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On Artin's conjecture and Euclid's algorithm in global fields.

H.W. Lenstra, Jr.

Introduction.

A famous conjecture of Artin (1927) [3, 9] asserts that for every non-
zero rational number t the set of prime numbers g for which t is a
primitive root possesses a density inside the set of all prime numbers. The
original conjecture included a formula for this demsity, but calculations
by D.H. Lehmer [14] indicated that this formula must be wrong. A corrected
version of the conjecture [31, intr., sec. 23; 2, intr.] was proved by Hooley
[11, 127 under the assumption of certain generalized Riemann hypotheses.

In this paper we are concerned with a generalized form of Artin's
conjecture, which recently arose in commection with Euclid's algorithm [23,
30, 19] and the construction of division chains [5, 20] in global fields.
Our main contribution is a necessary and sufficient condition for the
conjectural density of the set of primes in question to be n6n~zero. As an
application of this result we prove a theorem about the existence of a
euclidean algorithm in rings of arithmetic type. For an application to
arithmetic codes we refer to [15].

We discuss the various ways in which Artin's conjecture has been
generalized.

First, instead of the rational numbers one can consider an arbitrary
global field K, as in [3]. Prime numbers are then replaced by non-
archimedean prime divisors p of K,

Secondly, a congruence condition can be imposed on these primes [30,
19]. This is even of interest in the case K = Q: for example, among all
primes for which 27 is a primitive root there are no primes which are

-1 mod 4, while, conjecturally, there are infinitely many which are
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We refer to section 2 for the precise formulation of the generalized
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In the applications of the conjecture it is obviously relevant to know
undér which conditions the conjectural density vanishes. This problem is
less trivial than in the case of Artin's original conjecture, since our
formula is an infinite sum rather than an infinite product. Our solution
is stated in section 4, and the proof occupies sections 5, 6 and 7.

In section 8 we mention various problems to which our results apply.

The application to Euclid's algorithm is considered in detail in section 9.



1. Notations.

In this paper K 1is a global field, i.e. a finite extension of the
rational number field @ or a function field in one variable over a finite

field. In the first case we simply call K a number field, we denote by

AK its discriminant over @, and we put p = l. In the second case, K

is called a function field, and p denotes its characteristic.

Throughout this paper we use the letters m, n, d, possibly with
subscripts, to denote squarefree integers > 0 which are relatively prime
to p, also at places where this is not explicitly required. Similarly, by
2 we always mean a prime number different from p. The functions of
Moebius and Euler are denoted by u and ¢, respectively; qlr means
that q divides r, and qfr has the opposite meaning. The number of
elements of a set S is denoted by #S.

Let R be a ring. Then R* 1is its group of units, rR*¥?  is the
subgroup of q-th powers, and 1f t ¢ R¥ then <t> 1is the subgroup generated
by t. The ring of integers is indicated by Z, and Fq is a finite field
of q elements.

The restriction of an automorphism o of a field L to a subfield
L' of L 1is denoted by olL'. If L/L' is a Galois extension, then
Gal(L/L') 1is its Galois group, and id, 1is the identity automorphism of L.

L
The composite of two fields L1 and L2 is denoted by LI'LZ' By Cq we
mean a primitive gq-th root of unity.
A prime p of K 1is a non-archimedean prime divisor of K. The

associated normalized exponential valuation is denoted by orqz, and K

is the residue class field at p. We put Np = #Eﬁ.

If S 1is a set of primes of K, then the lower and upper Dirichlet

densities d_(S) and ‘d+(S) are defined by
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d_(8) = liminf (3 g (NP_)_S)/(ZP_ ap) %)

s> 1+0

SR -s -s
d (s) = iimizg (ZP_GS (Np) )/(ZP_ (Np) )

(the sums in the denominators are over all primes p of K). Generally,
0 <d_(s) < d+(S) <1, If d_(S) = d+(S) then this common value is denoted

by d(S) and called the Dirichlet density of S. It may be remarked that

all our results remain valid if, in the number field case, we replace

Dirichlet density by natural density. For the function field case this is

not true [3].

If p is a prime of K and L/K is Galois, then the Frobenius symbol

(p> L/K) denotes the set 6f those o ¢ Gal(L/K) for which there is a prime

q of L extending p such that og = q and oa = aNR for all a ¢ ;ﬁ,

where ¢ is the automorphism of fé induced by o. This is a non-empty
subset of Gal(L/K), and if p is not ramified in L/K then it is a
conjugacy class.

The notations F, C, W, r, k, M, ¢, q(n), Ln’ Cn’ a,a are introduced

in section 2, and for "GRH" we refer to sections 3 and 9.

Atk it



2. The generalized conjecture.

Let there be given a global field KX, a finite Galois extension F
of K, a subset C < Gal(F/K) which is a union of conjugacy classes, a
finitely generated subgroup W < K¥ of rank r > | modulo its torsion
subgroup, and an integer k > 0 which is relatively prime to p. We
are interested in the set M = M(X, F, C, W, k) of primes p of K
which satisfy the following conditions:

(p, F/K) < C,
oréB(w) = (0 for all w e W,
if ¢ W +'§§ is the natural map, then the index of ¢(W) in
K* divides k.
P
Notice that we have excluded the case W 1is finite. In this case it is
easily seen that also M is finite.

The conjecture is that M has a density. In order to state the
formula for the conjectural demsity we introduce some new notation. For a
prime number £ # p let q(2) be the smallest power of & mnot dividing
k and let L£ = K(Cq(z)’ Wllq(l)) be the field obtained by adjoining all
q(2)-th roots of elements of W to K. Notice that q(2) = & for all
but finitely many &, and that Lz is a finité Galois extension of K.
Similarly, if n is a squarefree integer > 0, relatively prime to p,

. _ e 1/q(n)
then we define qg(n) = 11 q(e), Ln = K(gq(n), W Y. Clearly, Ln

2in

is the composite of the fields L ¢ln. TFurther, we define Cn c

Q;s
Gal(F-L_/K) by

@}
{1

{0 € Gal(FsLn/K): (0]F) ¢ C, and (OILR) z idL for all 2|n}
2

and we put

)
il

#cn/#cal(F»Ln/K) = #Cn/[Fan:K].



If n divides m, then

v
s}
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o

(2.1) a

m

It follows that the sequence (an) has a limit, if n ranges over all
squarefree integers > 0 prime to p, ordered by divisibility. Let
(2.2) a = lim a .

n

(2.3) Conjecture. The density d(M) exists and is equal to a.

We quickly review the heuristic reasoning underlying the conjecture,

and will at the same time prove half of it:
(2.4) 4,00 < a.
(2.5) Lemma, Let p be a prime of K which satisfies

(2.6) oréEKw) =0 for all we W,

(2.7) oréE(2~AK) = 0 1if K 1is a number field.

Then the index of (W) in ﬁ; divides k if and only if for all prime
numbers ¢ = p we have

(2.8)  (p, L,/K) = {isz}.

Notice that only finitely many p are excluded by (2.6) and (2.7).
Some condition on p is necessary: -7 is a primitive root mod 2, but
Proof of (2.5). "If". If the index of (W) in KE does not divide k,
then for some prime number ¢ it is divisible by q(2); notice that the

index is relatively prime to p, since #gz is. That means

2.9 H#ERx
(2.9) q(2) | 5



2.10 W) < exa(d)
( ) (W) >

But, since p satisfies ordgﬁz-l) = (0 and oréR(w) =0 for all w e W,
by (2.9) and (2.6), these conditions simply express that p splits
completely in K(tg WI/Q(Z)) =L so (p, L,/K) = {id, } contra-
Q(Q,)’ [ H 9 Lg s

dicting (2.8).

"Only if". Let the index of ¢(W) in ?E divide k, and let ¢ be
a prime number = p. If orQR(z-l) >0 then K is a number field, and
the presence of the #-th roots of unity in L2 implies, by condition (2.7),
that p ramifies in LQ/K, so (p, LQ/K) z {idLg}. Hence we may assume
that oréB(zol) = 0. Then if p splits completely in LE/K’ we
necessarily have (2.9) and (2.10) (again using (2.6)), contradicting that

the index of (W) in EE‘ divides k. We conclude that p does not

split completely in LQ/K, so (p, LZ/K) z {idL }. This proves (2.5).
2

Now let Mn be the set of those primes p of K for which

(B, F/K) c C
(p» LQ/K) ¢'{idL }  for all g&|n.
L
Clearly

(2.11) Mn > Mm if nlm,

and lemma (2.5) implies that M differs by at most a finite set from the
"limit" n M. We calculate the density of M. Formal properties of the

Frobenius symbol imply that Mn differs by at most a finite set from
(2.12) {p: (p, F-Ln/K) c Cn}
so Tchebotarev's theorem [13, ch. VIII, sec. 4] implies that

d(Mn) = #cn/#cal(FoLn/K) =a .
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Thus we see that conjecture (2.3) is equivalent to the assertion that

(2.13) d(ﬂn Mn) = lim d(Mh).
n

A trivial example shows that (2.13) is certainly not a generality following
from (2.11): if Mn consists of all primes except the first n ones, in
some numbering of the primes, then d(Mn) =1 for all n, and N M = )
so d(nn Mn) = 0. Weinberger [29] proved that (2.13) even can fail in a
situation closely resembling ours.
In any case, it is true that
d+(M) = d+(ﬂm Mm) < d+(Mn) = d(Mn) =a,

for all n, which, in the limit, gives (2.4).

(2.14) Proposition. We have

- u(d)e(d)
&y = Zdln [F-Ld:K]

where

c(d) = #(C n Gal(F/F n Ld)).

Proof. For d|n, put

Dd = {0 ¢ Gal(F-L /K): (ol|F) € C, and (o|L ) = id. for all g|d}.
n [ L2

The principle of inclusion and exclusion [22] gives

# = c#

To count D notice that

d’

Dd = {0 € Gal(F~Ln/Ld): (g|lF) ¢ C}.
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For every o ¢ Dd’ we clearly have (o|F) € C n Gal(F/F n Ld). Conversely,
if Tt e Cn Gal(F/F n Ld), then T has precisely one extension to an
element of Gal(F-Ld/Ld), which in turn can be extended in [F-Ln:F'Ld]

ways to an element o of Dd' We conclude that

#Dd = [F-Ln:F-Ld]~c(d)
SO
#C
a = n___ 5 u(d)c(d)

n [F-Ln:K] d|n [F-Ld:K]

This proves (2.14).

Remark. It follows that

_ u(n)c(n)
(2.15) a = Znﬁ_'_f;;ﬁ

since the sum is absolutely convergent, as can be proved by the methods of
sections 5 and 6. The formula leaves something to be desired, since it does
not even enable us to énswer the question of when a = 0. We return to

this question in section 4. It will turn out that the definition of a 1is

a handier tool than formula (2.15).



- 11 -

3. The status of the conjecture.

(3.1) Theorem. If K 1is a function field, then conjecture (2.3) is true. If

K is a number field, then conjecture (2.3) is true if for every squarefree

integer n > 0 the r~function of Ln satisfies the generalized Riemann

hypothesis.

We use “GRHﬁ as an abbreviation for the Riemann hypotheses mentioned in
(3.1). In the function field case "GRH" refers to an empty set of hypotheses.
We refer to [27, 12] for a method to find, in the number field case, a
smaller set of Riemann hypotheses which is also sufficient for the validity

of (2.3).

Proof of (3.1). First let K be a function field. In this case Bilharz [3]
proved the original conjecture -~ i.e., F =K, C = {idK}, W infinite
cyclic, k = 1 - modulo certain Riemann hypotheses for function fields,
which were later shown by Weil to be correct [28, 4]. From what Bilharz
actually proved [3, p. 485, italicized] it is not hard to derive the more
general conjecture. Compare also the details given by Queen [19]. This
finishes our discussion of the function field case.

Next let K be a number field, and assume GRH. Then, according to
Cooke and Weinberger [5, theorem 1.1], conjecture (2.3) is true at least in
the case F =K, C = {idK}. Thus, to prove (3.1) it suffices to prove the

following lemma.

(3.2) Lemma. If (2.3) is true in the case F = K, C= {idK}, then it is

generally true.

Proof. Let M = M(K, F, C, W, k) be as in section 2, and put M' =
M(K, K, {idK}, W, k). We define a as in (2.2), and a' denotes the

corresponding quantity for M'. We must prove: if d(M') exists and
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equals a', then d(M) exists and equals a.
To see this, let C" be the complement of C in Gal(F/K), put
M" = M(K, F, C", W, k), and let a" correspond to M". Then one easily

sees that

Also, M' differs by only a finite set from the disjoint union M u M",

SO
d_(M") < d_(M) + d ).

But, by assumption, d_(M') = d(M') = a', and from (2.4) it follows that
d+(M") < a". We conclude that d_(M) > a' - a" = a, and combined with

(2.4) this gives d(M) = a, as required. This proves (3.2) and (3.1).
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4., The non-vanishing of the density.

(4.1) Theorem. Let h be the product of those prime numbers £ # p for

which W c K*q(g). Then the following assertions are equivalent:

(4.2) a =z 0;

(4.3) a_ # 0 for all n:

(4.4) there exists o «¢ Gal(F(ch)/K) such that
(o|F) € C,

(o|L ) = id for every £ with L
2 L,Q,

9’ < F(Ch)"
Remark. It is not hard to show that h is finite, cf. (5.1), (6.1).
The implication (4.2) = (4.3) is trivial, since a_ 2 a>=0 for all n,

by (2.1). The converse
(4.5) if a # 0 for all n then a = 0

will be proved in sections 5 and 6.

Notice that the existence of o in (4.4) is equivalent to the non—
vanishing of a s where m is the product of those & for which
Lz c F(ch); again, m is finite. This remark makes (4.3) = (4.4) obvious,

and the remaining implication (4.4) = (4.3) is proved in section 7.

(4.6) Theorem. Let h be the product of those prime numbers & # p for

which Wc:K*q(ﬁ). Then if M is infinite, there exists o ¢ Gal(F(Ch)/K)

with

(g|lF) ¢ C

(OILR) 2 ldLQ for every & with Lk c F(Ch).

Conversely, if such a o exists and GRH is true, then M is infinite and

d(M) > 0.
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Proof. If no such ¢ exists then by (4.1) there exists n with a = 0,
so Cn = . Then the set (2.12) is empty, so Mn is finite, and the same
is then true for M. Conversely, if such o exists and GRH is true, then
a>0 by (4.1) and d(M) = a by (3.1). Hence, d(M) > 0 and M is
infinite. This proves (4.6).

Thus, modulo GRH, the set M can only have density zero if it is
finite.

In many applications, W satisfies the condition
(4.7) there is no integer q > 1 with W c G

This is true, for example, if W 1is the group of units of an integrally

closed subring of K with infinitely many units.

(4.8) Corollary. If W satisfies (4.7) and GRH is true, then M is

infinite if and only if C is not contained in U, Gal(F!LR), the union

ranging over those prime numbers £ # p for which Lg c F.

Proof. Apply (4.6), and notice that h = 1. This proves (4.8).
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5. Proof of (4.5): the number field case.

In this section we assume that K 1is a number field.

(5.1) Lemma. For all but finitely many prime numbers ¢ the natural map

W/W2 - K*/K*R is injective.

Proof. The group K* is the direct sum of a finite group and a free abelian
group of infinite rank. Further, W c K*¥ 1is finitely generated. These two
facts easily imply that K*/W is again the direct sum of a finite group

and a free abelian group of infinite rank. So for only finitely many prime
numbers £ the group K*/W has g~torsion, and for all others the map

W/wz > K*/K*R is injective. This proves (5.1).
(5.2) Lemma. Let ¢ be a prime number satisfying

(5.3) % does not divide 2~AK

(5.4) the map W/Wﬁ > K*/K*2 is injective.

Then [LQ:K] = q(ﬁ)r-¢(q(£)), and the largest abelian subextension of

K c LQ is K(Cq(g))'

Proof. Clearly, K(Cq(g)) is a subextension of L , and (5.3) implies that

[K(z Y:K] = ¢(q(R)). To calculate [LQ:K(Cq(z))] we first prove that the

q(r)

natural map
L, L
(5.5) W/W K(cq(z))*/K(cq(z))*

is injective.
2 2 L .
Let we W, w¢ W . Then w ¢ K*¥°, by (5.4), so X - w is
irreducible over K. Combining this with [K(cg):K] =9 -1 we see that
the splitting field of Xz - w has degree (2 - 1) over K, and has a

non-abelian Galois group; here we use ¢ # 2. Since K(Cq(z)) has an
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abelian Galois group, the splitting field of X2 - w 1is not contained in
K(cq(z))a We conclude that w is no 2-th power in K(Cq(g))’ thus
establishing that (5.5) is injective.

., . L
An easy inductive argument now shows that the natural map W/Wq( ) >

K(Cq(ﬁ})*fK(Cﬁgﬁ}}@q{%j is also injective, so Kummer theory tells us that
AN

Gal(Lle(gq(Q)}} is canonically isomorphic to the character group W=
Hom(w,<;q(g)>)“ Thus [ER:KQCQ(Q)EJ = #§j = q(fé)r (since W has no

2-torsion, by (5.3)), which proves the first assertion of (5.2). Further,
Gal(LE/K) is isomorphic to the semidirect product of W by Gal(K(gq(Q))/K),
with the latter group acting on W via <Cq(g)>' Again using that & = 2
one finds that the commutator subgroup of Gal(Lﬁ/K) equals W, so

K(Cq(£)> is the maximal abelian subextension of K ¢ Lﬁ. This proves (5.2).

be a prime number satisfying the following conditions.

b

(5.6) Lemma. Let

(5.7) % does not divide Z»AF

s gre/r¥t is injective,

(5.8) the map W/W
(5.9) there exists no prime p of K for which oréB(Q) >0 and

Drdp(w} # (0 for some w ¢ W.

Further, let d be a squarefree integer, not divisible by £&. Then the

fields LR and Ld*F are linearly disjoint over K.

Proof. Since Lﬁ/K is Galois it suffices to prove that L2 n Ld-F = K,

Let N = Lg n Ld~Fo Then N/K 1s a solvable Galois extension, so if N = K
then there exists an abelian subextension N'/K, N' < N, N' # K. From

N' < LQ and (5.2) we then have N' c K(quﬁ))’ which by (5.7) implies that
N'/K is ramified at every prime p lying over & (i.e., for which

oréE(ﬂ) > 0). On the other hand, N' ¢ deF implies that N'/K can only

ramify at primes p of K for which
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Qrﬁgfﬁ) > 0,
or ord (w) 2 0 for some w e W,
or GE§E{&F) > 0.

By (d, &) =1, (5.9) and (5.7) none of these primes lies over %,

contradicting what we just proved. This proves (5.6).

Proof of (4.5) in the number field case. Suppose a # 0 for all n. We

prove that a = 0.

Let & and d be as in (5.6). Then (5.6), the definition of Cn’

and (5.2) give

[ *F:K] = [L_ :K]°[L."F:
LLdR F:K] ng Kl {Td FeK]

#o = (T % - e

Cip (LLE,&} 1) Qd

. - T -4 1
(5.10)  [L,:k] = q()T+¢(qa(2)) = a1 ~ 1/0),
850

a. =a, (1 - =0

de d [1.2;1*0 :

Now let n be the product of those & which violate at least one of the
conditions (5.7), (5.8), (5.9). Then for any multiple m of n it follows
by induction on the number of prime numbers dividing m/n that

a_ = a T (1 -1

m n R|m/n [LZ:K]
so in the limit

i
L1 =a - - ).

(5.11) a a4 ﬂofn (1 [LQ:K])

From (5.10) and r = 1 it is clear that the infinite product converges and
is non-zero. So a # 0 indeed implies that a = 0. This proves (4.5) if

K is a number field.
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6. Proof of (4.5): the function field case.

In this section K 1is assumed to be a function field, and we denote

by P the free abelian group

the direct sum ranging over all primes p of K. There is a natural group
homomorphism K* - P mapping x to (oréﬂ(x))ef and the kernel of this

map is finite, consisting of the non-zero constants in K.

(6.1) Lemma. For all but finitely many £ the induced map W/Wz > P/2P 1is

injective.
Proof. Similar to the proof of (5.1). This proves (6.1).
(6.2) Lemma. Let m be such that any 2|m satisfies

(6.3) K contains no primitive #-th root of unity;

(6.4)  W/W' > P/IP is injective.

r .
Then [Lm.K(Cq(m))] = q(m) , and K(Cq(m)) is the largest totally

unramified subextension of K c Lm.

Proof. From (6.4) it follows that the natural map W/W2 > K*/K*z is
injective, for any &|m. Using (6.3), one finds by the argument in the
proof of (5.2) that also W/wz - K(z;q(m))*/K(t;q(m))*2 is injective. Kummer
theory then implies that [Lm:K(Cq(ﬁ))J = #(W/Wq(m)), and by (6.3) this
equals q(m)r.

Let N be the maximal totally unramified:subextension of Kc Lm.
Clearly K(Cq(m)) c N, and if the inclusion holds strictly then N
contains wl/2 for some llmv and some w e W, w ¢ Wl. By (6.4), we then

have Zlorég(w) for some prime p of K, so N/K is ramified at this p,
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contradiction. This proves (6.2).

(6.5) Lemma. Let n be the product of those prime numbers £ # p which

satisfy at least one of the following conditions:

(6.6) K contains a primitive  2~th root of unity;
(6.7) the map wfwﬁ + P/4P is not injective;
(6.8) there is a prime p of K which ramifies in F/K, with

ramification index divisible by 2&.

Further, let m be relatively prime to n. Then we have:

]

(6.9) FeL 0L FeL N K(Cq(m))

m

P ® e ® r. ® b4 ®
(6.10) [Fean.K] = [F Ln.K] qg(n) -[F Ln(cq(m)).F Ln]
(6.11) if m= m, °m,, then
(F-Ln nL )-(F-Ln 0L ) =F-L NnL.

I 2

Proof. (6.9). The inclusion > 1is clear. By (6.8), all ramification indices
in the extension K ¢ F-Ln are composed of prime numbers dividing pn, and
all ramification indices in K ¢ L~ are composed of prime numbers dividing
m. Since (pn, m) = 1, it follows that F-Ln n Lm is totally unramified
over K, so (6.2) implies that FnLn n Lm c K(Cq(m))' This implies the
opposite inclusion.

(6.10). We have:

[FeL, :FeL 1 = [Fel, oL, :FoL ]
nm s} n m n

i

(L :F-L n L]
m n m

it

[Lm:F-Ln n K(gq(m))] by (6.9)
))] by (6.2)

L]

r N
q(m) '[K(Cq(m))-F'Ln n K(Cq(m

i

r
q(m) -[F-Ln(gq(m)):F-Ln].
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Multiplying by [F‘Ln:K] we obtain (6.10).
(6.11). Let G = Gal(K(cq(m))/K). This is a cyclic group, since Cq(m)

lies in a finite subfield. Define the subgroups Hl’ HZ’ H of G by

Hy = Gal((Ey () /R (Eq g 1)) i=1,2,

H = Gal(K(tz ))/F-Ln n K(¢ ))).

q(m q(m

o . = .K =
Since m is squarefree, we have (ml, m2) 1 so K(cq(ml)) (Cq(mz))

= e o # #
K(Cq(m)) and H, 0 H2 { }. But G 1is cyclic, so H] and H2

id
K(cq(m))

are relatively prime. Then also the index of H in H-H1 is relatively

prime to the index of H in H-HZ, S0
H-Hl n H~H2 = H,

In terms of fields, this means
F-L n o (F- n K = Feo n K .
(Behy 0 Rz )Ty 0 K 1)) = Foly 0 K5 )
By (6.9), this is equivalent to (6.11). This proves (6.5).

(6.12) Lemma. Let f, g be two functions defined on squarefree integers

such that

(6.13) f(d) 1is a real number, 0 < £(d) s 1

(6.14) g(d) ez, g(d) >0
for all d, and such that

(6.15) f(d1dz) = f(d])f(dz)

(6.16) g(dldz) = least common multiple of g(d]) and g(dz)

for all dl’ d2 with (dl’ d2) = 1. Then for all m we have

u(d)f(d) _£(2)
dlm — g(d) z nle, 2 prime (1 g(l))'
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Proof. See [10, 21]. This proves (6.12).

(6.17) Lemma. Let s be an integer, s > |, and for any integer u > O

relatively prime to s let e(u) be the smallest integer t > 0 with

st = ] mod u. Then

¥ 1
u>0, (u,s)=1 u-e(u)

is convergent.
Proof. See [18, Ch. V, Lemma 8.3; 21]. This proves (6.17).

Proof of (4.5) in the function field case. Let n be as defined in (6.5).

We prove that a * 0 implies that a =z 0.

Let m be relatively prime to n. For =t € Cn’ define

Cm(r) {o € Gal(F-an/K): (0]F~Ln) = 1, and

(olL ) = id for all glm},
2 Ll

am(T) #Cm(r)/[F-an:K],

a(t) = 1lim am(T)
m

the limit being over all squarefree integers m > 0 which are relatively
prime to pn, ordered by divisibility; it is easily seen to exist.

Clearly, we have

Cnm = UT€Cn Cm(T) (disjoint union)
anm = zT€Cn am(T)
as= ZT€C a(t).

n

We claim that a(t) > 0 for every Tt € Cn' Since Cn is non-empty (by
a, # 0) this implies a > 0., Put
1 ° ° n
1 if 1 € Gal(F Ln/F Ln Lm),

c(t, m) =
0 else.
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Notice that (6.11) implies
(6.18) c(t, m) = e(t, m])-c(T, m2) if m= m,m,.

Applying the principle of inclusion and exclusion as in (2.14) we find that

u(d)+c(t,d)

a (V) = Tg 10 TFL K]
nd

which by (6.10) is equal to

p(d)c(r,d)-q(d) "
(F. L :K] dlm [F-L (; (d)) :F-L j

Putting £(d) = c(t, d)-q(d) %, g(d) = [F-Ln(gq(d)):F-Ln] we find

a (1) = u(d)f(d)
[F-. L KT %d|m g(d)

We are in a position to apply lemma (6.12). Conditions (6.13) and (6.14)
are obviously satisfied, and (6.15) is clear from (6.18). To prove (6.16),

let Q be the largest finite field contained in FoLn, and notice that
g(d) = [Q(z_ 4y):Q] = minft > O: (#Q)% = 1 mod q(d)}.

We conclude that

1 £(2)
2,0 2 e w T M 7 50
n

The infinite product

(- f(l)) = y (1 - c(t,8) )

My prime, 2)np g2 (2 oIn g2(2)-q(2)T

is clearly convergent if r 2> 2, and if r =1 it converges by lemma (6.17).

It follows that

!

_f()

as required. This proves (4.5).
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7. Proof of theorem (4.1).

In this section, h 1is as defined in (4.1).

(7.1) Lemma. Let & be a prime number # p. Then all prime numbers dividing
[L£°F(§h):F(Ch)] are < &, Further, if [L2°F(§h):F(Ch)] is not divisible

by %, then Lﬁ c F(ch).

Proof. The degree [F(Ch’cl):F(Ch)] is a divisor of 2 - 1, and LQ‘F(Eh)
is obtained from F(Ch, Cg) by successively adjoining zeros of polynomials

L . . . . .
X" = a, At each stage, such a polynomial is either irreducible or

completely reducible. Hence [LQ.F(Ch):F(Ch’CQ)] is a power of £&. This
implies the first assertion of the lemma. Moreover, if & does not occur

in [LQ.F(Eh):F(Eh)]’ then LQ.F(Ch) = F(Ch, Cl)’ so

If now W c K*q(z), then £ divides h, so L, € F(ch), and this gives
L2 c F(Qh), as required. So suppose W 1is not contained in K*q(l). Then

for some w e¢ W the polynomial Xq(g) - w has no zero in K, and this

easily implies that for some v ¢ K with Vq(l)/ﬁ € W the polynomial

L . .. . .
X" - v has no zero in K. Then Xl - v is irreducible over K, and it

has a zero in L, and hence in ,F(Ch, Cl)' Since [F(Ch,C2)=F(Ch)] is

2
relatively prime to £, it must actually have a zero in F(Ch). But
F(Ch) is normal over K, so it now follows that all zeros of XQ - v are

in F(Ch). Therefore T ¢ F(Ch), so (7.2) gives LZ c F(Ch). This

2
proves (7.1).

Proof of (4.1). We must prove that (4.4) implies (4.3). So let m be the
product of those & for which L2 c F(Ch); then (4.4) means that Cm z @.

We prove that this implies Cn # () for every multiple n of m. Then
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a # 0 for all n, which is (4.3).

The proof that c, = ¢ 1is by induction on the number t of primes
dividing n/m. The case t = 0 is obvious. So let t > 0, and let £ be
the largest prime number dividing n/m. Put n, = n/%2. The inductive
hypothesis tells us that Cnoi @. Since 2Jm, we know from (7.1) that ¢

divides [LQ.F(Qh):F(Eh)J’ while all prime factors of [LnooF(;h):F(ch)]

are < some prime number dividing ny and therefore < %. We conclude that

LR.F(Ch) is not contained in Lno'F(gh), so a fortiori

(7.3) LnO-F g LQ,.LnO.F = Ln-F.

Now let 1t € Cn ; that is, Tt 1is an automorphism of Ln +F with
0 0

(tIF) e C

z 1 '
(T|L2,) 1sz' for all SLan.

By (7.3), we can extend T to an automorphism of Ln-F which is not the
identity on LQ. This gives an element of Cn’ so Cn z 0.

This proves theorem (4.1).
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8. Examples.

Let q be a prime number, and let g be an integer. We say that g

is a Fibonacci primitive root [24, 1] modulo q if g is a primitive root

mod q and satisfies the congruence g2 =g + 1 mod q.

(8.1) Theorem. If GRH is true, then the set S of prime numbers which have

a Fibonacci primitive root has a density, and

27 1
46 =5 M0 - 3 =1y

= 0°265705...;

here £ ranges over all prime numbers.

Proof (sketch). Let 6 = (1 + ¥5)/2 be a zero of X2 - X -1, and consider

=
I

M(Q(0), @6, t,), {id Jb, <62, 1),

Q(e,c4
M(e(e), @, z,), {t}, <6>, 1)

=
]

where 1 1is the non-trivial automorphism of Q(6, CA) over Q(6). Then

it is not hard to see (cf. [24]) that

d({q € S: ¢ 1 mod 4}) = %d(M])

d({q € S: q = -1 mod 4}) = d(M2)

so
d(s) = %d(M]) + d(M,)

if d(Ml) and d(M2) exist. If GRH is true, then (3.1), (5.11) and a short

calculation show that

: 9 , _ 1
dM) = d0) = 5T O - =1

SO



where “A 1is Artin's constant:

1

T =) = 0°3739558136...

(8.2) A= nz (1 -
(see [32]). This proves (8.1).

(8.3) Theorem. Let b, ¢ be positive integers, (b, ¢) =1, and let t e Q,

t#0, I, -1. Put

d(t) = AQ(/E).

Then the set of prime numbers ¢ for which

(8.4) q = b mod c

(8.5) t dis a primitive root mod q

is finite if and, modulo GRH, only if we are in one of the following

situations:

(8.6) 2le, b=1mod 2, t e Q*2 for some prime number £;
(8.7) d(t)lc, (Q%gl) = ] (Kronecker symbol);
8.8)  d(0)l3e, 3la), (MO e

Proof (sketch). The set we are interested in is
M= MR, @), {0y}, <t>, 1)

where o, is the automorphism of Q(gc) mapping g, to ch- By (4.6),
this set is finite if and, modulo GRH, only if Q(;c, ch) does not have an
automorphism satisfying certain requirements; here h = nteQ*2 L. A

straightforward analysis shows that the only obstructions preventing the

existence of such a o are the conditions (8.6), (8.7) and (8.8). This
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proves (8.3).

We remark that the if-part of (8.3) can be proved directly, using
nothing more than quadratic reciprocity; in fact, one finds that in each of
the situations (8.6), (8.7) and (8.8) the set of primes in question either
is empty or only contains the prime number 2. But the advantage of our
approach is that one need not know beforehand the list of exceptional
situations: they are just the obstructions encountered during the
construction of o, and if in all other situations o can be constructed
one knows that the list is complete (mod GRH).

Using (5.11) it is possible to derive a formula for the conjectural
density of the set of prime numbers satisfying (8.4) and (8.5). In each
case the result is a rational number times Artin's constant (8.2).

The same remarks apply to other sets of primes of a similar type. For
example, we can consider the prime numbers ¢q with the property that a

given rational number t # 0 has residue index k modulo q; 1i.e., the

subgroup generated by (t mod ¢q) should have index k in Fz. Here k

is a given integer = 1. The set of such q 1is a subset of

b, <t>, k)

ﬁ(Qs Q, {idQ

since here it is only required that the residue index of t divides k.
To force equality, we also require that k divides the residue index, i.e.

1/k). This leads to the set

that q splits completely in F = Q(Ck, t
M= M@, o, £/, 0, <t K.

Applying (4.6) one finds that M is finite if and, modulo GRH, only if one

of the following conditions is satisfied, with t and d(t) as in (8.3):

(8.9) d(t)|k, and k is odd;



(8.10)
(8.11)
(8.12)

(8.13)
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—uz, d(2u) |2k, k = 2 mod 4 for some u € Q;
2m—]‘3 m

u , d(=3uw)lk, 3Jk, 27|k for some ueQ mel,;
2m~l.3 m+1

-u , d(-3uw)lk, 3J/k, 2 |k for some ue€e Q, me L,,;
6

4 mod 8 for some u e Q.

]

-u, d(-6u)lk, 3[k, k

This answers a question left open in [17].

We can combine the various requirements. Thus, with b, ¢, t, k as

before, we can consider the set of prime numbers ¢ satisfying

g = b mod ¢

t has residue index k modulo gq.

This set differs by only finitely many elements from

where

and where

(so #C < 1).

M(Q, F, C, <t>, k)

) 1/k
= qc,, z,, 79
C consists of those automorphisms o of F for which
R N 1/ky, _ . 1/k
o(c ) =¢. o(g,) = Lps a(t’"7) =t

It is again possible, by a straightforward but tedious

analysis, to find the complete list of obstructions preventing M from

being infinite (mod GRH).

For more details on a similar example, related to arithmetic codes,

we refer to [15].

In the next section we apply our results to prove a theorem about

euclidean rings. Another application of the same type is found at the end

of Cooke's and Weinberger's paper [5]. Further, our corollary (4.8) can be

used to improve slightly upon a result of Queen [20, th. 1].
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To finish this section we mention some sets of prime numbers to which

our results do not immediately apply. Most of these can be dealt with by

small modifications of our method, and in case (8.16) the GRH can even be

dispensed with.

(8.14) The set of primes

(8.15) The set of primes
power of 2,

(8.16) The set of primes
squarefree (cf. [6]).

(8.17) The set of primes
roots (cf. [161).

(8.18) The set of primes

q for
qg for
g for
g for
g for

which 2 1is a primitive root modulo

which the residue index of 2 1is a

which the residue index of 2 1is

which both 2 and 3 are primitive

which a given positive integer t 1is

the smallest positive integral primitive root (cf. [111]).
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9., Euclid's algorithm.

Let K be a global field, and let S be a non-empty set of prime
divisors of K, containing the set S_ of archimedean prime divisors of K.

We denote by R. the ring of S-integers in K:

S

RS = {x € K: orqE(x) > 0 for all primes p ¢ S}.

Thus, if K 1is a number field and S = S_, then RS is the ring of

algebraic integers in K.

We ask under which conditions there exists a euclidean algorithm on RS’

i.e. a function y: Rg - {0} ~» Z,, such that for all b, c € Ry, ¢ # 0,

there exist q, r € RS with

b=gqc +r, r=0 or y(r) < y¢(ec).

If such a ¢ exists, we call RS euclidean. It is well known that a

necessary condition for RS to be euclidean is that it is a principal ideal

ring. If RS is euclidean, then its smallest algorithm 6 1is defined by

0(x) = min{Y(x): ¢ 1is a euclidean algorithm on RS}.

It is easily verified that 6 is indeed a euclidean algorithm on RS’ cf.
[23].
If S has precisely one element, then RS is euclidean if and only if

it is isomorphic to one of the rings

z, (i1 + /=3)1, rlY/=11, 20l + V/=7)1,
I[V/=21, z[i(1 + /‘-11)], F[x]

where F 1is a finite field. Up to isomorphism there are precisely eight

principal ideal rings RS with #S = 1 which are not euclidean. They are
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031+ Y=19)1, zli(1 + V=43)],
i1 + Y=67)1, 2[i(1 + /=163)1],

Fz[X, Y]/(Y2 + Y ; X3 + X+ 1),
szx, Y]/(Y2 P Y+ X+ X3 + 1),
FBEX, Y]/(Y2 - x3 + X+ 1),
Fa[x’ Y]/(Y2 FY £ X0+ n)

where n ¢ F&’ né¢ Fz. These results can be found in [23, 19].

In the case #S 2 2 we have the following theorem.

(9.1) Theorem. Suppose that R, is a principal ideal ring, and that #S§ = 2,

S

Further, if K is a number field, assume that for every squarefree integer

n and every finite subset S' ¢ § the ¢~function of the field

K(cn, Rgz/n) satisfies the generalized Riemann hypothesis. Then RS is

euclidean, and its smallest algorithm 6 1is given by

x # 0)

(9.2) o(x) = ZE¢ orég(x)-ﬁz (x € RS’

S

where the sum is over all primes of K which are not in S, and

n_ = 1 if the natural map R§ - K; is surjective

2 else.

=]
]

The Riemann hypotheses mentioned in this theorem will again be denoted
by "GRH".

The function field case of (9.1) is due to Queen [19]. In the number
field case only a partial result was known: Weinberger [30] proved, modulo
certain generalized Riemann hypotheses, that if K has class number ome

and S =S , #S 2 2, a euclidean algorithm on R, is given by

S

MX)=§W oﬂﬂkhhb+l)

S
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with n as defined in (9.1). Since this function does not assume the value
1, it is obviously not the smallest algorithm.
We remark that in the number field case all known euclidean rings RS’

#3 < o, are actually euclidean with respect to the norm function

N(x) = #(R./R.x), x e R,, x % 0,
S°78 S

Here no Riemann hypotheses are assumed. The rings Z[/14], Z[CBZJ are
examples of rings of unknown character: they are euclidean if GRH is true,
but the norm function is not a euclidean algorithm.

Before giving the proof of (9.1) we introduce some terminology. A
divisor of K is a formal product ﬂEhgé(R), m(p) ¢ L, m(B) =0 for all
but finitely many p, with p ranging over the non-archimedean prime

divisors of K. For x e K*, the principal divisor (x) is defined by

(x) = ﬂBlgorQE(x). The set of divisors of K 1is an abelian group with
respect to multiplication, and the principal divisors form a subgroup. Let
b = ﬁE.BP(E) be a divisor with n(p) =2 0 for all p. A subgroup H of

the group of divisors is said to have modulus b if

for every ﬂR.B?(E) ¢ H and all p with n(p) >0

we have m(p) = 0
and

(x) e H for all x ¢ K*¥ satisfying

oréR(x - 1) 2 n(p) for all p with n(p) > 0.

The primes p of K with p ¢ S are in one-to-one correspondence with

the non-zero prime ideals of R We identify the group of fractional

g
Rs-ideals with the group of those divisors ﬂé-E?(E) for which m(p) =0

for all p e S.
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Proof of (9.1). Suppose, for the moment, that RS is euclidean, and let ©
denote its smallest algorithm. If T € RS is a prime element, Rsﬂ = p,
then Samuel's results [23, sec. 4] easily imply that 6(m) 2 ?R' Since

further 6O(xy) > 6(x) + 6(y), by [23, prop. 12], we conclude that

= @ z °
0(x) = zp¢S oréE(x) ?B’ X € RS’ x#0

So if the right hand side represents an algorithm on RS, it is

necessarily the smallest one.

In the rest of the proof let 6 be defined by (9.2), and assume GRH.
We must prove that 6 is a euclidean algorithm on RS' Let b, c € RS,

c # 0. We look for an element

r €b + Rs-c

with
r=0 or 6(r) < 8().

Dividing b and c¢ by their greatest common divisor - they have one,
since RS is a principal ideal ring - we may suppose that (b, c) = 1.
Further, replacing S by a finite subset which also yields a principal

ideal ring and gives the same value for 6(c), we may suppose that

2 < #g < =,
If ©8(c) = 0, then c € Rg, so we can take r = 0.
If 6(c) = 1, them c¢ 1is a prime element: Rsc = p, and ?B = 1.

Then the map R§ +’f£.g;(RS/RSc)* is surjective, so we can find r € R§
with r = b mod Rge. Clearly, 8(r) = 0<1=6().

If 6(c) 2 3, then a suitable generalization of Dirichlet's theorem
on primes in arithmetic progressions [13] tells us that every residue class

in (RS/RSc)* contains infinitely many prime elements. In particular, the
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residue class b + RSC contains a prime element r, and then we have 6(r)

<2 <3< 6().
We are left with the case 0(c) = 2. It would, in this case, be

sufficient to find a priﬁe r of K, r ¢S, with the following two

properties:

(9.3) n_ = 1

(9.4) r =R for some f e b + RSC°

g'F
This would give 6(r) = n_ = I < 2= 60(c), as required.

Condition (9.3) simply means that the natural map

% Wk
RS > Kr

is surjective. Clearly, this is a condition of the type considered in
section 2, with W = R§9 k = 1. Notice that the rank of W, modulo its
torsion subgroup, equals #§ - 1 = 1,

Using class field theory [13] we translate the condition (9.4) into

one of the type '"(p, F/K) ¢ C", as follows. For F we take what has been

called the S-ray class field with modulus c. More precisely, F 1is the

class field of K with respect to the smallest group of divisors with
modulus Rqe which contains all non-archimedean p e S. We call this

group of divisors H. Properties of F are:

(9.5) F/K is abelian
(9.6) the conductor of F/R divides Rsc,

(9.7) all p e S split completely in F,

and moreover F is the largest field with these properties, inside an

algebraic closure of K; cf. [5].

Let I denote the group of divisors generated by all p not occurring
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in Rge, and let P be the subgroup {(x) ¢+ x e K¥ (x) € I}. Since R
is a principal ideal ring, we can write any element of I as the product of
an element of P and a factor nbeS E?(B)’ m(p) ¢ L, the product ranging

over the non-archimedean p € S. -&he latter factor is an element of H, so

I = PeH. Translating this statement on divisor groups into one about their

class fields, we find that
(9.8) K is the maximal totally unramified subextension of K < F.

By class field theory, the Frobenius symbol induces an isomorphism I/H =

Gal(F/K). But we have I = PeH, and a short calculation leads to

(9.9) (RS/RSC)*/w(RE) = Gal(F/K)

where : R§ > (RS/RSC)* is the natural map. Let the automorphism of F/K
corresponding to (b + RSc) mod w(Rg) be denoted by o. Then condition

(9.4) is equivalent to
(9.10) (x, F/K) < {0}

if r does not divide Rsc. We conclude that to prove the existence of r

satisfying (9.3) and (9.4) it certainly suffices to show that the set
M= M(, F, {0}, R¥, 1)

is infinite. By (4.8) and the GRH assumption we have made, we know that
indeed M is infinite, except if o € Gal(F/Lz) for some prime number

2 # p with LQ < F:; here L£ = K(cg, Rgllg). That means

(9.11) L, < o

where F° = {x ¢ F: o(x) = x}. To finish the proof of (9.1) it suffices to

derive a contradiction from (9.11).
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In the function field case we are immediately done. Namely, the
definition of L2 makes it clear that LR/K can only ramify at primes in
S, if K 1is a function field; but F/K is unramified at these primes, by
(9.6) or (9.7), so we can only have (9.11) if LQ/K is totally unramified.
By (9.8) this implies LZ = K, which is absurd, since Rg contains

elements which are no 2-th powers in K.

In the remainder of the proof we therefore assume that K is a number
field. The only reason that the preceding argument does not apply is that
LQ/K may ramify at primes dividing %. On the other hand, F/K only

ramifies at primes dividing RSc, S0
(9.12) there exists a prime £ ¢ S with ordz(c) > 0 and ordﬂ(l) > 0.

By (9.5) and (9.11), the field L2 is abelian over K. Since Rg contains

elements which are no f#-th powers in K, this implies

m
A

(9.13) z
and
(9.14) [LQ:K] is divisible by 2

(in fact, it is a power of ).
We distinguish cases. From 6(c) = 2 and (9.12) we see that there are

precisely three possibilities:

RSC = 2, n, = 2,
or Rsc = fem, n, =mn = I, & #m,
) = o
or RSc =2, g& = ],
First let RSc~= 2, n, = 2. Since ordz(l) > 0, the characteristic

of the field RS[& equals &, so #(RS/&)* = zf - 1 for some integer



- 37 -

f > 0. By (9.11)and (9.9) it follows that [LQ:K] divides Qf -1,

contradicting (9.14).

= ® == = * g
Next suppose that Rsc fLem, n, =n 1, 2 # m. Then (RS/RSC)

(RS[&)*G(RS@E)*, and the subgroup w(Rg) projects onto (RS/E)* since
JLf

n_ = 1. Therefore #((RS/RSC)*/w(Rg)) divides #(RS/&)* = -1, for

some integer f > 0, and this leads to the same contradiction as in the

preceding case.

In the remaining case: Rsc = &?, n, = 1, this contradiction

cannot be derived. Here Gal(F/K) 1is isomorphic to (Rs/&?)*/w(Rg); since
w(Rg) maps onto (RS[&)* this is a factor group of the kernel of the
natural map (RS[&Z)* - (RS/&)*, which, in turn, is an elementary abelian

2~group. Therefore Kummer theory and (9.13) tell us that

1/% xl/z)

(9.15) F = K(x] s eees X

for some integer t =2 0 and certain x, € K* X, ¢ S
Fix i, 1 <1i < t, for the moment. Since F/K is unramified outside
%, by (9.6), we have oqu(xi) = 0 mod & for all primes p # & of K.

But RS is a principal ideal ring, so modifying X by an f£-th power we

can achieve that

orqE(xi) =0 forall p¢ Su {2},

0 < orq&(xi) <2 -1,

We claim that ordl(xi) = 0, In fact, if 1 < ordﬁ(xi) < ¢ =1 then a

strictly local computation shows that the f-component of the discriminant

1/% 2=1+2-0rdg ()

i The conductor-discriminant

of K(x,'") over K equals 2

product formula then implies that the &-component of the conductor of

K(x;/l)/K is equal to &} * z-orq&(z)/(z—l). On the other hand, from

K(x;/z) € F and (9.6) we know that this conductor divides RSc = &?.
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Therefore 1 + l-ordz(l)/(l - 1) £ 2, which is impossible. This proves our
claim that ordﬁKxi) = 0,
= * i
We now have oqu(xi) 0 for all p ¢ S, so X, € RS for all 1.

By (9.15) this yields

1/2
* =
F c K(RS ) Lg

and combining this with (9.11) we find that F c Ll c ¥ < ¥, so F = LR =
F° and o is the identity automorphism of F. This is no contradiction,
but it solves our problem: namely, o = idF means, by definition of o,
that (b + Rs°c) is in the image w(Rg) of Rg, so there exists r ¢ R§
with r e b + Rsc, and then 6(r) = 0 < 2 = 8(c), as required. This
proves (9.1).

It can be shown that the situation encountered at the end of this

proof only occurs for £ = 2. An example in which it does occur is given

by

=~
[

Q(Cs)a S = Sms RS = Z[Csjs

c =4, L= 2, & = the prime lying over 2.

Thus, there exists no prime element T ¢ Z[CSJ which is 1 mod 4, for
which the natural map Z[Cs]* -+ (Z[CSJ/Z[QSJN)* is surjective. This

disproves a conjecture of Queen [19, remark 21].
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