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Introduction. It is well known that KZ of an arbitrary field ieﬁgenerated by sym-
bols {a, b}. In this note we prove the curious fact that every element of K2 of

a global field is not just a product of -symbols, but actually a symbol. More precisely,
we ‘have: s -

Theorem. Let F be a global field, and let G c K (F) be a f1n1te subgroup. Then

G c {a, F*} = '{{a,.b}| b'e F*} for some a e F . C

The’ proof is given in two.sections. In section 1 we prove the analogous assertion for
d certain homomorphic image of: K (F), by a rearrangement of the proof of Moore's
theorem given by Chase and Waterhouse [3]. In sectlon 2 we 11ft the property to K (F),

using results of Garland and Tate. . . ' .

1. A sharpening of Moore's theorem, Let F be a global field, i. e., a finite ex-

tension of Q or a function field in one variable over a finite field. The multi-
plicative group of F is denoted by F*, the group.of roots of unity in F by yu,
and its finite order by m. By a prime v of F we shall always mean a prime divisor
of F which is not complex archimedean. If v 1is non-archimedean, then we also use
the symbol v to denote the associated normallzed exponent1a1 valuatlon. For a prime
v of F, let F be the completion of F at v. The group of roots of unity in

Fv is‘called oo ‘and its finite order m(v). The m(v)-th power norm residue\symbol
E: x F >, is denoted by (, ) ‘For_all but finitely many v this map is given
by the so*called ""tame formula", cf “[1, sec. 11. Thls formula implies that, for those
v, ‘and for® ‘all a, be F with v(a).= 0, the symbol (a, b)v is the unique root
of unity in F which modulo the maximal, ideal is congruent to av(b). It follows
{that, for any a, b ¢ F*, we have {a, b)v 1 for almost all v. Thus a bimulti-

l'pllcatlve map
P ‘t"éN* *
W EF X - @, ¢(a, p) = ((a, b))
. v v
is indueedi here v ranges over the primes of F. The image of ¢ is, by the m-th
power reciprocity law, contained in the kernel of the homomorphism
Vi@ u, —u

defined by

m(v)/m

¥v(z) = H z, L = (;v)-

We need the follow1ng converse, which is a sharpening of Moore's theorem [3].






W

PrdEosition;“ Let H be a finitevéubgroup of the kernel of w.' Then H c ¢(a, F*) =
{¢(a, )| b € F*] for some a ¢ F*. ' -

The proof is a bit technical. The ingredients are taken from [3], but the strengthened
conclusion requires a reorganization of the argument which does not add to its trans-

parency. The reader may find the table at the end of this section of some help.

Proof of the proposition. We begin-by selecting four finite sets S, T, U, V of
primes of F.

For S we take the set of real archimedean primes of F. It can be identified
with the set of field orderings of F. If F is a function field it is empty.

For T we take a finite set of non-archimedean primes of F containing those

v for which at least one of (1), (2), (3), (4) holds:

e)) T, * 1 for some [ = (;v) e H;

2) v(h) > 0, where h is the order of H;
(3) v(m) > 0;

(4) (, )v is not tame.

Note that in the function field case (2), (3) and (4) do not occur.

If F is a function field, then choose an arbitrary prime v_ of F which is
not in T, and put U = {v_}. In the number field case let U = §.

The selection of V requires some preparation.-Let R ¢ F be the Dedekind domain
R={x e F| v(x) 20 for all primes v ¢ S u U}. Every prime v ¢ S u U corresponds
to a prime ideal of R, denoted by Pv' For any rational prime number ¢ dividing
the order h of H, consider the abelian extension F c F(nl), where Ny denotes
a primitive &m-th root of unity. Clearly, F = F(nz), and the extension F c F(nz)
is unramified at every v ¢ S U T. So for every v ¢ S U T u U the Artin symbol
(Pv, F(nl)/F) € Gal(F(nQ)/F) is defined. By Cebotarev's density theorem, cf. [2, p.82],
it assumes every value infinitely often. Hence we can qhoose a finite set V of primes,

disjoint from S u T u U, ‘'such that

(5) for every rational prime & dividing h there exists u e V

- with (Pu’ F(nz)/F) =1,
Next, using the approximation theorem, we choose a € F* _such that
(6) a ; 0 for every ordering of F,
7) v(a) =1 for all v e T,
v(a) = 0 for all v ¢ ﬁ,
a~1 atall velV

(here "~" means "close to"). We claim that this element a has the required property.

Before proving this, we split the remaining primes of F in two parts:






W= {v|vé¢SuTuUUV, v(a) =0}
X={v|]v¢SuTuUuV, v(a) = 0}.
Thus, we .are in the situation described by the first two columns of the table. Notice
that W 1is finite. - k '

Now let ¢ = (cv) € H be an arbitrary element. To prove the proposition, we must
find an element b e F* such that ‘c = ¢(a, b), 1i. e., z, = (a, b)v for all wv.

By (6) and (7) we can find, for each v e S u T, an element c, € F; with
(a, cv)v = C,» cf. [4, lemma 15.8]. Choose c € F* close to c, at all veSuT
and close to 1 at all v e Wu U. Then for v € X the tame formula tells us that
(a, c) is the unique root of unity which modulo the maximal ideal is congruent to
v(c). For the value of (a, c)V if v ¢ X, see the table.
We fix, temporarily, a rational prime number 2 dividing h. We make some choices
depending on &. First, ﬁsing (5), choose u € V such that (Pu’ F(nz)/F) #z 1. Next,

choose k € {0, 1} such that the fractional R-ideal

- pvic)
Q= Pu veX v

satisfies (Q, F(nl)/F) # 1. Finally, using a generalized version of Dirichlet's
theorem on primes in arithmetic progressions [2, pp. 83-84], we select a prime w e X

such that
(8) PW-Q = (d) (as fractional R-ideals)

where d satisfies the following conditions:

) d > 0 for every ordering of F,
(10) d~1 at all veT,
(11) . v(d) = 0 mod N, where N = m(v)-[F(nE):F], for all v‘e U,

d~1 at all v e W.

~

Then d has the properties indicated in the sixth column of the table, and (a, d)
is given by the seventh column. Also, (9), (10) and (11) imply that ((d), F(nz)/F) =1,
so (8) and the choice of Q give

-1
(PW’ F(nz)/F) (Q’ F(nz) /F) ‘
Therefore, Pw does not split completely in the extension F ¢ F(nz), which is easily

seen to be equivalent to

m(w)/m # 0 mod £.

-

The table tells us that (a, c/d)v =z, for all v # w, so

¢(a, c/d) =
where 6 = (ev) is such that ev =1 for all v #w. Since rz and ¢(a, c¢/d) are
in the kernel of ¢, the same must hold for 6. That means em(w)/m =1, so

o(a, (c/)R0D/my _ mG)/m






We conclude that for every rational prime ¢ dividing h we can find a positive

integer n(2) = m(w)/m and an element b(R) = (c/d)n(z), of F* such that

¢(a, b(R)) = cn(l), n(2) # 0 mod 2. ~

Clearly, if £ ranges over the rational primes dividing h, ‘the numbers n(2) have

a greatest common divisor which is relatively prime to h. Hence we can choose integers
‘ k(2)

k(2) with 22 k(2)n(2) = 1 mod h, and putting b = Hz b(2) we find
k
#(a, B) = T 4(a, b()H) = B KON o,
This proves the proposition.
The table: .
‘ ve a z, c (a,c)V d (a,d)v (a,c/d)V
s <0 (ase ), ~c, (a,cv)V >0 1 ' (a,cv)v
T v(a)=1 (a,cv)v ~c, (a,cv)v ~1 1 (a,cv)v
1] v(a)=0 1 ~1 1 Niv(d) 1 1
v ~1 1 - 1 - 1 1
W v(a)=0 1 e | 1 ) ~] 1 1
X v(a)=0 1 - Eav(c) wv(d)=v(e) Eav(d) 1
(v=w) (v=w)

2. Proof of the theorem. We preserve the notations of section 1. There is a group
homomorphism ‘
A: KZ(F) — G% u,
sending {a, b} to ¢(a, b), for a, b e F*. A theorem of Bass, Tate and Garland
[1, sections 6 and 7] asserts that .
(12) Ker(}) 1is finite.
Further, Tate [1, sec. 9, cor. to th. 9] has proved that
(13) Ker(A) c (Kz(F))p‘ for every prime number p.

From (12) and (13) it is easy to see that there exists a finite subgroup Ac KZ(F)
such that Ker(}) c AP for each prime number p.
We turn to the proof of the theorem. Let G c K2(F) be a finite subgroup.

Replacing G by Ge+A we may assume that
- (14) Ker()) c 6P for every prime number p.
By the proposition of section 1, applied to H = A(G), there exists a € F* such that
A(G) < rx({a, F*}). We claim that G c {a, F*}.
To prove this, let N = {a, F'} n G. Then A(G) = A(N) so G = N+Ker(A), and

using (14) we find

(G/N) = (N-Ker(A))/N ¢ (N-GP)/N = (6¢/N)P






for évery prime number p. Thus, the finite group G/N 1is divisible, and consequently
G/N = {1}. It follows that G =N, so G c {a, F*}.
This concludes the proof of the theorem.
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