pp. 69-73 in: Algebraic K-theory, Evanston 1976, edited by Michael R. Stein, Lecture Notes in Mathematics 551, Springer-Verlag, Berlin 1976.

K, OF A GLOBAL FIELD CONSISTS OF SYMBOLS

H.W. Lenstra, Jr.
Mathematisch Instituut
Universiteit van Amsterdam
Amsterdam, The Netherlands

Introduction. It is well known that K_2 of an arbitrary field is generated by symbols $\{a, b\}$. In this note we prove the curious fact that every element of K_2 of a global field is not just a product of symbols, but actually a symbol. More precisely, we have:

Theorem. Let F be a global field, and let $G \subset K_2(F)$ be a finite subgroup. Then $G \subset \{a, F^*\} = \{\{a, b\} \mid b \in F^*\}$ for some $a \in F^*$.

The proof is given in two sections. In section 1 we prove the analogous assertion for a certain homomorphic image of $K_2(F)$, by a rearrangement of the proof of Moore's theorem given by Chase and Waterhouse [3]. In section 2 we lift the property to $K_2(F)$, using results of Garland and Tate.

1. A sharpening of Moore's theorem. Let F be a global field, i. e., a finite extension of Q or a function field in one variable over a finite field. The multiplicative group of F is denoted by F^* , the group of roots of unity in F by μ , and its finite order by F m. By a prime F of F we shall always mean a prime divisor of F which is not complex archimedean. If F is non-archimedean, then we also use the symbol F to denote the associated normalized exponential valuation. For a prime F of F, let F be the completion of F at F w. The group of roots of unity in F is called F and its finite order F m(F which is map is given by the so-called "tame formula", cf. [1, sec. 1]. This formula implies that, for those F with F which modulo the maximal ideal is congruent to a F which modulo the maximal ideal is congruent to a F which modulo the maximal ideal is congruent to a F thus a bimultiplicative map

$$\varphi : \mathbf{F}^* \times \mathbf{F}^* \to \bigoplus_{\mathbf{v}} \mu_{\mathbf{v}}, \qquad \varphi(\mathbf{a}, \mathbf{b}) = ((\mathbf{a}, \mathbf{b})_{\mathbf{v}})$$

is induced; here v ranges over the primes of F. The image of ϕ is, by the m-th power reciprocity law, contained in the kernel of the homomorphism

$$\psi : \bigoplus_{\mathbf{V}} \mu_{\mathbf{V}} \longrightarrow \mu$$

defined by

$$\psi(\zeta) = \prod_{v} \zeta_{v}^{(m(v)/m}, \qquad \zeta = (\zeta_{v}).$$

We need the following converse, which is a sharpening of Moore's theorem [3].

<u>Proposition</u>. Let H be a finite subgroup of the kernel of ψ . Then $H \subset \phi(a, F^*) = \{\phi(a, b) \mid b \in F^*\}$ for some $a \in F^*$.

The proof is a bit technical. The ingredients are taken from [3], but the strengthened conclusion requires a reorganization of the argument which does not add to its transparency. The reader may find the table at the end of this section of some help.

 $\underline{\underline{Proof}}$ of the proposition. We begin by selecting four finite sets S, T, U, V of primes of F.

For S we take the set of real archimedean primes of F. It can be identified with the set of field orderings of F. If F is a function field it is empty.

For T we take a finite set of non-archimedean primes of F containing those v for which at least one of (1), (2), (3), (4) holds:

- (1) $\zeta_{x} \neq 1$ for some $\zeta = (\zeta_{x}) \in H$;
- (2) v(h) > 0, where h is the order of H;
- (3) v(m) > 0;
- (4) (,) is not tame.

Note that in the function field case (2), (3) and (4) do not occur.

If F is a function field, then choose an arbitrary prime v_{∞} of F which is not in T, and put $U = \{v_{\infty}\}$. In the number field case let $U = \emptyset$.

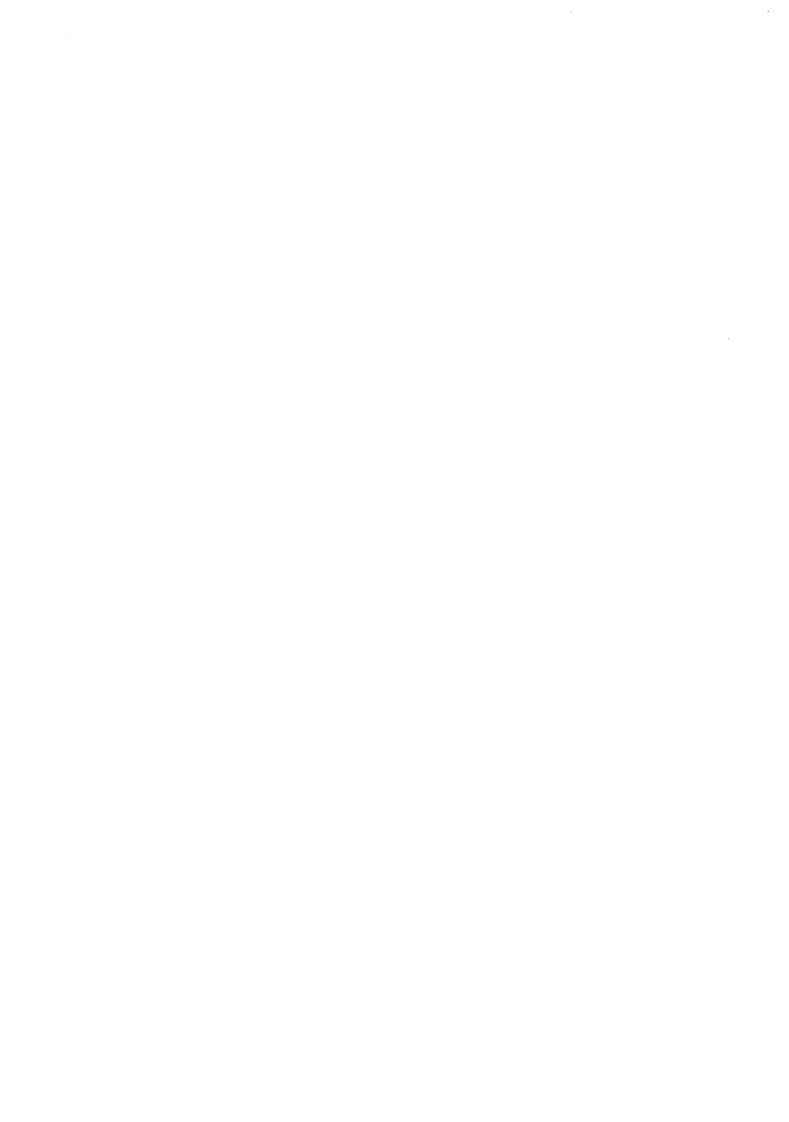
The selection of V requires some preparation. Let $R \subset F$ be the Dedekind domain $R = \{x \in F \mid v(x) \geq 0 \text{ for all primes } v \notin S \cup U\}$. Every prime $v \notin S \cup U$ corresponds to a prime ideal of R, denoted by P_v . For any rational prime number ℓ dividing the order ℓ of H, consider the abelian extension $F \subset F(\eta_{\ell})$, where η_{ℓ} denotes a primitive ℓm -th root of unity. Clearly, $F \neq F(\eta_{\ell})$, and the extension $F \subset F(\eta_{\ell})$ is unramified at every $v \notin S \cup T$. So for every $v \notin S \cup T \cup U$ the Artin symbol $(P_v, F(\eta_{\ell})/F) \in Gal(F(\eta_{\ell})/F)$ is defined. By Čebotarev's density theorem, cf. [2, p.82], it assumes every value infinitely often. Hence we can choose a finite set V of primes, disjoint from $S \cup T \cup U$, such that

(5) for every rational prime ℓ dividing h there exists $u \in V$ with $(P_u, F(\eta_\ell)/F) \neq 1$.

Next, using the approximation theorem, we choose a ϵ F* such that

- (6) a < 0 for every ordering of F,
- (7) v(a) = 1 for all $v \in T$, v(a) = 0 for all $v \in U$, $a \sim 1$ at all $v \in V$

(here "~" means "close to"). We claim that this element a has the required property. Before proving this, we split the remaining primes of F in two parts:



$$W = \{v \mid v \notin S \cup T \cup U \cup V, v(a) \neq 0\}$$

$$X = \{v \mid v \notin S \cup T \cup U \cup V, v(a) = 0\}.$$

Thus, we are in the situation described by the first two columns of the table. Notice that W is finite.

Now let $\zeta = (\zeta_v) \in H$ be an arbitrary element. To prove the proposition, we must find an element $b \in F^*$ such that $\zeta = \phi(a, b)$, i. e., $\zeta_v = (a, b)_v$ for all v.

By (6) and (7) we can find, for each $v \in S \cup T$, an element $c_v \in F_v^*$ with $(a, c_v)_v = \zeta_v$, cf. [4, lemma 15.8]. Choose $c \in F^*$ close to c_v at all $v \in S \cup T$ and close to 1 at all $v \in W \cup U$. Then for $v \in X$ the tame formula tells us that $(a, c)_v$ is the unique root of unity which modulo the maximal ideal is congruent to $a^{v(c)}$. For the value of $(a, c)_v$ if $v \notin X$, see the table.

We fix, temporarily, a rational prime number ℓ dividing h. We make some choices depending on ℓ . First, using (5), choose $u \in V$ such that $(P_u, F(\eta_{\ell})/F) \neq 1$. Next, choose $k \in \{0, 1\}$ such that the fractional R-ideal

$$Q = P_u^k \cdot \prod_{v \in X} P_v^{v(c)}$$

satisfies $(Q, F(\eta_{\ell})/F) \neq 1$. Finally, using a generalized version of Dirichlet's theorem on primes in arithmetic progressions [2, pp. 83-84], we select a prime $w \in X$ such that

(8) $P_{xy} \cdot Q = (d)$ (as fractional R-ideals)

where d satisfies the following conditions:

- (9) d > 0 for every ordering of F,
- (10) $d \sim 1$ at all $v \in T$,
- (11) $v(d) \equiv 0 \mod N$, where $N = m(v) \cdot [F(\eta_{\ell}):F]$, for all $v \in U$, $d \sim 1$ at all $v \in W$.

Then d has the properties indicated in the sixth column of the table, and (a, d) v is given by the seventh column. Also, (9), (10) and (11) imply that $((d), F(\eta_{\ell})/F) = 1$, so (8) and the choice of Q give

$$(P_w, F(n_\ell)/F) = (Q, F(n_\ell)/F)^{-1} \neq 1.$$

Therefore, $P_{\mathbf{w}}$ does not split completely in the extension $F \in F(\eta_{\ell})$, which is easily seen to be equivalent to

 $m(w)/m \not\equiv 0 \mod \ell$.

The table tells us that $(a, c/d)_v = \zeta_v$ for all $v \neq w$, so

$$\phi(a, c/d) = \zeta \cdot \theta$$

where $\theta=(\theta_{\mathbf{v}})$ is such that $\theta_{\mathbf{v}}=1$ for all $\mathbf{v}\neq\mathbf{w}$. Since ζ and $\phi(a,\,c/d)$ are in the kernel of ψ , the same must hold for θ . That means $\theta^{\mathbf{m}(\mathbf{w})/\mathbf{m}}=1$, so

$$\phi(a, (c/d)^{m(w)/m}) = \zeta^{m(w)/m}$$

We conclude that for every rational prime ℓ dividing h we can find a positive integer $n(\ell) = m(w)/m$ and an element $b(\ell) = (c/d)^{n(\ell)}$ of F^* such that

$$\phi(a, b(l)) = \zeta^{n(l)}, \qquad n(l) \not\equiv 0 \mod l.$$

Clearly, if ℓ ranges over the rational primes dividing h, the numbers $n(\ell)$ have a greatest common divisor which is relatively prime to h. Hence we can choose integers $k(\ell)$ with $\Sigma_{\ell} k(\ell) n(\ell) \equiv 1 \mod h$, and putting $b = \Pi_{\ell} b(\ell)^{k(\ell)}$ we find

$$\phi(a, b) = \prod_{\ell} \phi(a, b(\ell))^{k(\ell)} = \zeta^{\sum k(\ell)n(\ell)} = \zeta.$$

This proves the proposition.

The table:

Vε	a	$^{\zeta}\mathbf{v}$	С	(a,c) _v	d	(a,d) _v	$(a,c/d)_v$
S	<0	(a,c _v) _v	~c	(a,c _v) _v	>0	1	(a,c _v) _v
T	v(a)=1	(a,c _v) _v	~c_v	(a,c _v) _v	~1	1	(a,c _v) _v
U	$\mathbf{v}(\mathbf{a})=0$	1	~1	1	N v(d)	1	1
V	~1	1	-	1	-	1	1
W	v(a) ≠0	1	~1	1	~1	1	1
X	v(a)= 0	1	-	_{≡a} v(c)	v(d)=v(c) (v≠w)	_{€a} v(d)	1 (v≠w)

2. Proof of the theorem. We preserve the notations of section 1. There is a group homomorphism

$$\lambda \colon K_2(F) \to \bigoplus_{\mathbf{v}} \mu_{\mathbf{v}}$$

sending {a, b} to $\phi(a, b)$, for a, b \in F*. A theorem of Bass, Tate and Garland [1, sections 6 and 7] asserts that

(12) $Ker(\lambda)$ is finite.

Further, Tate [1, sec. 9, cor. to th. 9] has proved that

(13)
$$\operatorname{Ker}(\lambda) \subset (K_2(F))^p$$
 for every prime number p.

From (12) and (13) it is easy to see that there exists a <u>finite</u> subgroup $A \subset K_2(F)$ such that $Ker(\lambda) \subset A^p$ for each prime number p.

We turn to the proof of the theorem. Let $G \subset K_2(F)$ be a finite subgroup. Replacing G by $G \cdot A$ we may assume that

(14) $\operatorname{Ker}(\lambda) \subset G^{p}$ for every prime number p.

By the proposition of section 1, applied to $H = \lambda(G)$, there exists $a \in F^*$ such that $\lambda(G) \subset \lambda(\{a, F^*\})$. We claim that $G \subset \{a, F^*\}$.

To prove this, let $N = \{a, F^*\} \cap G$. Then $\lambda(G) = \lambda(N)$ so $G = N \cdot Ker(\lambda)$, and using (14) we find

$$(G/N) = (N \cdot Ker(\lambda))/N \subset (N \cdot G^p)/N = (G/N)^p$$

for every prime number p. Thus, the finite group G/N is <u>divisible</u>, and consequently $G/N = \{1\}$. It follows that G = N, so $G \subset \{a, F^*\}$.

This concludes the proof of the theorem.

References.

- 1. H. BASS, K_2 des corps globaux, Sém. Bourbaki $\underline{23}$ (1970/71), exp. 394; Lecture Notes in Math. 244, Berlin 1971.
- 2. H. BASS, J. MILNOR, J.-P. SERRE, Solution of the congruence subgroup problem for SL_n (n \geq 3) and Sp_{2n} (n \geq 2), Pub. Math. I. H. E. S. 33 (1967), 59-137.
- 3. S.U. CHASE, W.C. WATERHOUSE, Moore's theorem on uniqueness of reciprocity laws, Invent. Math. 16 (1972), 267-270.
- 4. J. MILNOR, Introduction to algebraic K-theory, Ann. of Math. Studies 72, Princeton 1971.

