39), with A = 2313441, occurring in table 9. It can be
written as Q(CB’ B, x), with 82 + ;38 -1=0, 'xz + c32x -1=0

(notice that B and x are conjugate over @), and it contains the field

with A = -507 occurring in table 2. The field has M > 7 because of the
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sequence 0, 1, B, 82, ~C3, -EBB_I, ‘C3X-

- (3.15) The field with A = 1890625 occurring in table 9 is normal

over Q(z;5 + ;5_1). It has M 2 6 because of the sequence 0, |

-1 -1 2 2
Lg =Ly 5 |1 tg “ %5 » 1 +1L,, x, where x" - x + (c5 +z
(3.16) The‘field with A = -21168 occurring in table 5 has
because of 0, 1, 1 + c3, X, where x3 - c3x2 + (g3 - 1)x + l‘
(3.17) Let K = Q(x), with x5 + 2x4 + x3 - x2 -3x-1=0.

5
M

The

field has n=5, r=3, s=1, -A= 11119 (prime), L = 7 and the

right hand side of:(l.9) is about 5.156. Thus, K is Euclidean if

M, 26 or M, 211, by (1.18). I do not know whether M‘ > 6; but a

1 2
sequence showing M2 > 12 1is given by
2
0, 1, x+1, (x+1)%/x, x/(x+1),
0, 1, (x+ DY xx+ D% (x+ 1)/x,

X, X

as can be verified by the method of (3.5). It follows that K is

Euclidean.



275 = 5711
283 (prime)

331 (prime)

400 = 2%.52
448 = 2%.7
475 = 52419

491 (prime)

507 = 3~]32

563 (prime)
643 (prime)

775 = 52°31

s =1; (1.8) is applied.

ags Aps eees A

-6, 1, 1
-1, -1, 0,
-1, 3, -2,
-8, 0, 1
I, =2, 1
8, 1, 1

1, 3, -1,
Iy, =p, 1
-1, =1, 1,
-1, -3, 0,

...20_

M2

method

(2.2)
(2.4) (a)
(2.4)(a)
(2.6),(3.9)
(2.4)(a)
(2.6),(3.9)
(2.4)(a)
(2.4)(a)
(2.4)(a)
(2.4) (b)
(2.6),(3.9)
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n=35 r=1, s=2; (l1.11) is applied.

A ao, a, a5, a3, a,, a5 M 2 method
1609 (prime) -1, 1, 1, -1, 0, 1 3 (2.4)(a)
1649 = 17:97 -1, 1, 0, -1, 1, 1 3 (2.4)(a)
1777 (prime) -1, 2, 1,-2, 0, 1 3 (2.4)(a)
2209 = 472 1, =2, 2,-1, 0, 1 3 (2.4)(a)
2297 (prime) =1, 1, -1, 1, 0, 1 3 (2.4)(a)
2617 (prime) =1, 0, -2, 1, 0, 1 3 (2.4)(a)
2665 = 5:13-41 -1, =2, 0, 1, 0, 1 3 (2.4)(a)
2869 = 19:151 -1, -1, 0, 0, 0, 1 4 (2.4)(b)
3017 = 7-431 I, 0,1, 0, 0, 1 4 (2.4)(b)
3889 (prime) -1, 1, =1, 0, -1, 1 4 (2.4)(c)
4417 = 7-631 -1, 2, -2, 1, 0, 1 4 (2.4)(c)

4549 (prime) 1, 1, -2, -2, 2, 1 4 (2.4)(b)
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Table 4.
n=5 r=3, s=1; (1.8) is abplied.

=A ags a;, a,, ags 3, ag M > method

4511 = 13-347 -1, 0, 1, -2, 0, 1 4 (2.4) (b)

4903 (prime) =1, 1, 1, =2, 1, 1 4 (2.4)(b)
5519 (prime) -1, 1, 1, -3, 0, 1 4 (2.4) (b)
5783 (prime) -1, é, 1, =3, 1, 1 4 (2.4)(b)
7031 = 79-89 -1, -1, 1, -1, 0, 1 5 (2.4)(c)

7367

53-139 1, 2, o0, -3, =2, 1 5 (2.4)(d)

7463 = 17439 1, =2, 1, 0, -2, 1 5 (2.4)(c)

]

8519

]

71217 1, -1, -1, 0, -1, 1 5 (2.4)(d)

8647 (prime) I, 2, -2, -3, 0, 1 5 (2.4)(d)




5.

Table
ﬂ =‘6, r =0,
-A
9747 = 33.192
10051 = 19+232
10571 = 11-312
10816 = 2°.132
11691 = 33.433
12167 = 233
14283 = 33.232
14731 (prime)
16551 = 33.613
18515 = 5.7.232
21168 = 2%.33.92
21296 = 2%.1;3
22291 (prime)
22592 = 2%.353
22747 = 23%.43
23031 = 33853
24003 = 33.7.127
27971 = 83.337
29095 = 5.11.232
29791 = 313

© 31211 = 232.59
33856 = 2°%.232
33856 = 20.232
36235 = 5.7247
41791 = 23%.79
64827 = 3.7°

_23_

(1.11) is applied.

8.y 8., «e.y a
0’ °1? > “m

t3’ l -
a=1,1,"1
=y +1, 1, 1
-l’ l’ C4
63; I, -1, 1

1, o = l,vl

—C3, ~2, C3, 1
I, a, 1

1, L3 1,

1, k, 1

CB: -

-1, 1

M 2 method

3 (2.6),(3.9)
3 (2.6),(3.10)
3 (2.6),(3.10)
3 (2.4)(a)

3 (2.6),(3.9)
3 (2.6),}3.10)
3 (2.6),(3.10)
3. (2.4)(a)

4 (2.4)(b)

4 (2.6),(3.10)
4  (3.16)

4 (3.13)

4 (2.4)(c)

4 (2.4)(c)

4 (2.6),(3.10)
4 (2.4)(b)

4  (2.4)(b)

5 (2.4)(c)

5  (2.6),(3.1¢)
5  (2.4)(c)

5 (2.6),(3.10)
5 (2.6),(3.10)
5 (2.6),(3.10)
5 (2.4)(c)

5 (2.6),(3.10)
7 (2.6),(3.3)



Table 6.

n==6,
A

28037 = 237+53

29077
29189
30125
31133
31213
31709
32269
33856
35125
35557
37253
37568
39269
40277
40733
41069
45301
47081
47669
49664
53429
61193
61504

69629

2

(prime)

2

177-101

53.24

163191

74‘13

3785
23%.6
26.23
53.28

312.3

(prime)

]

26-58

107-367

(prime)

7-1]-232

7+586
89-50

232.8

1

7

|
2

1

7

7

7

9

9

73653

22.97

232‘101

11+5563

26-31

74-29

2

-2 -

(1.11) is applied.

a a ceey a
0° “1° > “n

=1, a2 - a, |1
-1, 2, =1, 0, 1, -1, 1
1, 1,1, 0, -3, 0, 1

1 -96,1, -0, 1

1, 2, 0, -1, =2, 0, 1

A, =1, 0, 1

=15 a, 1

-1, =1, =1, 1, 1, 1, 1
Yy -1, 0, 1

M 2 method

(2.6),(3.10)
(2.4) (c)
(2.4) (d)
(2.4) (c)
(2.4)(d)
(2.6),(3.3)
(2.4) ()
(2.6),(3.10)
(2.6),(3.10)
(2.4) (c)
(2.4) (D)
(2.4) ()
(2.4)(c)
(2.4)(d)
(2;4)(0)
(2.6),(3.10)
(2.4)(d)

(2.4) (e)

(2.4) (£)

- (2.4)(e)

(2.4)(£)
(2.4) (£)
(2.4) (e)
(2.4)(£)

(2.6),(3.3)



92779 (prime)

103243 = 74-43

25 -

s =1; (1.8) is applied.

%o

0

n

a., Ay eesy A
0’ "1’ > “m

1, 2, -1, -3,

2
n.-2,m, 1

-2, 1, 1

M2

6

7.

method

(2.4) (£)
(2.6),(3.3)
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84, 35,

n=17, r = I, s=3; (1.11) is applied.
=A ao, al, az, a3,
184607 (prime) -1, -1, 1, 1,
I93327 (prime) -1, ,2’ 0, -2,
193607 (prime) -1, 0, -1, -1,
196127 = 29-6763 1, -2, 2, o,
199559 (prime) I, =1, 0, 1,
201671 = 17-11863 1, 1, -1, -1,
202471 (prime) 1, -1, -1, 2,
207911 = 11+41+461 -1, 0, I, -1,
211831 = 19:11149 1, -1, 2, -1,
214607 (prime) -1, -1, 2, 3,
224647 = 277-811 -1, 0, 2, 1,
227287 = 1671361 -1, 0, 2, O,
237751 = 23+10337 -1, -1, 3, 4,
242147 (prime) 1, -1, 2, -1,
242971 (prime) -1, =1, 1, 2,
250367 = 13-19259 1, 1, -1, 2,
252071 = 833037 -1, -1, 0, 2,
267347 = 101+2647 1, -1, -4, 3,
270607 = 4614587 -1, 0, 2, 2,
‘272671 = 7-38953 1, -2, -3, 6,
- 319831 (prime) -1, -3, -3, -1,
330487 = 23-14369 1, -1, 0, -1,
349847 = 19-18413 -1, -1,.-1, -1,

M2

method

(2.4)@d)

(2.4)(c)
(2.4) (c)
(2.4)(c)
(2.4) (c)

" (2.4)(d)

(2.4)(c)
(2.4) (c)
(2.4) (c)
(2.4)(d)
(2.4)(d)
(2.4) @)
(2.4)(d)
(2.4) (c)
(2.4)(d)
(2.4) (d)
(2.4)(d)
(2.4)(£)

(2.4)(£)

(2.4)(£)
(2.4)(e)
(2.4) (e)
(2.4) (e)



Table 9.

1257728
1282789
1327833
1342413
1361513
1385533
1424293
1474013
1492101
1513728
1520789
1578125
1590773
1601613
1797309
1820637
1867553
1890625
2149173

2313441

8

2717

3

1103-1163 -

4

2

3°¢137+97

4

3716573

1728

29-47777
13-3312

617-2389

34'13

8 .4

273°-73

29-2292

56'10

179-8887

36'13

4

3722189

4

(prime)

1]

56'11

4

34°]3

3

2

1

3

3 '7-132

2

4

<109

*19

3 '132-157

- 27 -

(1.11) is applied.

., 8,5 eeey @
0’ 1’ > “m

-1, =g, 1 ‘ g v

1, 0, -3, 0, 5, 1, -3, -1, 1
1, B+1, 1

-CB, 1;3, | C3, C3 -1, 1

§+1, 1,1

2
_QB,B“]’I '
C3’ C3 1’ 2C3— ]’ C3+ 1’ l
1, B, 1

method

(2.4) (d)
(2.4)(d)
(2.6),(3.11)
(2.4) (c)
(2.6),(3.12)
(2.4)(c)
(2.6), (3.12)
(2.4) ()
(2.6),(3.11)
(2.4) (c)
(2.4)(d)
(2.6, (3.11)
(2.4) (c)
(2.6), (3.11)
(2.4) (£)
(2.6),(3.11)
(2.4) (e)

(3.15)

(2.6),(3.11)

(3.14)
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Table 10. Subfield generators.

symbol defining equation . ref,
a o -a-1=0 | (3.10)
B B2+ g8 -1=0 @3.11)
y Y ry-1=0 | (3.10)
§ 64 -§-1=0 (3.12)
€ 54 - 252 + 3 -1=0 (3.12)
) m-th cyélotomic equation (3.1),(3.22
n ‘n3+n2-2n~1=0 (n= C7+c7-l) (3.3)
0 62 -6 -1=0 (e=—;5—g5']) (3.9)
K K3 + Kz -k +1=0 - (3.13)
A A2 - -1=0 (A =1+ /2)
! W mu-3=0  (u= 4+ /T3
v \)4 -~—v+1=0 (3.11)
2

; E-e-¢, =0 (3.11)
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§4. The number of known Euclidean fields.

At the time of'writing this (Septeﬁber 1976) I know 311 non-isomorphic
Euclidean number fields. Table 11 shows how they are distributed with respect
to n and r + s. We indicate the sources; the references are to the most
informative rather than to the original publications.

[13, Ch. 14].

A
[N
L]
"
(1]
(13

n

2: see [11, 35].

n=3, r+s

3: see [9, 33, 34].

=
it
w
-
=
+
12}
]

2: thirty fields appear in [15]; for the other two, with

=]
i
£
-
2]
+
w
[

A= 125 and A = 229, see (3.10).

3: see sec. 3, table 2.

=}
it
£
.
a}
+
2}
i

n=14, r+s=4: see [10].

n=25, r+s=3: see sec. 3, table 3.

n=5, r+s=4: see sec. 3, table 4, and (3.17).
n=25, r+s=25 see[10] or (3.3).

twenty-six fields appear in sec. 3, table 5; the other

=]
]
'O'\
a
+
w
i
?0

two are Q(c7) and Q(cg), with A = -16807 and A = -19683, see [20].

see sec. 3, table 6.

=
i
=)
)
m
+
[42]
]
ENd

see sec. 3, table 7.

=
i
N
-
a
+
w
]
w

n=6, r+s=6: see (3.5 and (3.3).
n=7, r+s=14: see sec. 3, table 8.

4: twenty fields appear in sec. 3, table 9; the other

n=28, r+s
four are Q(cls), Q(CZO), Q(C24) and Q(cl6), having A = 1265625,

A

4000000, A = 5308416 and A = 16777216, respectively [20, 21, 27].
n=10, r+s=5 thisis Q(,), with A = -2357947691, see [20].

It has been proved that the only Euclidean fields with n < 2 are
the known ones [13, Ch. 14], and that there exist only finitely many

Euclidean fields with r + s < 2, up to isomorphism [3].
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n 1 2 3 4 5 6 7 8 10 |total
r + s
I ! 5 6
2 16 52 32 100
3 57 11 12 28 108
4 9 10 25 23 2 91
5 ! 2 0 0 1 |
6 2 0 0 0 2
total 121 109 52 23 57 23 24 T Y

Table

11.

The number of known Euclidean fields.
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