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Introduction

Let K be a number field, and let R be the ring of algebraic integers in K. We say
that K is Euclidean, or that R is Euclidean with respect to the norm. if for every
a,beR, b=+0, there exist ¢,deR such that a=cbh+d and N(d)<N(b). Here N
denotes the absolute value of the field norm K —Q.

This paper deals with a new technique of proving fields to be Euclidean. The
method, which is related to an old idea of Hurwitz [14], is based on the
observation that for K to be Euclidean it suffices that R contains many elements
all of whose differences are units; see Section 1 for details. Some remarks about
the existence of such elements are made in Section 2. In Section 3 we illustrate
the method by giving 132 new examples of Euclidean fields of degrees four, five,
six, seven and eight. A survey of the known Euclidean fields is given in Section 4.

Acknowledgements are due to B. Matzat for making available [1] and [23];
to E.M. Taylor for communicating to me the results of [35]; and to P. van Emde
Boas, A.K. Lenstra and R.H. Mak for their help in computing discriminants.

§1. A Sufficient Condition for Euclid’s Algorithm

In this section K denotes an algebraic number field of finite degree n and
discriminant 4 over the field of rational numbers Q. By r and s we mean the
number of real and complex archimedean primes of K, respectively. The ring of
algebraic integers in K is denoted by R. We regard K as being embedded in the
R-algebra Kg=K ®qR, which, as an R-algebra, is isomorphic to R" x C*. As an
R-vector space we identify C with R? by sending a+bi to {a+bh, a—b), for a,
heR. This leads to an identification of Kg=R’x C' with the n-dimensional
Euclidean space R”. It is well known that this identification makes R into a
lattice of determinant j4|* in R™
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The function N: R" x C*->R is defined by

r r+s
(1.1) Nx)= ‘Hl %1+ I1 1|xi|2, for x=(x;);21eR" x C*.
j= j=r+

The restriction of N to K is just the absolute value of the field norm K—-Q.
Writing R* for the group of units of R, we define

(1.2) M =sup {m| there exist w, w,,...,w,eR such that w,—~w;eR*
forall i, j, 1<i<j<m}.

In Section 2 we shall see that M is finite.

We recall some notions from packing theory, referring to Rogers’s book [32] for
precise definitions. Let UcR” be a bounded Lebesgue measurable set with
positive Lebesgue measure u(U). If (g,)/~ ; is a sequence of points in R” which is
sufficiently regularly distributed throughout the space, then with the system #
=(U +a,)2 | of translates of U we can associate a density, denoted by p(U). It
may be described as the limiting ratio of the sum of the measures of those sets of
the system 4, which intersect a large cube, to the measure of the cube, as it
becomes infinitely large. The system # =(U +a,)”" | is called a packing of U if (U
+a)"(U+a)=ffor all i, j, i+ j. The packing constant 3(U) of U is defined by

o(U)=sup p(%),
u

the supremum being over all the packings % of U for which p(#) is defined. The
centre packing constant 6*(U) of U is defined by

(1.3) o*(U)=0(U)/uU),
cf. [17, Sect. 3.1].

(1.4) Theorem. Let K be an algebraic number field of degree n and discriminant
A over Q, and let N and M be defined by (1.1) and (1.2). Further, let UcR" be a
bounded Lebesgue measurable set with positive Lebesgue measure, having the

property
(1.5) N@u—v)y<l for all u, veU,

and let 6*(U) denote its centre packing constant, defined by (1.3). With these
notations, K is Euclidean if the inequality

(1.6) M=>5*(U)- 4]}

is satisfied.

Proof. For any a, beR, b=+0, we must find ¢, deR such that a=ch+d and N(d)
< N(b). Writing x=a/b we see that it suffices to find an element ceR with N(x
—¢)<1.

By (1.6) and (1.2) there exists a sequence w,, w,, ..., w, of elements of R such
that

w;—w;eR*  forall i, j, ISi<j=<m,
m>*(U)- [4]%.
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The latter inequality is, by (1.3), equivalent to

(1.7 m-p(U)/|41F > (V).

Consider the system
U=(U+; X+ cicm rer

of translates of U. Using [32, Theorem 1.5] we find that its density is given by
Py =m- W(U)/|A4]}

so (1.7) tells us that
o) > o(U).

By the definition of 3(U), this implies that the system # is not a packing of U, so
there are different pairs (i) and (j, f), with 1 <i, j<m and 2, feR, such that (U
+o;x+u) (U +w;x+f)+0, say

Ut x+oa=v+w;x+f (4, vel).

If i=j, then f—a=u—uv, and (1.5) gives N(f—=)< 1. Since f—x is an algebraic
integer, this is only possible if f—o=0, contradicting that the pairs (i,2) and
(j, p) arce different. Therefore i<}, so w,—w; is a unit and N(w;—w;)=1. Put ¢
=(f —2)/(w;—w)). Then ¢ belongs to R. and

N(x—c)=N((u—0)w;—w))=Nu—r)<1,

as required. This concludes the proof of Theorem (1.4).

A slight modification of the argument shows that, under the condition (1.6),
the inhomogeneous minimum of N with respect to R (cf. [19. Sect. 46]) does not
exceed §*(U)- |4/ M.

(1.8) Corollary. Let K be an algebraic number field of degree n and discriminant
4 over Q, having precisely s complex archimedean primes. Suppose that the
number M defined by (1.2) satisfies the inequality
n! f4\s X
19 M>". (4) QA
T

n

n
Then K is Euclidean.

Proof. We apply (1.4) with

¥+

r
Yolx+2 Y xi<ing

j=1 j=r+1

U={(x);  eR" x C*

he verification of condition (1.5) consists of a direct application of the
arithmetic-geometric mean inequality, which we leave to the reader. A classical
computation shows that

nt o\
L(J _ e [~
M) n! (4)’

¢l [16, Ch. V, Lemma 3] (the discrepancy by a factor of 2* is caused by the
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difference in identifying C with R?). Thus, (1.8) is an immediate consequence of
(1.4) and the inequality

oU)=1

which is generally valid [32, Theorem 1.3]. This proves (1.8).

Let S be a regular n-simplex in R”, with edge length 2. Denoting by T the
subset consisting of all points in § with distance <1 from some vertex of S, we
define

(1.10) a0, = u(T)/u(S).

(1.11) Corollary. Let K be an algebraic number field of degree n and discrim-
inant A over Q, and suppose that

F(+im Az
S () ar

(1.12) M>g¢,-
Here M and o, are defined by (1.2) and (1.10), respectively. Then K is Euclidean.
Proof. We apply (1.4) with

r r+s

Yoxi+2 Y |xj|2<in}.
j=1

j=r+1

U:{(xj);fﬁ eR"x C*

Our identification of R" x C* with R” makes U into an n-dimensional sphere of
radius §1/n:

v= {(y-i)'}— 1€R”

n
21
Vi <Z”}-
-1

Property (1.5) is again a simple consequence of the arithmetic-geometric mean
inequality. The measure of U is given by

n\"2 nﬂ/2
N=(-) - —
v (4) r(1+in)

J

and a theorem of Rogers [32, Theorem 7.1] asserts that
oU)=o,.

Corollary (1.11) is now immediate from (1.4).

Table 1 gives approximate values of ¢,- I'(1 +4n)/n"? for 1 £n<12. For n<2
the tabulated value is exact; for n>2 the table gives an upper bound exceeding
the exact value by at most 107>, The table is derived from a similar table of
lower bounds computed by J. Leech [18].

Table 1. Upper bounds for a,- I'(1 +4n)/z"?

n n

| 05 7 0.06982
2 V3/6 8 0.06327
3 0.18613 9 0.06008
4 0.13128 10 0.05954
5 0.09988 11 0.06137
6 0.08113 12 0.06560
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Straightforward computations show that (1.11) is to be preferred to (1.8) if
(1.13) n=2, s=1 or 4=n<7, s=2 or 8=n<l2, 23

and that (1.8) is sharper in all other cases with 2<n=<12. Applying Stirling’s
formula and Daniels’s asymptotic formula:

(114) 0,~"27"2  (noo0)
e

{cf. [32, Ch. 7, Sect. 5]) one finds that (1.11) is superior to (1.8) for all sufficiently
large n, regardless of the value of s; probably n= 30 suffices. But the significance
of this statement is doubtful, since in the next section we shall see that on the
assumption of the generalized Riemann hypothesis the inequality (1.12) is
satisfied for only finitely many number fields K, up to isomorphism.

We generalize Theorem (1.4) by considering multiple packings. We fix an
integer k= 1.

As before, let UcR" be a bounded Lebesgue measurable set with positive
Lebesgue measure p(U). A system % =(U +a,)]- ,, with a,eR", is called a k-fold
packing of U if for every system of k-1 different positive integers (h(0),
h(1), ..., h(k)) the intersection

(U -I—ah(o))m(U+ah“))m~~~m(U+ah(k>)
is empty. The k-fold packing constant ,(U) of U is defined by
3,(U)=sup p(®),
@

the supremum being over all the k-fold packings % of U for which p(#) is
defined. Further let

(L1S)  §3(U) =8, UY/u(U).
Clearly, ¢,(U)=0(U) and oF(U)=5*(U).
Returning to the algebraic number field K we define

(1.16) M, =sup{m| there exist w,, w,,...,w,cR such that among any k+1
distinct indices h(0), h(1),..., h(k)e{l. 2,...,m} there are two,
h(i) and h(j) (say), such that w,; —o,;eR*}.

Notice that it is not required that the w; are different. In (2.7) we shall see that
M, is finite. Clearly, M, =M.

(1.17) Theorem. Let K be an algebraic number field of degree n and discriminant

A over Q, and let UcR" be a bounded Lebesgue measurable set with positive

Lebesgue measure satisfying (1.5). Further, let 63(U) and M,, for keZ, k=1, be

defined by (1.15) and (1.16). With these notations, K is Euclidean if the inequality
M, >3(U)- ]!

is satisfied for some integer k= 1.

Proof. The proof of (1.17) is completely similar to the proof of (1.4) and is left to
the reader.

A(1-18) Corollary. Let K be an algebraic number field of degree n and discrim-
thant A over Q, having precisely s complex archimedean primes. Suppose that for
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some integer k=1 the number M, defined by (1.16) satisfies the inequality
4

n! s .
Mk (7) A2,
n Y

Then K is Euclidean.

Proof. Choose U as in the proof of (1.8) and use the trivial upper bound §,(U)
<k. This proves (1.18).

The methods of this section apply to a wider class of rings. For example,
they can be used to prove a quantitative version of O’Meara’s theorem, stating
that for any algebraic number field K there exists aeR, a=+0, such that R[a~']
is Euclidean with respect to a natural generalization of the norm map, cf. [28,
31, 22]. Replacing packing theory by Riemann-Roch’s theorem one obtains
similar results on rings of affine curves over arbitrary fields of constants, cf. [22].

§ 2. Estimates for M

The notations of Section 1 are preserved. We define L to be the smallest norm of
a proper ideal of R:

(2.1) L=min{#(R/I)|]IcR is an ideal, I £ R}.
Clearly, L is a prime power.
(2.2) Proposition. We have 2<M L2

Proof. The sequence 0, 1 shows M =2, and consideration of the ideal I=2R
leads to L<2". To prove M <L, let ,, ®,,...,m,, be any sequence of elements
of R as in (1.2), and let /<R be any ideal different from R. Then I does not
contain any of the units w;,~w;, 1<i<j<m, so the elements w,,...,w, are
pairwise incongruent modulo I. Therefore m < 4 (R/I), which implies that M < L.
This proves (2.2).

We use (2.2) to show that no infinite sequence of Euclidean fields can be
expected to result from (1.8) or (1.11). For bounded » this is a consequence of
Hermite’s theorem [16, Ch. V, Theorem 5], so by the remark following (1.14) we

need only consider fields satisfying (1.12). For these fields, (1.12) and (2.2) imply

L — .

A< F s Ty o2

Using Stirling’s formula and Daniels’s formula (1.14) we obtain
A" <d4ne+o(l)  (n—>0),

where 4ne=34.1589.... On the other hand, Serre [30] has shown on the
assumption of the generalized Riemann hypothesis (GRH), that

4] >8n e +o(l)  (n—>o0)

with 8mwe’=44.7632 ... (y is Euler’s constant). Thus, assuming GRH, we con-
clude that n is bounded and that (1.12) holds for only finitely many number
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fields K, up to isomorphism. Without any unproven hypothesis, Odlyzko [30]
has shown that

lAll/n>er/ﬂ.47te)‘+0(l) (n—)%)

While this result does not allow us to draw the same conclusion unconditionally,
it does handle the totally real case {r=n, s=0). More precisely, it follows that for
every £6>0 we have r/n<1—y+¢ for almost all K satisfying (1.12); here 1 —vy
=0.42278 ....

It remains undecided whether there exists a better upper bound for M, in
terms of n alone, than the bound 2" implied by (2.2). In (3.1) and (3.3) we shall
encounter fields K of arbitrarily large degree for which M >n.

From (2.2) it follows that (1.6) can only be satisfied if

(2.3) L>8*U) |4}

(with U as in (1.4)). It is curious to notice that {2.3) already implies that K has
class number one, since by a classical argument every ideal class contains an
integral ideal of norm at most 6*(U)-|4|.

Using a multiple packing argument one can establish the following lower
bound for M:

weufl (1 )

Its practical value is limited.

We show that for a given number field the constant M can be effectively
determined. Replacing a sequence (w,)!_, as in (1.2) by (0, — o )/(@, —w )L,
we see that it suffices to consider only sequences for which @, =0 and w,= L.
Then for 3<j<m both w; and 1 —w; are units. In the terminology of Nagell [26]

this means that ws, ..., ,, are exceptional units. Let E be the set of exceptional
units:

E={ceR*|1 —eeR*}.

Both Chowla [4] and Nagell [24] proved that E is finite. In fact, the set E can
be effectively determined by Baker’s methods [12, Lemme 4], and it is clear that
a search among the subsets of E suffices to determine M.

The hard step in this procedure is the determination of E by Baker’s
methods. It has not yet been carried out for a single algebraic number field. For
a few fields classical diophantine techniques have been applied to determine E,
cf. [25, 26, 367, (3.3}, (3.9-11). A substantial portion of E can often be detected by
starting from a few exceptional units and applying the following rules:

¢eE=1—¢ecE, ¢ leE;
g, en teE=(1—g)/(1—nek;

teE=>ggecE for every automorphism ¢ of K.

Most of the examples given in Section 3 rely on the following proposition.
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(2.4) Proposition. Let x be an element of R, and denote by [ its irreducible
polynomial over Q. Further, let {,, denote a primitive m-th root of unity and let 0
be a zero of X*—X —1. We then have:

(a) M=31if f(0) and f(1) are both +1;

(b) M =4 if each one of f(0), f{1) and f(~1) equals +1;

(¢c) M =5 if each one of the algebraic integers f(0), f(1), f({s) is a unit;

(d) M =5 if each one of the algebraic integers f(0), f(1), f(—1), f(0) is a unit;

(e) M =6 if each one of the algebraic integers f(0), f(1), fF(—1), f({5), f(Cy)is
a unit;

() M =6 if each one of the algebraic integers f(0), f(1), f(—=1), f(0), f(—=0)
is a unit.

Proof. In the cases (a), (b), (c), (d), (e), (f) consider the sequences
0, 1, x,
0,1, x, x+1,
0,1, x, 1/(1—x), (x—1)/x,
0,1, x, x+1, x?%,
0, 1, x, x2 x3, x*
0, 1, x, x+1, x%, x> +x,
respectively. That, in each case, the sequence satisfies the requirement in the

definition of M is a consequence of Lemma (2.5), applied to g=X, X —1, X +1,
X2 X+1, X°—X—1, X>+X+1, X*+1land X2+ X—1.

(2.5) Lemma. Let f, geZ[ X] be irreducible polynomials with leading coefficient
1, and let x and y be zeros of f and g, respectively. Then f(y) is a unit if and only if
g(x) is a unit.

Proof. Suppose that g(x) is a unit. Then g(x)~! is integral over Z, which easily
implies

g(x) 'eZg(x)]1=Z[x].
Thus, there exists a polynomial h,eZ[X] such that h,(x)-g(x)=1, i.e.

hy-g+h,-f=1

for some h,eZ[X]. Substituting y for X we find hy(y)- f(y)=1, so f(y) is a unit.
This proves the if-part, and the converse follows by symmetry. This finishes the
proof of (2.4) and (2.5).

A second fruitful method to estimate M is given by the following trivial
result.

(2.6) Proposition. Writing M(K) for M, we have M{(K)=M(K,) for every
subfield K, of K.

Some of the above results can be extended to the numbers M,. For example,
(2.2) generalizes to

2.7) 2ksk-M,sM,<k-L (k=1).
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As before, it follows that (1.18) cannot be expected to yield infinitely many
Euclidean fields.

I do not know whether the numbers M,, for k=2, can be effectively
determined for a given algebraic number field.

§3. Examples

This section contains 132 new examples of Euclidean fields; 128 of these are
given in tabular form, and the other four can be found in (3.3), (3.9), (3.11) and
(3.17).

Cyclotomic Fields. We denote by {,, a primitive m-th root of unity.

{3.1) Let p be a prime number, and let g>1 be a power of p. Then the field K
=Q({,) has L=p, and consideration of the sequence (m)!_ . w;=({, — DAL, —1),
shows M =p, so (2.2) implies M =p. For g=p=2, 3, 5, 7, 11 the right hand side
of (1.12) is approximately equal to 1, 1, 1.47, 3.12, 29.61, respectively. This gives
new proofs that Q({5) and Q({,) are Euclidean. The method does not handle
Q({, ), which is known to be Euclidean [20].

(3.2) Let K=Q({{,), where m is any integer =1. Then M =p for any prime p

dividing m, by (2.6) and (3.1). Further, M =1 +T, where ¢ is the largest prime
q

power dividing m; this follows by considering the sequence 0, 1, {,,
Ch . (=10 Applying (1.11) we find the known Euclidean fields Q({,,) (for
which in fact M =2 suffices) and Q({, 5), cf. [20].
(3.3) Let p be an odd prime number and K=Q({,)nR=Q({,+{;"). Then L
=p, except if p is a Fermat prime, in which case L=p—1. The sequence
(w,)P1 V2 defined by

w= 3 &

—i<j<i

shows that M =(p+ 1)/2. The right hand side of (1.9) is for p=3, 5, 7, 11, 13, 17
approximately equal to 1, 1.12, 1.56, 4.65, 9.40, 48.68, respectively. This yields a
new proof that for p<11 the field Q(Cp+lp“1) is Euclidean, cf. [10] for p=11.
For p=13 we can sharpen M >7 to M =11 by considering the sequence

0.1 p5' =pa —p5's —pipas —p5'pas (PP ™" —(pyps)

0203, —P1P2Pa
where p,={’;+{7i. Thus we obtain the new Euclidean field Q({,;+73). It has
n=6,r=6,s=0and 4=13°=371,293.

The precise value of M remains open. Clearly M = L for p=3, and in (3.9) we
shall see that the same holds for p=5. In the case p="7 all exceptional units have
been determined by Nagell [26]. and his results imply that M=L=7; in fact,
writing n,= {5 + (" we have M =7 because of the sequence

34y 0, 1, n,, L4y, L4y, +n,, 2405, 2410, +1,.
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In the same way one proves that also for p=11 one has M >7.

(3.5) The field K=Q({,+{(57", {s+{s") has n=r=6, s=0, 4=5>-7*=300,125
and L=29. It is known to be the totally real sextic field with the smallest
discriminant [29]. The right hand side of (1.9) is about 8.454, so by (1.8) and
(1.18) the field K is Euclidean if M, 29 or M, = 17. Writing n,={(}+{5"and 6=
~{s—{5" we see, by adjoining 6 as an eighth member to the sequence (3.4), that
M, =8:

(3.6) 0, 1, ny, L+ny, L4+n,+n,, 2410, 2+410,+n,, 0.
I do not know whether M, =9; a near miss is provided by
37 1+6

which differs from each of the numbers (3.6) except #, by a unit. Replace the
non-zero elements in (3.6), (3.7) by their inverses, and apply the field automor-
phism sending 7, to itself and 6 to—60~'. Then we obtain another sequence
showing M, =8:

(38) 0, L ik (M+n) ™% A4n,+n0,)7% Q4+ny)7 L Q+ny+ny)7 Y —

and since 1+ 6 is replaced by itself we conclude that it differs by a unit from
each of (3.8) except ny'. We claim that the sequence (w;)}’; obtained by
juxtaposition of (3.6), (3.7) and (3.8) shows M, =17. To prove this, let w,, w;, ®
be three members from this sequence; we must show that at least one of @, —w;,,
0, ~®;, w;—w;is a unit. If two of w,, w;, »; both belong to (3.6) or both belong
to (3.8) this is clear. So we may assume that w, is among (3.6), that w,=1+0,
and that w; is among (3.8). Then w, —w; is a unit except if w,=#,, and similarly
w,—w;isa unit except if o, =n! Fmally, if o, =1, and ;=57 " then w,—w, is
a unit. We conclude that M2 =17 and that K is Euchdean

i

Fields of Small Unit Rank. All exceptional units in the fields with r+5<2 have

been determined by Nagell, see [25] for references. The resulting information
about M is collected in (3.9), (3.10) and (3.11).

(3.9) For quadratic K, we have M =3 if K=Q((;) (cf. 3.1)), M=4if K :Q(]ﬁ)
=Q({s+{5 1) (apply (2.4)(b) with f=X*—X —1), and M =2 in all other cases.
(3.10) If K is complex cubic, i.e., n=3, r=s=1, then

M=5if K=Q(x), o*—a—1=0, 4=-23 (apply (24)(c)to x=ua),
M=3if K=Q(y), ’+y—1=0, 4=-31 (apply (24)(a)to x=y),

and M =2 in all other cases.
(3.11) For totally complex quartic K, i.e, n=4, r=0, s=2, we have:

6 if K=Q((5,8), B*+{38-1=0, A=117=3%-13 (see below),
54f K=Q((5), A4=125=5% (see (3.1)),

4if K=Q(,,), 4=144=2*.32 (cf (3.2)),

3if K=Q(v), v*—v+1=0, 4=229 (prime) (see below),

3if K=Q((,,8), &—=E—=(,=0, A=272=2*.17 (cf. (24)(a)),

i

Eiﬁii
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and in all other cases

M=4 if 1/5¢K,
M =3 if /5¢K,
M =2 if /5¢K,
For the field Q{{5, B), B2 +{; f—1=0, a sequence showing M =6 is given by 0,

L B B

—{5 =GB

{;eK,
{,¢K.

247

' The field with 4=229 is a new Euclidean field: by (2.2)
and (2.4)(a) it has M =3, while (1.11) only requires M = 2.

Explanation of the Tables. In Tables 2-9 one finds 128 new Euclidean fields
obtained by means of (1.8) and (1.11). In the head of each table one finds n, r and

Table 2. n=4,r=2, 5s=1

: (1.8) is applied

—4 K, Aoy Apueens a, Mz method

275=5%.11 0 —0, 1,1 2 (2.2)

283 (prime) 0 -1, -1,0,0,1 3 (2. 4)(4)

331 (prime) 0 —1,3, -2,0,1 3 (2.4)(a

400=24.52 ] —0,0,1 3 (2.6), ( 9)

448=2°.7 i fo—il 3 (2.4)(a)

475=5%.19 ) 6, 1.1 3 (2.6), (3.9)

491 (prime) 0 —1,3, -1, - 1,1 3 (2.4)(a)

507=3-132 f 1L—ml 3 (2.4)(a)

563 {prime) 0 -1, —1,1. -1, 1 3 (2.4)(a)

643 (prime) 0 ~1, -3,0,2.1 4 (2.4)(b)

775=5%.31 0 1-0,01 4 (2.6), (3.9)

Table 3. n=5, r=1, s=2; (1.11) is applied

4 do, a, a, a, a,.  as M= method
1609 (prime) -1, 1, 1, -1, 0, 1 3 (2.4)(a)
1649 =17.97 -1, i, 0, -1, 1, 1 3 (2.4)(a)
1777 (prime) —1, 2, 1, -2, 0, | 3 (2.4)(a)
2209 =472 1 -2, 2, —1, 0, I 3 (2.4)(a)
2297 (prime) —1, 1, ~1, 1, 0, 1 3 (2.4)(a)
2617 (prime) -1, 0, -2, I 0, 1 3 (2.4)(a)
2665=5-13.41 ~1, -2 0, 1, 0, 1 3 2.4)(a)
2869 =19 151 —1, —~1, 0, 0, 0, 1 4 (2.4)(b)
3017=7-431 1, 0, ~1 0. 0, 1 4 (24)(b)
3889 (prime) —1, 1. —1, 0, —1, 1 4 (2.4)(¢)
4417=7.631 -1, 2, -2, 1, 0, 1 4 (24)(c)
4549 (prime) 1, 1 -2, ~-2, 2, 1 4 (2.4)(b)
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-4 dq ay, dy, ay, ag,  ds M=z method
4511=13-347 —1. 0, 1. -2, 0. 1 4 2.4)(b)
4903 (prime) -1 1, 1, -2, 1. 1 4 2.4)(b)
5519 (prime) -1, 1 1, -3, 0, 1 4 (2 4)(b)
5783 (prime) -1 2, 1, -3, 1, { 4 2.4)(b)
7031=79-89 -1, —1, 1, —1, 0, 1 3 ( 4)(c)
7367=53-139 1, 2, 0, -3, -2, 1 5 (2.4)(d)
7463 =17-439 1, -2, 1, 0, -2, 1 5 (2.4)(c)
8519=7-1217 1, -1, -1, 0, -1 1 5 (2.4)(d)
8647 (prime) 1, 2, -2, -3, 0, 1 5 (2.4)(d)
Table 5. n=6, r=0, s=3;(1.11) is applied
—4 K, gy, Ay .en\y, Mz method
9,747=3%.19% (s {y, 1-¢5, - 1,1 3 (2.6). (3.9)
10,051 =19-232 1 a1, 1, 1 3 (2.6), (3.10)
10,571 =11-31? y —y+1 L1 3 (2.6), (3.10)
10,816=2°-13? (a -1, 1L, -1 3 (2.4)(a)
11,691=33-433 (s (5.1, —1,1 3 (2.6), (3.9)
12,167=233 o La—1,1 3 (2.6), (3.10)
14,283 =33.232 a 1,11 3 (2.6), (3.10)
14,731 (prime) 0 Lo, ~1,-1,0 1,1 3 (2.4)(a)
16,551 =32-613 {4 {5, —=2,05. 1 4 (2.4)(b)
18,515=5.7-232 o Lo 1 4 (2.6, (3.10)
21,168 =2%.33%.77 (s 1,1, =51 4 (3.16)
21,296=2%-113 K 1Lk 1 4 (3.13)
22,291 {prime) 0 1, =3,6, —6,4, —2,1 4 2.4)(c)
22,592=2%.353 {, 1, ={,. (-1t 4 (24)(¢)
22,747=23%-43 o a+1, 1,1 4 (2.6), (3.10)
23,031 =3-853 (s {5 —1,001 4 (2.4)(b)
24,003 =3%-7-127 Oy 4, — L L 4 {2.4)(b)
27,971 =83-337 0 1.-1,1, -23 =21 5 (2. 4)(c)
29,095=5-11-23? o a? 1,1 5 (2.6), (3.10)
29,791 =313 y 1, —y—1,1 5 (24 )(¢c)
31,211=23%-59 o o, o, 1 5 (2.6), (3.10)
33,856=2%.232 o 1,0, 1 5 (2. 6) (3.10)
33,856 =26.232 o 2,0, 1 5 (2.6). (3.10)
36,235=5-7247 0 ;, -1,1,00 —1,1 S (24) c)
41,791=232.79 o a, 1,1 5 (2.6). (3.10)
64,827=33.7* n 1,11 7 (2.6), (3.3)
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Table 6. n=06,r=2,5=2:(1.11) is applied
A K, g, Ayl Mz method
28,037=23%-53 o —1, 27 —a, 1 5 (2.6). (3.10)
29,077 (prime) 0 -1,2, -1,0,1, =1, 1 3 (2.4)(c)
29.189=177- 101 0 L1, 1,0, =3,0,1 5 (2.4)(d)
30,125=5%-241 0 1-0,1, -0, 1 S (2.4)(c)
31,133=163- 191 0 1,2,0, —1. =2,0, 1 5 (2.4)(d)
31,213=7%-13 n nho L1 5 (2.6), (3.3)
31,709 =37-857 0 —-1,1,3, -2, -3,0.1 5 (2.4)(d)
32,269=232.61 o —o, a1 5 (2.6), (3.10)
33.856=2¢.232 o —o. 0, 1 5 (2.6). (3.10)
35,125=5%-281 [4 I, —0.0, 1 S (2.4)(c)
35557=312-37 ¥ -1, =31 5 (2.4)(d)
37,253 (prime) 0 -1,0,1,0. -1, =11 5 (2.4)(d)
37.568 =2° 587 0 -1L,2, 10,2 =21 5 (2.4)(c)
39,269 =107-367 0 1, -1, -2,2.0 =21 5 (2.4)(d)
40,277 (prime) 0 -1,2. -3,0,3 -3.1 5 24)(0)
40,733=7-11-232 o a—1. 0% 1 5 (2.6), (3.10)
41,069 =7 5867 0 —1,0.2,0, =2, —~1. 1 5 (2.4)(d)
45,301 =89-509 0 -1, -1,0,0,1, 1,1 6 (2.4)(e)
47,081 =232-89 o ~La 1 6 2.4)(H
47,669 =73-653 0 -1,0. -1,0, 1, 1,1 6 (2.4)(e)
49,664 =2°.97 A =101 6 (2.4)(H)
53429=232-101 o —L a1l 6 (2.4)(f)
61,193 =11-5563 0 -L -1 -LLLLI 6 (2.4)(e)
61,504 =2°.312 b y—1.0,1 6 4
69.629=74.29 n - 11 7 (2.6). (3.3)
Table 7. n=6, r=4, s=1:(1.8) is applied
-4 K, Aoy Aqennendy, Mz method
92,779 (prime) 0 1,2, —1, =3, =2 1,1 6 (2.4)(f)
103,243 =74.43 n =21 7 (2.6), (3.3)

s, and which one of (1.8), (1.11) is applied. Every row corresponds to a field K,
represented as K = K (x), where K, is a subfield of K. If n is composite, then a
generator for K is given in the second column; the symbols used are explained
in Table 10. If this subfield generator is 0, then K has only trivial subfields and
Ko=Q. We also take K,=Q if n is a prime number. In the first column one
finds the absolute value of the discriminant of K and its prime factorization.
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Table 8. n=7, r=1, s=3: (1.11) is applied

—4 dg, a,. ay, ds, dg, as, g, a; M2 method
184,607 (prime) -1, =1, 1, 1, 0, -1, -1, 1 5 (2.4)(d)
193,327 (prime) -1, 2, 0, -2, 2, 0, -1, 1 5 29
193,607 (prime) -1, 0, -1, -1, t, 0, 0, 1 S (2.4 (c)
196,127 =29- 6763 1, =2 2, 0, -1, 2, =2, 1 5 (24 (c)
199,559 (prime) 1, -1 0, I, 0, 0, -1, 1 5 (2.4)(c)
201,671=17-11,863 1, 1, -1, -1, 2, 0, -2, 1 5 (2.4)(d)
202,471 (prime) , -1, -1, 2, 0, -1, 0, 1 5 (2.4 (c)
207911=11-41-461  —1, 0, 1, -1, 1, 1, -1, 1 5 24 (c)
211,831=19-11,149 1, -1 2, -1, 0, 1, -2, 1 5 (2.4)(c)
214,607 (prime) -1, -1, 2, 3, =2, =3 0, 1 5 (2.4)(d)
224,647=277-811 -1, 0, 2, L, -2, =2 0, 1 5 (2.4)(d)
227,287=167-1361 =1, 0, 2, 0, 1, 0, -2, 1t 5 (2.4)(d)
237,751=23-10,337 -1, -1 3, 4 -2, -3, 0. 1 5 (2.4 (d)
242,147 (prime) L. -1 2, -1, -1 2, =2, 1 5 (2.4)(c)
242,971 (prime) -1, -1, 1, 2, o, -2, -1, 1 5 (2.4)(d)
250,367=13-19.259 1, L, -1, 2, 0, =3 0, 1 5 2.4)(d)
252,071 =83-3037 -1, -1, 0, 2, 1, -2 -1, 1 S (2.4)(d)
267,347 =101-2647 1. -1, -4 3, 5 =2, =2, 1 6 (2.4
270,607 =461 - 587 -1 0, 2, 2, 0, -2, -1, 1 6 2.4
272,671=7-38953 1, =2, =3, 6, 3, -4 -1 1 6 (2.4 (h
319,831 (prime) -1, =3 =3 -1, 1, 3, 2, 1 6 (2.4)(e)
330,487=23-14,369 L, -1, 0, -1, 0, 1, 0, 1 6 (2.4)(e)
349,847=19-18,413 -1, -1, -1, -1, 0, 1, 1 1 6 (2.4)(e)

Further the table contains the coefficients a,, ay,...,q, of the irreducible
polynomial a,+a, X + - +a, X™ of x over K,; here m is the degree of K over
K,. In the column headed “M =" one finds the lower bound for M required by
(1.8) or (1.11) to prove that K is Euclidean. The final column mentions which of
our results apply to prove this lower bound.

The fields in the tables have been found in three ways. First, the methods of
Section 2 were applied to the quartic fields listed by Godwin [6-8], the quintic
fields given by Cohn [5, cf. 2] and Matzat [23], and the totally real and totally
complex sextic fields listed by Biedermann and Richter [1]. Not all fields could
be decided; for example, the field K=Q(x), x> +x*~x*—x+1=0, with n=35, r
=1, s=2, 4=4897=59.83, has M >4 by (2.4)(b), but the right hand side of
(1.12) is about 4.001. The field has L=35, and it remains undecided whether M
=4 or M=5.

Secondly, many examples were found by considering extension fields of a
given field K, and applying (2.6).

Our third approach consisted in constructing polynomials f satisfying one of
the conditions (a)—f) of (2.4), and computing their discriminants on an electronic
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Table 9. n=8, r=0, s=4; (1.11) is applied

A K, Ay yy sl M2z  method
1,257.728 =2%.173 ¢ -1, =& 1 5 (2.4)(d)
1,282,789 =1103-1163 0 1,0, =3.0,51, =3, —1,1 5 (2.4)(d)
1.327.833=3%-132.97 B LA+1.1 5 (2.6), (3.11)
1,342,413 =3%.16,573 <, s Epn L= {g, (=1, 1 5 (2.4)(c)
1.361,513=17.2837 s S+1,1.1 5 {2.6). (3.12)
1,385,533 =29.47.777 ) 1,0,0,0,1, =3,3, =2, | 5 (2.4)(c)
1,424,293 =13-3312 & Lel 5 (2.6), (3.12)
1474013 =617-2389 0 L—11,0. —1.1 —1,0, 1 5 (2.4)(c)
1,492,101 =3*.132. 109 B B+1 11 5 (2.6). (3.11)
1.513,728=28.3*.73 S1a Gatl —C,—11 5 (2.4)(c)
1,520,789 =29 - 2292 v —1Lv—1,1 5 (2.4)(d)
1,578,125=5°-101 ¢ — L3+t 5 {2.6), (3.11)
1,590,773 =179 - 8887 0 I, =211, =220, =1, 1 5 (2.4)(c)
1,601,613=3°.133 i ~2 =11 6 (2.6), (3.11)
1,797,309 =3%.22,189 ¢, —{ — - L2040 6 (2.4)(f
1.820,637=3%.7-132.19 B LB 1 6 (2.6), (3.11)
1,867.553 (prime) 0 LLL -1 =2 —1.0, 1.1 6 {2.4)(e)
1,890,625 =5 117 ‘s L+ -1, 6 {3.15)
2,149,173 =3%.13%.157 B B. 51 6 (2.6). (3.11)
2313441 =3%.13¢ B -1, 7 (3.14)

computer. Two programs were used, one written by P. van Emde Boas and one by
AK. Lenstra and R.H. Mak. Every irreducible f whose discriminant was found
to be sufficiently small gave rise to a Euclidean field, by (2.4) and (1.8), (1.11). All
fields in Table 8 (degree 7) were discovered in this way. It occurred often that
two polynomials had the same discriminant. These discriminants are listed only
once. We did not test the corresponding fields for isomorphism.

Special Fields. A few ficlds deserve special mention or require special treatment,
(3.12) The fields Q(8) and Q(¢), defined by Table 10 and also occurring in
Table 2, have

A=-283 M=6 (by (2.4)(e))

and
A=-331, M=L=5 (by(24)()\
respectively.
(3.13)  The totally complex sextic fields with 4= 12,167 and 4= —29.791

occurring in Table 5 are the Hilbert class fields of Q()/—23) and Q(}/—31),
respectively. There are two other fields in Table 5 which are normal over Q: the
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Table 10. Subfield generators

Symbol Defining equation Ref.
o 2 —a—1=0 (3.10)
8 B4 8—1=0 G3.11)
y v yy—1=0 (3.10)
o 3*=56-1=0 (3.12)
& e* =262 43e—1=0 (3.12)
Com m-th cyclotomic equation (3.1), (3.2)
n PP =2n—1=0w=C{+3H)  (33)
0 02 ~0-1=0 (0=—{(s-3Y (3.9)
K K¥P+r?—Kk+1=0 (3.13)
2 A=2—1=0 (i=1+y2)

§ p—p=3=0 (u=1(1+y/13)

v v—y+1=0 (3.11)
§ et—l=0 (1)

abelian field Q({,+{5",{;) with 4= —64,827 and the class field over Q(}/ —11)
with conductor (2), having 4= —21,296. It has M =4 because of the sequence 0,
1, x,—xx? where x*4+kx+1=0, k3+x?—x+1=0. The subfield Q(x) has n=3,
r=s=1and 4= —44.
(3.14) The only other normal field in our tables is the Hilbert class field of
Q()/ —39), with 4=2313,441, occurring in Table 9. It can be written as
Q(¢s, B, x), with B2+ —1=0, x>+ {3x—1=0 (notice that § and x are con-
jugate over Q), and it contains the field with 4 = — 507 occurring in Table 2. The
field has M =7 because of the sequence 0, 1, f, B2, — (5, =381 — 3 x
(3.15) The field with 4=1,890,625 occurring in Table 9 is normal over Q({,
+{3 Y. It has M =6 because of the sequence 0, 1, —(s—(5 1—-{s—(35 1483,
x, where x2 —x+({s+{5 " =0.
(3.16) The field with A= —21,168 occurring in Table 5 has M =4 because of 0,
1, 145, x, where x> — {5 x?+({;—1)x+1=0.
(3.17) Let K=Q(x), with x*+2x*+x*—x*—3x—1=0. The field has n=35, r=3,
s=1, —A=11,119 (prime), L.=7 and the right hand side of (1.9) is about 5.156.
Thus, K is Euclidean if M, 26 or M, =11, by (1.18). I do not know whether M|
= 6; but a sequence showing M, >12 is given by

0, 1, x+1, (x+1D?¥x, x/(x+1),

0, 1, (x+1)~1 x/x+12% (x+1)/x,

x, x~ 1

as can be verified by the method of (3.5). It follows that K is Euclidean.

§4. The Number of Known Euclidean Fields

At the time of writing this (September 1976) 1 know 311 non-isomorphic
Euclidean number fields. Table 11 shows how they are distributed with respect
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Table 11. The number of known Euclidean fields

F+s n Total
1 2 3 4 S 6 7 8 9 10

| 1 5 6

2 16 52 32 100

3 57 11 12 28 108

4 9 10 25 23 24 91

5 1 2 0 0 0

6 2 0 0 0 0

Total 1 21 109 52 23 57 23 24 0 1 311

to n and r+5s. We indicate the sources; the references are to the most informative
rather than to the original publications.
n<2: see [13, Ch. 14].
n=3, r+s=2: see [11, 35].
n=3, r+s=3: see [9, 33, 34].
n=4, r+s=2: thirty fields appear in [15]; for the other two, with 4 =125 and
A=229, see (3.10).
n=4, r+s=3: see Section 3, Table 2.
n=4, r+s=4: see [10].
n=35, r+s=23: see Section 3, Table 3.
n=>5, r+s=4: see Section 3, Table 4, and (3.17).
n=>35, r+s=35: see [10] or (3.3).
n=6, r+s=23: twenty-six fields appear in Section 3, Table 5; the other two are
Q({5) and Q({y), with 4= —16,807 and A= — 19,683, see [20].
n=6, r+s=4: see Section 3, Table 6.
n=6, r+s=>5: see Section 3, Table 7.
n=6, r+s==6: see (3.5) and (3.3).
n=7, r+s=4: see Section 3, Table 8.
n=8, r+s=4: twenty fields appear in Section 3, Table 9; the other four are
Qi5) Q). Q(l,) and Q({,4), having 4=1,265,625 A4=4,000,000,
4=15308,416 and 4=16,777.216, respectively [20, 21, 27].
n=10, r+s=35: this is Q({,,), with 4= —2,357947,691, see [20].
It has been proved that the only Euclidean fields with n<2 are the known
ones [13, Ch. 14], and that there exist only finitely many Euclidean fields with r
+5<2, up to isomorphism [3].
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