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Introduction 

Let K be a number field, and let R be the ring of algebraic integers in K. We say 
that K is Euclidean, or that R is Euclidean with respect to the norm. if for every 
a, beR, bq=O, there exist c, deR such that a=cb+d and N(d)<N(b). Here N 
denotes the absolute value of the field norm K--+Q. 

This paper deals with a new technique of proving fields to be Euclidean. The 
method, which is related to an old idea of Hurwitz [14], is based on the 
observation that for K to be Euclidean it suffices that R contains many elements 
all of whose differences are units; see Section 1 for details. Some remarks about 
the existence of such elements are made in Section 2. In Section 3 we illustrate 
the method by giving 132 new examples of Euclidean fields of degrees four, five, 
six, seven and eight. A survey of the known Euclidean fields is given in Section 4. 

Acknowledgements are due to B. Matzat for making available [1] and [23]; 
to E.M. Taylor for communicating to me the results of [35] ; and to R van Emde 
Boas, A.K. Lenstra and R.H. Mak for their help in computing discriminants. 

w 1. A Sufficient Condition for Euclid's Algorithm 

In this section K denotes an algebraic number field of finite degree n and 
discriminant A over the field of rational numbers Q. By r and s we mean the 
number of real and complex archimedean primes of K, respectively. The ring of 
algebraic integers in K is denoted by R. We regard K as being embedded in the 
R~algebra K R = K | R, which, as an R-algebra, is isomorphic to Rrx C'. As an 
R-vector space we identify C with R 2 by sending a+bi to (a+b, a-b) ,  for a, 
heR. This leads to an identification of KR=R"x  C' with the n-dimensional 
Euclidean space R". It is well known that this identification makes R into a 
lattice of determinant 1AI ~ in R ~. 
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The function N:  R r x  CS-~R is defined by 

f i  __ r + s  r (1.1) N ( x ) =  [xfl. ]-[ Ixil 2, for x - ( x j ) j = l ~ R  x C  s. 
j = l  j ~ r + l  

The restriction of N to K is just the absolute  value of the field no rm K-~Q.  
Writing R* for the group of units of  R, we define 

(1.2) M = s u p  {ml there exist to~, ~)2 . . . . .  tomER such that  ~ i - t o j ~ R *  

for all i, j, 1 < i < j < m } .  

In Section 2 we shall see that  M is finite. 
We recall some notions from packing theory, referring to Rogers 's  book  [32] for 

precise definitions. Let U = R "  be a bounded  Lebesgue measurable  set with 
positive Lebesgue measure/~(U).  If (al)i~ 1 is a sequence of points  in R" which is 
sufficiently regularly distr ibuted th roughout  the space, then with the system ~// 
= ( U  +a~)~ 1 of  translates of  U we can associate a density, denoted by p(U). It 
may  be described as the limiting ratio of the sum of the measures  of those sets of 
the system ~ which intersect a large cube, to the measure  of the cube, as it 
becomes infinitely large. The system Jg = (U + a~)i"l is called a packing of U if (U 
+ai)c~(U+aj)= ~ for all i,j, i@j. The packing constant 6(U) of U is defined by 

O(U) = sup p(O#), 
~u 

the sup remum being over  all the packings 'Jk' of  U for which p(~k') is defined. Tbe 
centre packing constant c~*(U) of U is defined by 

(1.3) 6*(U)=6(U)/~(U), 

cf. [17, Sect. 3.1]. 

(1.4) Theorem.  Let K be an algebraic number field of degree n and discriminant 
A over Q, and let N and M be defined by (1.1) and (1.2). Further, let U=R" be a 
bounded Lebesgue measurable set with positive Lebesgue measure, having the 
property 

(1.5) N ( u - v ) < l  /'or all u, veU, 

and let c~*(U) denote its centre packing constant, defined by (1.3). With these 
notations, K is Euclidean if the inequality 

(1.6) M>6*(U).IAI ~ 

is satisfied. 

Proof For  any a, b6R, b+O, we must  find c, deR such that  a = c b + d  and N(d) 
<N(b) .  Writ ing x=a/b we see that  it suffices to find an element c~R with N(x 
- e ) <  1. 

By (1.6) and (1.2) there exists a sequence 031, to2 . . . . .  to m of elements of R such 
that  

cJi-~oj~R*, for all i,j, l <=i<j<m, 

m>~*(U)-Ial  ~. 
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The latter inequality is, by (1.3), equivalent to 

(1.7) m.t~(U)/IAI~- >6(U). 

Consider the system 

'J# : ( U  ~ - ( o i  x q - @ ) l  < i N  . . . .  R 

of translates of U. Using [32, Theorem 1.5] we find that its density is given by 

p(4/) = m- ~(U)/IAI ~ 

so (1.7) tells us that 

p( 4/) > 6( u). 

By the definit ion of 6(U), this implies that the system &' is f~ot a packing of U, so 
there are different pairs (i,~) and (j,/4), with l<=i,j<=m and g,/~eR, such that (U 
+e~ix + ~ ) ~ ( U  +~Jix +fl)4: ~, say 

u+~o~x+~=r+~ojx+[~  (u, reU). 

If i=j ,  then [ ~ - ~ = u - v ,  and (1.5) gives N(/~-x)< 1. Since /~-:~ is an algebraic 
integer, this is only possible i f / ~ - ~ = 0 ,  contradicting that the pairs (i,~.) and 
(.j,/~) are different. Therefore i+j ,  so eJ~-u)j is a unit and N(~oi--e.)i)=l. Put c 
=([~-~)/(~oi-(o~). Then c belongs to R, and 

N(x - c) = N((u - v)/(co i -(~)i)) = N(u - v) < 1, 

as required. This concludes the proof of Theorem (1.4). 
A slight modification of the argument shows that, under the condition (1.6), 

the inhomogeneous minimum of N with respect to R (cf. [19, Sect. 46]) does not 
exceed 6*(U). IAI~/M. 

(1.8) Corollary. Let K be an algebraic number field o[ degree n and discriminant 
A over Q, having precisely s complex arehimedean primes. Suppose that the 
,umber M defined by (1.2) sati,s.ti'es the inequality 

(1.9) M >  n' n . (4)~.I~IL 

7hen K is Euclidean. 

Proo.s We apply (1.4) with 
r r ~ s  

u={(x j ) j=,cr  • Ixil+2 ~ Ixjl<~,,}. 
1 j = r ~ t  

l'he verification of condit ion (1.5) consists of a direct application of the 
arithmetic-geometric mean inequality, which we leave to the reader. A classical 
computation shows that 

l~( u t = ~ !  �9 

of. [16, Ch. V, Lemma 3] (the discrepancy by a factor of 2 ~ is caused by the 
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difference in identifying C with R2). Thus, (1.8) is an immediate consequence of 
(1.4) and the inequality 

6(U)<= 1 

which is generally valid [32, Theorem 1.3]. This proves (1.8). 
Let S be a regular n-simplex in R', with edge length 2. Denoting by T the 

subset consisting of all points in S with distance < 1 from some vertex of S, we 
define 

(1.10) a,=l~(r)/t~(S ). 

(1.11) Corollary. Let K be an algebraic number field of degree n and discrim- 
inant A over Q, and suppose that 

(i.12) M>c~, 'F( l  +�89 (~)n/2"JA' 

Here M and (7 n are defined by (1.2) and (1.10), respectively. Then K is Euclidean. 

Proof. We apply (1.4) with 

{(x j ) j~eR x C  ~ +2~+~i } - -  r + s  r s 2 u -  E IxiV<�88 . 
1 - 1 ' 

Our identification of Rrx C s with R" makes U into an n-dimensional sphere of 

radius �89 l /n:  

U = { ( Y j ) j =  I ~Rn j~l.},'2 < l n}  �9 

Property (1.5) is again a simple consequence of the arithmetic-geometric mean 
inequality. The measure of U is given by 

, gn/2 

and a theorem of Rogers [32, Theorem 7.1] asserts that 

~(u)<G.  

Corollary (1.11) is now immediate from (1.4). 
Table 1 gives approximate values of a,- F(1 + �89 n)/7~ "/2 for 1 _< n _< 12. For n__< 2 

the tabulated value is exact; for n > 2  the table gives an upper bound exceeding 
the exact value by at most l0 -5. The table is derived from a similar table of 
lower bounds computed by J. Leech [18]. 

Table 1. Upper bounds for G" F(1 +�89 n)/n "/2 
n 

1 0.5 7 0.06982 
2 1/3/'6 8 0.06327 
3 0.18613 9 0.06008 
4 0.13128 10 0.05954 
5 0.09988 11 0.06137 
6 0.08113 12 0.06560 
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Straightforward computat ions  show that  (1.11) is to be preferred to (1.8) if 

(1.13) n = 2 ,  s = l  or 4 < n < 7 ,  s > 2  or 8_<n_<12, s > 3  

and that (1.8) is sharper in all other cases with 2<n<_12.  Applying Stirling's 
formula and Daniels's asymptot ic  formula: 

n 2 - n/2 (1.14) (r ,~ --. ( n ~ )  
e 

(cf. [32, Ch. 7, Sect. 5]) one finds that (1.11) is superior to (1.8) for all sufficiently 
large n, regardless of the value of s; probably n >  30 suffices. But the significance 
of this statement is doubtful,  since in the next section we shall see that on the 
assumption of the generalized Riemann hypothesis the inequality (1.12) is 
satisfied for only finitely many number  fields K, up to isomorphism. 

We generalize Theorem (1.4) by considering multiple packings. We fix an 
integer k > 1. 

As before, let U c R "  be a bounded Lebesgue measurable set with positive 
Lebesgue measure /~(U). A system Ck'=(U+ai)i~: 1, with aieR', is called a k-Jold 
packing of U if for every system of k + l  different positive integers (h(0), 
h(l) . . . . .  h(k)) the intersection 

( U -}- Oh(o) ) C5 ( U -t- ah(t)) ( 3 . . .  ~ ( U -}- ah(k) ) 

is empty. The k-[old packing constant 6k(U) of U is defined by 

(~k(U) = sup p(~#), 

the supremum being over all the k-fold packings ~h' of U for which p(g') is 
defined. Fur ther  let 

(1.15) 6*(U)=6k(U)/It(U ). 

Clearly, ,51(U)=(5(U ) and 6*(U)=6*(U). 
Returning to the algebraic number  field K we define 

(1.16) M k = s u p { m  ] there exist co 1, ('02 . . . . .  (,),,eR such that among any k + l  
distinct indices h(0), h(1),...,h(k)e{1, 2 . . . . .  m} there are two, 
h(i) and h(j) (say), such that  (Oh(i~--(9h(j)~R* }. 

Notice that it is not  required that  the ~o~ are different. In (2.7) we shall see that 
M k is finite. Clearly, M ~ =  M. 

(1.17) Theorem. Let K be an algebraic' number )Cieht (~[ degree n and discriminant 
A over Q, and let U c R "  be a bounded Lebesgue measurable set with positive 
Lebesgue measure satisfying (1.5). Further, let 6~(U) and M k, for keZ,  k > l, be 
d@'ned by (1.15) amt (1.16). With these notations, K is Euclidean ![ the inequality 

Mk>O~(g) .  IAI ~ 

is sati,~fied Jbr some integer k > 1. 

Proof The proof  of (1.17) is completely similar to the proof  of (1.4) and is left to 
the reader. 

(1.18) Corollary. Let K be an algebraic number field o[ degree n and diserim- 
inant A over Q, having precisely s complex archimedean primes. Suppose that for 
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some integer k> 1 the number M k defined by (1.16) satisfies the inequality 

M k > k .  n'  ~ . 

7hen K is Euclidean. 

Proof Choose  U as in the p roof  of (1.8) and use the trivial upper  bound 6k(U ) 
__<k. This proves (1.18). 

The  methods  of this section apply to a wider class of rings. For  example,  
they can be used to prove a quant i ta t ive  version of O ' M e a r a ' s  theorem, stating 
that  for any algebraic number  field K there exists aeR, a4:O, such that  R[a-~] 
is Euclidean with respect to a natural  general izat ion of the norm map,  cf. [28, 
31, 22]. Replacing packing theory by R iemann-Roch ' s  theorem one obtains  
similar results on rings of affine curves over arbi t rary  fields of constants,  cf. [22]. 

w 2. Estimates for M 

The notat ions  of Section 1 are preserved. We define L to be the smallest  norm of 
a p roper  ideal of R : 

(2.1) L = m i n { # ( R / I ) J l c R  is an ideal, I + R } .  

Clearly, L is a pr ime power. 

(2.2) Proposition. We have 2 < M <_ L <% 2". 

Proof The sequence 0, I shows M > 2 ,  and considerat ion of the ideal I = 2 R  
leads to L<2" .  To prove  M < L ,  let ~oi, eJ 2 . . . . .  a),, be any sequence of elements 
of R as in (1.2), and let I = R  be any ideal different from R. Then I does not 
contain any of the units ~  1 < i <  j < m so the elements a) l, ..., a)m are 
pairwise incongruent  modulo  I. Therefore  m < #e (R/I), which implies that  M < L. 
This proves (2.2). 

We use (2.2) to show that  no infinite sequence of Euclidean fields can be 
expected to result f rom (1.8) or (1.11). For  bounded  n this is a consequence of 
Hermi te ' s  theorem [16, Ch. V, Theorem 5], so by the remark  following (1.14) we 
need only consider fields satisfying (1.12). For  these fields, (1.12) and (2.2) imply 

7I" n . n n 
Inr< 

1 2 2 "  F(1 + ~ n )  .an 

Using Stirling's formula  and Daniels 's  formula  (1.14) we obtain 

[A[1/"<4r~e+o(1) ( n ~ ) ,  

where 4 ~ e = 3 4 . 1 5 8 9  . . . .  On the other  hand, Serre [30] has shown on the 
assumpt ion  of the generalized Riemann hypothesis  (GRH),  that  

IAI1/" > 8~ e; '+o(1) ( n ~ , ~ )  

with 8~re~=44.7632. . .  (Y is Euler 's  constant). Thus, assuming G R H ,  we con- 
clude that  n is bounded  and that  (1.12) holds for only finitely m a n y  number  
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fields K, up to isomorphism. Without any unproven hypothesis, Odlyzko [30] 
has shown that 

[A[1/">e~/~.4rce~'+o(l) (n-~ov). 

While this result does not allow us to draw the same conclusion unconditionally, 
it does handle the totally real case ( r=n,  s=0).  More precisely, it follows that for 
every c > 0  we have r / n < l - ) , + e  for almost all K satisfying (1.12); here 1 -~ '  
=0.42278 . . . .  

It remains undecided whether there exists a better upper bound for M, in 
terms of n alone, than the bound 2" implied by (2.2). In (3.1) and (3.3) we shall 
encounter fields K o f  arbitrarily large degree for which M > n. 

From (2.2) it follows that (1.6) can only be satisfied if 

(2.3) L>~*(U).IAI ~ 

(with U as in (1.4)). It is curious to notice that (2.3) already implies that K has 
class number one, since by a classical argument every ideal class contains an 
integral ideal of norm at most cS*(U). IAI a. 

Using a multiple packing argument one can establish the following lower 
bound for M: 

Its practical value is limited. 
We show that for a given number field the constant M can be effectively 

determined. Replacing a sequence (coi)'i"=l as in (1.2) by ((c')i-eJi)/(o92-~,)l))~"= l, 
we see that it suffices to consider only sequences for which ~ = 0  and co2= 1. 
Then for 3 < j  < m both ~_i and 1 -~oj are units. In the terminology of Nagell [26] 
this means that oJ 3, ...,~o,, are exceptional units. Let E be the set of exceptional 
units: 

E = { r , ~ R * I I - c ~ R * } .  

Both Chowla [4] and Nagell [24~ proved that E is finite. In fact, the set E can 
be effectively determined by Baker's methods [12, Lemme 4], and it is clear that 
a search among the subsets of E suffices to determine M. 

The hard step in this procedure is the determination of E by Baker's 
methods. It has not yet been carried out for a single algebraic number field. For 
a few fields classical diophantine techniques have been applied to determine E, 
cf. [25, 26, 36], (3.3), (3.9 ll). A substantial portion of E can often be detected by 
starting from a few exceptional units and applying the following rules: 

c, q, c q - l e E ~ ( 1 - e ) / ( 1 - q ) c E ;  

c~E ~ ac~E for every automorphism a of K. 

Most of the examples given in Section 3 rely on the following proposition. 
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(2.4) Proposition. Let x be an element of  R, and denote by f its irreducible 
polynomial over Q. Further, let ~,, denote a primitive m-th root 0[ unity and let 0 
be a zero of X 2 -  X - 1 .  We then have: 

if f(O) and )"(1) are both + 1 ; 
if each one off(O),  f(1)  and f ( - 1 )  equals + 1; 
if eaeh one of  the algebraic integers f(O), )c(1), f(~6) is a unit: 
if each one of  the algebraic integers f(0), f(1), f ( -  1), f(O) is a unit: 
if each one of the algebraic: integers f(O), f(1), f ( -  1), f(~3), f(~4) is 

(a) M > 3  
(b) M > 4  
(c) M > 5  
(d) M > 5  
(e) M > 6  

a unit: 
(f) m > 6  

is a unit. 

Proof, In the 

0, 

0, 

0, 

0, 

0, 

0, 

if each one ( f  the algebraic integers f(O), f(1), f ( - 1 ) ,  f(O), f ( - 0 )  

cases (a), (b), (c), (d), (e), (f) consider the sequences 

1, X, 

1, x, x + l ,  

1, x, 1/(1 - x ) ,  ( x -  1)/x, 

1, x, x- t - l ,  x 2, 

1, X~ X 2, X 3, X 4, 

1, x, x + 1, X 2, X 2 -~- X, 

respectively. That, in each case, the sequence satisfies the requirement in the 
definition of M is a consequence of Lemma (2.5), applied to g = X, X - 1, X + 1, 
X 2 - - X + I ,  X2-X-1,  X 2 + X + I ,  X 2 + l  and X 2 + X - - 1 .  

(2.5) Lemma. Let ,s g e Z [ X ]  be irreducible polynomials with leading coeffi'cient 
1, and let x and y be zeros o f f  and g, respectively. Then f (y )  is a unit if and only if 
g(x) is a unit. 

Proof  Suppose that g(x) is a unit. Then g(x) 1 is integral over Z, which easily 
implies 

g(x) ' ~ z [g(x) ]  = z I x ] .  

Thus, there exists a polynomial  h I e Z IX] such that h l(x ) �9 g(x)= 1, i.e. 

h l . g + h 2 . f = l  

for some hzGZ[X ]. Substituting y for X we find hz(y).f(y)= 1, SO f(y)  is a unit. 
This proves the if-part, and the converse follows by symmetry. This finishes the 
proof of (2.4) and (2.5). 

A second fruitful method to estimate M is given by the following trivial 
result. 

(2.6) Proposition. Writing M(K)  fi)r M, we have M ( K ) >  M(Ko) for every 
subfield K o of  K. 

Some of the above results can be extended to the numbers M k. For example, 
(2.2) generalizes to 

(2.7) 2 k < k . M , < M k < k . L  (k> 1). 
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As before, it follows that  (1.18) cannot  be expected to yield infinitely many  
Euclidean fields. 

I do not know whether  the numbers  M k, for k > 2 ,  can be effectively 
determined for a given algebraic number  field. 

w 3. Examples 

This section contains 132 new examples  of Euclidean fields; 128 of these are 
given in tabular  form, and the other  four can be found in (3.3), (3.5), (3.11) and 
(3.17). 

Cyclotomic Fields. We denote by ~,, a primit ive m-th root  of unity. 

(3.1) Let p be a pr ime number ,  and let q > 1 be a power  of p. Then the field K 
=Q(~q) has L=p, and considerat ion of the sequence ((Di)P_ 1' (L)i=(~ip--1)/(~p-1), 
shows M > p, so (2.2) implies M = p. For  q = p  = 2, 3, 5, 7, 11 the right hand side 
of (1.12) is approx imate ly  equal to 1, 1, 1.47, 3.12, 29.61, respectively. This gives 
new proofs that  Q(r and Q((v)  are Euclidean. The method does not handle 
Q(r 0, which is known to be Euclidean [20]. 
(3.2) Let K = Q ( r  ), where m is any integer > 1. Then M > p  for any pr ime p 

m 
dividing m, by (2.6) and (3.1). Further ,  M > I +  , where q is the largest pr ime 

q 
power  dividing m; this follows by considering the sequence 0, 1, (m, 
~2 y(m/q)- 1 . . . . . . . . .  . Applying (1.11) we find the known Euclidean fields Q((12) (for 
which in fact M > 2  suffices) and Q(r cf. [20]. 
(3.3) Let p be an odd pr ime number  and K=Q((p)c~R=Q((p+(71). Then L 
=p ,  except if p is a Fe rmat  prime, in which case L = p - 1 .  The sequence 
(r ](p+ 1)/2 defined by ~--i:i= 1 

o,,= Y, 
--i<j<i 

shows that  M>=(p+ 1)/'2. The  right hand side of (1.9) is for p = 3 ,  5, 7, 11, 13, 17 
approximate ly  equal to 1, 1.12, 1.56, 4.65, 9.40, 48.68, respectively. This yields a 
new proof  that  for p < l l  the field Q(~p+(~- l )  is Euclidean, cf. [10] for p = l l .  
For  p = 13 we can sharpen M > 7 to M > 11 by considering the sequence 

O, 1, 132 1, --P4, - D 5  1, - P I P 4 ,  - p 2 1 p 4 ,  (PIP2) -1,  - ( / ) 2 P 5 )  -1 ,  

P21/2 , --t)1P21)4. 

where Pi =r 3 -1- ~'13"~-i Thus we obtain  the new Euclidean field Q(c~ 13 + r It has 
n = 6 ,  r = 6 ,  s = 0  and A = 13 s =371,293. 

The precise value of M remains open. Clearly M = L for p = 3, and in (3.9) we 
shall see that  the same holds for p = 5. In the case p = 7 all exceptional units have 
been determined by Nagell  [26], and his results imply that  M = L = 7 ;  in fact, 
writing Ill =r 7 q-~7 i we have M > 7 because of the sequence 

(3.4) 0, 1, t/l, l + q l  , l + q l + t / 2  , 2+r/2,  2+~11+q2. 
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In the same way one proves that  also for p = 11 one has M > 7. 
(3.5) The field K = Q ( ~ 7 + ~  1 , ~ 5 + ~ ;  1) has n = r = 6 ,  s = 0 ,  A = 5 3 . 7 4 = 3 0 0 , 1 2 5  
and L = 2 9 .  It is known to be the totally real sextic field with the smallest  
discr iminant  [29]. The  right hand side of (1.9) is abou t  8.454, so by (1.8) and 
(1.18) the field K is Euclidean if M 1 > 9 or M 2 > 17. Writing qi = (~ + ~ i  and 0 = 
-~.~-~-' s we see, by adjoining 0 as an eighth m e m b e r  to the sequence (3.4), that  
M 1 ~ 8 :  

(3.6) 0, 1, r/1 , l + r / 1  , 1-kr/lq-~/2 , 2 + r / 2 ,  2 q - r / l + r / 2  , 0. 

I do not  know whether  M 1 > 9 ;  a near  miss is provided by 

(3.7) 1 + 0  

which differs from each of the numbers  (3.6) except r/1 by a unit. Replace the 
non-zero  elements in (3.6), (3.7) by their inverses, and apply  the field au tomor -  
phism sending r/1 to itself and 0 t o - 0  1. Then we obtain another  sequence 
showing M 1 >= 8 : 

(3.8) 0, 1, r/] -1, ( l + q l )  -1, (1+~/ +~/2) -1, ( 2 +  - i  1 i/2) , ( 2 + r ] l + r ] 2 )  1 - -0  

and since 1 + 0  is replaced by itself we conclude that  it differs by a unit f rom 
each of (3.8) except r/~ -1. We claim that  the sequence (col)/~]l obta ined by 
juxtaposi t ion of (3.6), (3.7) and (3.8) shows M 2 > 17. To prove  this, let COb, CO> COi 
be three members  f rom this sequence;  we must  show that  at least one of cob-co~, 
cob- co~, co~- co~ is a unit. If two of cob, co~, coj both belong to (3.6) or both  belong 
to (3.8) this is clear. So we may  assume that  mh is among  (3.6), that  % =  1 +0 ,  
and that  co,i is among  (3.8). Then  coh-co~ is a unit except if cob=r/l, and similarly 
% - cos is a unit  except if cos = q { 1. Finally, if COh = ~/1 and co s = q ~- 1 then cob -- coS is 
a unit. We conclude that  M 2 > 17 and that  K is Euclidean. 

Fields of  Small Unit Rank. All exceptional  units in the fields with r + s < 2 have 
been determined by Nagell,  see [25] for references. The resulting informat ion 
abou t  M is collected in (3.9), (3.10) and (3,11). 

(3.9) For  quadrat ic  K, we have m = 3 if K =Q({3)  (cf. (3.1)), m = 4  if K = Q ( ] ~ )  
=Q(~5  + ( 5 1 )  (apply (2.4)(b) with f = X  2 - X - 1 ) ,  and M = 2  in all other  cases. 
(3.10) If K is complex cubic, i . e . , n=3 ,  r = s = l ,  then 

M = 5  if K = Q ( r  r  A = - 2 3  ( a p p l y ( 2 . 4 ) ( c ) t o x = c 0 ,  

M = 3  if K = Q ( 7 ) ,  7 3 + 7 - 1 = 0 ,  A = - 3 1  (apply (2.4)(a) to x = y ) ,  

and M = 2 in all o ther  cases. 
(3.11) For  totally complex  quart ic  K, i.e., n = 4 ,  r = 0 ,  s = 2 ,  we have:  

M = 6  if K = Q ( ~ 3 , f l ) ,  f 1 2 + ~ 3 f l - l = 0 ,  A = 1 1 7 = 3 2 .  13 (see below), 

m = 5  if K = Q ( ~ 5 ) ,  A = 1 2 5 = 5 3  (see(3.1)), 

M = 4  if K = Q ( ( 1 2 ) ,  A = 1 4 4 = 2 4 . 3 2  (cf. (3.2)), 

M = 3  if K = Q ( v ) ,  V4--V-+- I=0 ,  A = 2 2 9  (prime) (see below), 

M = 3  if K = Q ( ~ 4 , ~  ), ~ 2 - ~ - ~ 4 = 0 ,  A = 2 7 2 = 2 4 . 1 7  (cf. (2.4) (a)), 
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a n d  in  a l l  o t h e r  c a s e s  

M = 4  if 

M = 3  if  1 / 5 q ~ K ,  ~ 3 6 K ,  

M = 2  i f  l f 5 r  ~3r  

F o r  t h e  f i e ld  Q(f f3 , /3 ) ,  f 1 2 + ~ 3 f l - I  = 0 ,  a s e q u e n c e  s h o w i n g  M > 6  is g i v e n  b y  0, 

1 , /~ , /~2 ,  - ~ 3 ,  - ~ 3 / ~  1. T h e  f i e l d  w i t h  A = 2 2 9  is a n e w  E u c l i d e a n  f i e l d '  b y  (2.2) 

a n d  (2 .4 ) ( a )  it  h a s  M = 3 ,  w h i l e  (1 .11)  o n l y  r e q u i r e s  M = > 2 .  

E x p l a n a t i o n  o1' t h e  T a b l e s .  I n  T a b l e s  2 - 9  o n e  f i n d s  128 n e w  E u c l i d e a n  f i e l d s  

o b t a i n e d  b y  m e a n s  o f  (1.8)  a n d  (1 .11) .  I n  t h e  h e a d  o f  e a c h  t a b l e  o n e  f i n d s  n, r a n d  

T a b l e  2 .  , i=4 .  r = 2 ,  s =  1: (1.8) is applied 

- A  K o ao, a 1 . . . . .  a m M >  method 

275=52.  11 0 --0, 1, 1 2 (2.2) 

283 (prime) 0 --1, --1, 0, 0, I 3 (2.4)(al 

331 (prime) 0 --1, 3, 2, 0, 1 3 (2.4)(a) 

400=24.52 0 - -0 ,0 ,  1 3 (2.6), (3.9) 

448=26 . 7  .,i. t, --2. l 3 (2.4)(a) 

475=52.  19 0 0, 1, 1 3 (2.6), (3.9) 

491 (prime) 0 -- 1, 3, -- 1, -- 1, 1 3 (2.4) (a) 
507=3-  132 p 1. --,u, 1 3 (2.4)(a) 

563 (prime) 0 --1, --1, 1, --1, I 3 (2.4)(a) 

643 (prime) 0 -- 1, -- 3, 0, 2, I 4 (2.4) (b) 

775=52.31 0 I - 0 ,  0, 1 4 (2.6), (3.9) 

Table 3. n = 5 ,  r =  1, s = 2 ;  (1.11) is applied 

A ao,  ( / i ,  02,  a3,  a 4, a 5 M > method 

1609 (prime) - I, 1, 1, - 1, 0 ,  

1649= 17.97 - 1, 1, 0. - 1, 1, 

1777 (prime) - 1, 2. l, - 2, 0, 

2209 =472 I, - 2 .  2, - 1 ,  0, 

2297 (prime) - 1, 1, - 1, 1, 0, 

2617 (prime) - 1, 0, - 2 ,  1, 0, 

2665 = 5-13-41 - 1, - 2, 0, 1, 0. 

2869 = 19-151 1, - 1 ,  0, 0, 0, 

3017 = 7.431 1, O, - I ,  0, 0, 

3889 (prime) - 1, 1, - 1, 0 ,  - 1, 

4417 = 7.631 - 1 ,  2, - 2 ,  1, 0, 

4549 (prime) 1, 1, - 2 ,  - 2, 2, 

3 (2.4)(a) 

3 (2.4)(a) 

3 (2.4)(a) 

3 (2.4)(a) 

3 (2.4)(a) 

3 (2.4)(a) 

3 (2.4)(a) 

4 (2.4)(b) 

4 (2.4)(b) 

4 (2.4)(c) 

4 (2.4)(c) 

4 (2.4)(b) 
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Table 4. n = 5, r = 3, s = 1 ; (1.8) is appl ied 

H.W. Lenstra,  Jr. 

- d  a o, a 1 , a z ,  a 3 ,  a 4 ,  a s M >  method  

4511 = 13.347 - l ,  0, 1, - 2 ,  0, 1 4 (2.4)(b) 

4903 (prime) - 1, 1, l, - 2 ,  1, 1 4 12.4)(b) 

5519 (prime) - I, 1, 1, - 3, 0, 1 4 (2.4)(b) 

5783 (prime) - 1, 2, 1, - 3, 1, t 4 (2.4) (b) 

7 0 3 1 = 7 9 . 8 9  - i ,  - 1 ,  1, - 1 ,  0, 1 5 (2.4)(c) 

7 3 6 7 = 5 3 .  139 1, 2, 0, - 3 ,  - 2 ,  1 5 (2.4) (d) 

7463 = 17. 439 1, - 2, 1, 0, - 2, 1 5 (2.4) (c) 

8 5 1 9 = 7 - 1 2 1 7  1, - 1 ,  - 1 ,  0, - 1 ,  1 5 (2.4)(d) 

8647 (prime) 1, 2, - 2 ,  - 3 ,  0, 1 5 (2.4) (d) 

Table 5. 17=6, r = 0 ,  . s=3;  (1.1l) is appl ied 

- A  K o ao, a l , . . . , a , ,  M >  method  

9, 7 4 7 = 3 3 .  19z ~3 ~3, 1 --~3, - 1 ,  1 3 (2.6), (3.9) 

10,05l = 19.23 z :~ :~-1 ,  1, 1 3 (2.6), (3.10) 

10,57 l = 11 �9 312 ?' - 7 + 1, 1, 1 3 (2.6), (3.10) 

10 ,816=26.  132 ~ - 1 ,  1, ~ 4 - 1 ,  1 3 (2A)(a) 

11 ,691=33"433 ~3 ~3, 1, 1, 1 3 (2.6), (3.9) 

12,167=233 ~ 1, ~ -  1, 1 3 (2.6), (3.10) 

14 ,283=33.232  ~ 1, 1, 1 3 (2.6), (3.10) 

14,731 (prime) 0 1, 0, --1,  - 1 ,  0, 1, l 3 (2.4)(a) 

16,551 = 3 3 - 6 1 3  '~3 - ~ 3 ,  - 2 ,  ~3, 1 4 (2.4)(bl 

1 8 , 5 1 5 = 5 . 7 . 2 3  z :r 1, cr 1 4 (2.6), (3.10) 

2 1 , 1 6 8 = 2 4 " 3 3 ' 7 z  ~3 1, ~ 3 - 1 ,  - ~ 3 ,  1 4 (3.16} 

21 ,296=24 .  113 K 1, ~:, 1 4 (3.13) 

22,291 (prime) 0 1, - 3 ,  6, - 6 ,  4, --2,  1 4 (2.4)(c) 

22 ,592=26 .  353 ~, 1, - i f4 ,  ~ 4 -  l, 1 4 (2.4)(c) 

22 ,747=232 .43  :r ~ + 1 ,  1, 1 4 (2.6), (3.10) 

23,031 = 3 3 - 8 5 3  ~3 ~3, --1,  0, l 4 (2.4)(b) 

2 4 , 0 0 3 = 3 ~ - 7  - 127 ~3 ~3, - 1, 1, 1 4 12.4)(b) 

27 ,971=83-337  0 1, - 1 ,  1, - 2 ,  3, - 2 ,  1 5 (2A)(c) 

2 9 , 0 9 5 = 5 . 1  1.23 z ~ cd, 1, 1 5 (2.6), (3.10) 

29,791 = 313 y 1, - y - 1, 1 5 (2.4) (c) 

31,211 = 2 3 2 . 5 9  c~ c~, c~, l 5 (2.6), (3.10) 

33 ,856=26 .232  c~ 1, 0, 1 5 (2.6), (3.10) 

33 ,856=26 .232  e 7, 0, 1 5 (2.6), (3.10) 

36 ,235=5-7247  0 1, - 1 ,  1, 0, 0, - 1 ,  1 5 (2.4)(c) 

41,791 =232  .79 ~ ~, 1, 1 5 (2.6), (3.10) 

64 ,827=33 .74  r/ 1, 1, 1 7 (2.6), (3.3) 
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Table 6. n = 6 ,  r = 2 ,  ~s=2:  (1.11) is applied 

249 

,4 K o a 0, a 1 . . . .  ,a , ,  M>= method 

2 8 , 0 3 7 = 2 3 2 .  53 ~ - 1 ,  ~ 2 _ ~ ,  1 5 (2.6), (3.10) 

29,077 (prime) 0 - 1, 2, - 1, 0, 1, - l ,  1 5 (2.4)(c) 

2 9 . 1 8 9 = 1 7 2 .  101 0 1, 1, 1, 0, - 3 ,  0, 1 5 (2.41(d) 

3 0 , 1 2 5 = 5 3 . 2 4 1  0 1 - 0 ,  1, - 0 ,  1 5 (2.4)(c) 

3 1 , 1 3 3 = 1 6 3 . 1 9 1  0 1 , 2 , 0 ,  - 1 .  2 ,0 ,  1 5 (2.41(d) 

3 1 , 2 1 3 - 7 4 .  13 q ~i 2, 1, 1 5 (2.6), (3.3) 

3 1 , 7 0 9 = 3 7 . 8 5 7  0 - 1 ,  1, 3, - 2 ,  - 3 ,  0, 1 5 (2.4)(d) 

3 2 , 2 6 9 = 2 3 2 . 6 1  :~ ~, ~, 1 5 (2.61, (3.101 

3 3 , 8 5 6 = 2 6 - 2 3 2  ~ - ~ .  0, 1 5 (2.6), (3.101 

3 5 , 1 2 5 - 5 3 . 2 8 1  0 1, - 0 ,  0, 1 5 (2.4)(c) 

35, 5 5 7 = 3 1 2 3 7  7 - 1 ,  - 7 ,  1 5 (2.41(d) 

37,253 (prime) 0 - 1, 0, 1, 0, - 1, - 1, 1 5 (2.4)(d) 

3 7 , 5 6 8 = 2 6 . 5 8 7  0 - I ,  2, - 1 ,  0, 2, - 2 ,  l 5 (2.41(c1 

39,269 = 107.  367 0 1, - 1, - 2, 2. 0. - 2. 1 5 (2.4) (d) 

40,277 (p r ime)  0 - 1, 2, - 3, 0~ 3, - 3. 1 5 (2.41(c) 

4 0 , 7 3 3 - 7 . 1 1 . 2 3 2  :~ :~ 1, ~2. 1 5 (2.6), (3.101 

4 1 , 0 6 9 = 7 .  5867 0 1, 0, 2, 0, 2, - i.  1 5 (2.4)(d) 

45.301 = 8 9 .  509 0 - 1, - 1, 0, 0, 1, 1, 1 6 (2.4)(e) 

47,081 = 2 3 2 . 8 9  ~ - 1 , ~  1, 1 6 (2 .4)(0 

47,669 = 73.  653 0 - 1, 0, - 1, 0, 1, 1, 1 6 (2.41(e1 

49,664 = 29.  97 2 ).. - 1, 0, 1 6 (2.4)(f) 

53,429 = 2 3 2 .  101 ~ - l~ ~, 1 6 (2.4)(f) 

6 1 , 1 9 3 = 1 1 . 5 5 6 3  0 - 1 ,  1, - 1 ,  I, 1~ 1, 1 6 (2.41(e) 

61, 5 0 4 = 2 6 " 3 1 2  7 1 ' -  I, 0, 1 6 (2.411f) 

6 9 , 6 2 9 - 7 4 " 2 9  q -~ l ,  1, 1 7 (2.6), (3.3) 

"fable 7. n - 6 ,  r = 4 ,  s - l :  (1.81 is applied 

--A K o a o, a I . . . . .  a,, M > method 

92,779 (prime) 0 1, 2, 1, - 3 ,  2, t, l 6 (2.41(1") 

1 0 3 , 2 4 3 = 7 4 . 4 3  r 1 ~12-2 ,  r/, 1 7 (2.61, (3.37 

s, and which one of  (1.8), (l.111 is applied. Every row corresponds to a field K, 
represented as K = Ko(x ), where K o is a subfield of K. If n is composite,  then a 
generator for K o is given in the second column; the symbols used are explained 
in Table 10. If this subfield generator is 0, then K has only trivial subfields and 
K 0 = Q .  We also take K o =  Q if n is a prime number. In the first column one 
finds the absolute value of the discriminant of K and its prime factorization. 
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Table 8. n=7 ,  r = l ,  s = 3 :  (1.ll) is applied 

H.W. Lenstra, Jr. 

- A  ao, a~. az,  a~, a,,, as ,  a 6, a v M >  method 

184,607 (prime) - 1, - l, 1, 1, 0, - 1, - 1, 1 5 (2.4)(d) 

193,327 (prime) - 1, 2, 0, - 2 ,  2, 0, - 1, 1 5 (2.4) (c) 

193,607 (prime) - 1, 0, - 1, - 1, 1, 0, 0, 1 5 (2.4)(c) 

196,127=29.6763 1, - 2 ,  2, 0, - 1 ,  2, - 2 ,  1 5 (2.4)(c) 

199,559 (prime) 1, - 1, 0, 1, 0, 0, - 1, 1 5 (2.4) (c) 

201,671 = 17- 11,863 1, 1, - 1, - 1, 2, 0, - 2. 1 5 (2.4) (d) 

202,471 (prime) 1, - 1, - 1, 2, 0, - 1, 0, 1 5 (2.4) (c) 

207,911=11.41-461 - 1 ,  0, 1, - 1 ,  1, 1, - 1 ,  1 5 (2.4) (c) 

211,831=19.11,149 1, - 1 ,  2, - 1 ,  0, 1, - 2 ,  1 5 [2.4)(c) 

214,607 (prime) - 1, - 1, 2, 3, - 2 ,  - 3 ,  0, 1 5 (2.4)(d) 

224,647 = 277. 811 - 1 ,  0, 2, 1, - 2 ,  - 2 ,  0, 1 5 (2.4)(d) 

227,287 = 167. 1361 - 1, 0, 2, 0, 1, 0, - 2 ,  1 5 (2.4) (d) 

237,751 =23.10,337 - 1, - 1, 3, 4. - 2 ,  - 3 ,  0, 1 5 (2.4)(d) 

242,147 (prime) 1, - 1, 2, - 1, - I, 2, - 2 ,  1 5 (2.4)(c) 

242,971 (prime) - t, - 1, 1, 2, 0, - 2 ,  - 1, l 5 (2.4)(d) 

250,367 = 13- 19.259 1, 1, - 1, 2, 0, - 3 ,  0, 1 5 (2.4)(d) 

252,071 =83 .  3037 - 1, - 1, 0, 2, 1, - 2 ,  1, 1 5 (2.4)(d) 

267,347= 101.2647 1, - 1, - 4 ,  3, 5, - 2 ,  - 2 ,  1 6 (2.4) (f) 

270,607 = 461 �9 587 - 1, 0, 2, 2, 0, - 2, - 1, 1 6 (2.4) (f) 

272,671 =7.38,953 1, - 2 ,  - 3 ,  6, 3, - 4 ,  - 1 ,  1 6 (2.4)(0 

319,831 (prime) - 1 ,  - 3 ,  - 3 ,  - 1 ,  1, 3, 2, 1 6 (2.4)(e) 

330,487=23.14,369 1, - 1, 0, - 1, 0, 1, 0, 1 6 (2.4) (e) 
349,847 = 19.18,413 - 1, - 1, - 1, - 1, 0, 1, 1, 1 6 (2.4) (e) 

F u r t h e r  t h e  t a b l e  c o n t a i n s  t h e  c o e f f i c i e n t s  a o, a 1 . . . . .  a, ,  o f  t h e  i r r e d u c i b l e  

p o l y n o m i a l  a o + a:  X + . . .  + a , ,  X m o f  x o v e r  K 0 ;  h e r e  m is t h e  d e g r e e  o f  K o v e r  

K 0. I n  t h e  c o l u m n  h e a d e d  " M > "  o n e  f i n d s  t h e  l o w e r  b o u n d  fo r  M r e q u i r e d  b y  

(1.8) o r  (1.11)  t o  p r o v e  t h a t  K is E u c l i d e a n .  T h e  f i n a l  c o l u m n  m e n t i o n s  w h i c h  o f  

o u r  r e s u l t s  a p p l y  t o  p r o v e  t h i s  l o w e r  b o u n d .  

T h e  f i e lds  in  t h e  t a b l e s  h a v e  b e e n  f o u n d  in  t h r e e  w a y s .  F i r s t ,  t h e  m e t h o d s  o f  

S e c t i o n  2 w e r e  a p p l i e d  t o  t h e  q u a r t i c  f i e lds  l i s t e d  b y  G o d w i n  E 6 - 8 ] ,  t h e  q u i n t i c  

f i e lds  g i v e n  b y  C o h n  [5 ,  cf. 2 ]  a n d  M a t z a t  [ 2 3 ] ,  a n d  t h e  t o t a l l y  r e a l  a n d  t o t a l l y  

c o m p l e x  s e x t i c  f i e lds  l i s t e d  b y  B i e d e r m a n n  a n d  R i c h t e r  [ 1 ] .  N o t  al l  f i e lds  c o u l d  
b e  d e c i d e d ;  fo r  e x a m p l e ,  t h e  f ie ld  K = Q ( x ) ,  x 5 + x  3 - x  2 - x  + 1 = 0 ,  w i t h  n = 5, r 

= 1 ,  s = 2 ,  A = 4 8 9 7 = 5 9 . 8 3 ,  h a s  M > 4  b y  (2 .4 ) (b ) ,  b u t  t h e  r i g h t  h a n d  s i d e  o f  

(1 .12)  is a b o u t  4 .001.  T h e  f ie ld  h a s  L = 5 ,  a n d  it  r e m a i n s  u n d e c i d e d  w h e t h e r  M 

= 4  o r  M = 5 .  

S e c o n d l y ,  m a n y  e x a m p l e s  w e r e  f o u n d  b y  c o n s i d e r i n g  e x t e n s i o n  f i e lds  o f  a 

g i v e n  f ie ld  K 0, a n d  a p p l y i n g  (2.6). 

O u r  t h i r d  a p p r o a c h  c o n s i s t e d  in  c o n s t r u c t i n g  p o l y n o m i a l s  f s a t i s f y i n g  o n e  o f  

t h e  c o n d i t i o n s  ( a ) - ( f )  o f  (2.4), a n d  c o m p u t i n g  t h e i r  d i s c r i m i n a n t s  o n  a n  e l e c t r o n i c  
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Table 9. ~=8, r=0, ~s=4; (1.11) is applied 
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A K o a,, a~, ..., a,,, M > method 

1,257,728 =2s. 173 { -1 ,  {, I 5 {2.41(d} 
1,282,789-1103.1163 0 1,0, -3 ,0 ,  5, 1, -3 ,  -1 ,  1 5 (2.4)(d) 
1,327,833=3'*" 132 -97 '8 1, [:t+ 1, 1 5 (2.6), (3.11) 
1,342,413-3'*. 16,573 {.~ -{3, {3, 1 -~3,/~3 - I ,  1 5 (2.4)(c) 
1,361,513= 17-2832 i5 ~5+1, 1, 1 5 (2.6), (3.12) 
1,385,533 =29-47,777 0 1, 0, 0, 0, 1~ -3 ,  3, -2 ,  I 5 (2.4)(c~ 
1,424,293- 13. 3312 +: 1, c, I 5 (2.6), (3.12~ 
1.474,013-617.2389 0 1, -1 ,  1,0. - I ,  1, -1 ,0 ,  1 5 (2.4)(c) 
1,492,101 =3~" 132" 109 [3 '8+1, 1, 1 5 (2.6),(3.11) 
1,513, 728=2~'3473 ~12 ~12+1, - r  1 5 (2.4)(c) 
1,520,789=29"2292 v -1 .  v - l ,  1 5 (2.4)(d) 
1,578,125 =5~' 101 r 1, ~2+~5, 1 5 [2.6), (3.11) 
1,590,773= 179. 8887 0 I, -2 ,  1, 1, -2 ,  2, 0, - 1, I 5 (2.41(c) 
1,601,613=36"13 ~ '8 -7,23,'8-1, 1 6 (2.6), (3.11) 
1,797,309-34"22,189 r --r r 1~ 2~ 3 1, r 1, 1 6 12.4)(fl 
1,820,637-3 ~*. 7.132. 19 '8 1, ,8, 1 6 (2.6h (3.11) 
1,867,553 (prime) 0 1, L l, - l ,  -2 ,  -1 ,0 ,  t. 1 6 (2.4)(e) 
1,890,625=56. 112 Q~ Cs+r 1, - 1, 1 6 (3.151 
2,149,173-Y*" 132 " 157 '8 ,8, r l 6 12.6), (3.11) 
2~313,441-3'*-134 '8 -1 ,  ~32, 1 7 (3.141 

computer .  T w o  p r o g r a m s  were used, one  wr i t ten  by P. van  E m d e  Boas a n d  one  by 
A.K. Lens t ra  and  R.H.  Mak.  Every i r reduc ib le  f whose  d i s c r i m i n a n t  was found  
to be sufficiently smal l  gave rise to a Euc l idean  field, by (2.4) and  (1.8), (1.11). All 
fields in T a b l e  8 (degree 7) were d i scovered  in this way. It occur red  of ten that  
two p o l y n o m i a l s  had  the  s ame  d i sc r iminan t .  These  d i s c r i m i n a n t s  are  listed on ly  
once. W e  did  no t  test the c o r r e s p o n d i n g  fields for i somorph i sm.  

Special Fields. A few fields deserve  special  m e n t i o n  or requi re  special  t r ea tmen t .  
(3.12) The  fields Q(3)  and  Q(c), def ined  by T a b l e  10 and  also occu r r i ng  in 
Table  2, have 

A -- - 283, M >__ 6 (by (2.4) (e)) 

and  

A = - 3 3 1 ,  M = L = 5  (by (2.4) (c)), 

respectively. 

(3.13) The  to ta l ly  complex  sextic fields with A = - 1 2 , 1 6 7  and  A = - 2 9 , 7 9 1  

occur r ing  in T a b l e  5 are the  Hi lber t  class fields of  Q( l / r - -23 )  a n d  Q ( 1 / - 3 1 ) ,  
respectively. There  are  two o the r  fields in Tab l e  5 which are n o r m a l  over  Q" the 
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Table 10. Subfield generators 

Symbol Defining equation Ref. 

~ 3 - - ~ - - 1 = 0  (3.10) 

[3 [ 1 2 + ~ 3 1 1 - 1  = 0  (3.11) 

? ~,3+ 7 - 1 = 0  (3.10) 

6 ~ 4 _ f i _  1 = 0  (3.12) 
e e4--2~2 + 3~:-- 1 = 0  (3,12) 

•,, m-th cyclotomic equation (3.1), (3.2) 
q q3 + r / 2 - 2 r / -  l = 0  (t/= [7 + ~ l ) (3.3) 

0 0 2 - 0 - 1 = 0  ( 0 = - ~ 5 - ~ 5 ~  ~-1) (3.9) 
~c K3 + ~c2-;~ + 1 = 0  (3.13) 

2 , : o2 -22-  1 = 0  (2= 1 + ! / 2  ) 

,u / , t 2 - # -  3 = 0  (/~ =�89 + 1/13)) 

v v 4 - v +  1 = 0  (3.11) 

~ - ~ - G = 0  (3dl) 

abelian field Q(~7 + ~7 ', ~3) with A = -64,827 and the class field over Q ( ] / - l l )  
with conductor (2), having A = -21,296. It has M > 4  because of the sequence 0, 
1, x,-tcx 2, where x Z + ; c x + l  =0, K3q-KZ--tC+ 1 =0. The subfield Q(;r has n=3,  
r = s = l  a n d A = - 4 4 .  
(3.14) The only other normal field in our tables is the Hilbert class field of 

Q ( ] / - 3 9 ) ,  with A=2,313,441, occurring in Table9.  It can be written as 
2 Q(~3,fl, x), with f l z + ~ 3 f l - - l = 0  , x Z - l - ~ 3 x - - l = 0  (notice that fl and x are con- 

jugate over Q), and it contains the field with A = - 5 0 7  occurring in Table 2. The 
field has M > 7  because of the sequence 0, 1, fl, f12, -~3,  -c~3fl 1, _c~3x" 
(3.15) The field with A = 1,890,625 occurring in Table 9 is normal over Q(~5 
+ ~ ; - i ) . i t h a s M > 6 b e c a u s e o f t h e s e q u e n c e 0 ,  1, - ~ 5 - ~ ;  -1 1 ~ ~-1 , - ~ - 5 - ~ 5  , 1 + ~ 2 ,  
x, w h e r e  x 2 - x + ( ~ 5 + ~ 5 1 ) = 0 .  

(3.16) The field with A = -21,168 occurring in Table 5 has M > 4  because of 0, 
1, 1 + ~ 3  , X, where xa-~3x2+(~3-1)x-t-I = 0 .  
(3.17) Let K = Q ( x ) ,  with x S + 2 x 4 + x 3 - x 2 - 3 x - 1  =0. The field has n=5,  r=3, 
s =  1, - A  = 11,119 (prime), L = 7  and the right hand side of (1.9) is about 5.156. 
Thus, K is Euclidean if M 1 >6  or M a> 11, by (1.18). I do not know whether M~ 
__>6; but a sequence showing MR> 12 is given by 

0, 1, x + l ,  (x+l)2/x, x/(x+l), 

0, 1, ( x + l )  -~, X/(X+l) 2, (x+l)/x, 
- 1  

X ,  X , 

as can be verified by the method of (3.5). It follows that K is Euclidean. 

w 4. The Number of Known Euclidean Fields 

At the time of writing this (September 1976) I know 311 non-isomorphic 
Euclidean number fields. Table 11 shows how they are distributed with respect 
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Table 11. The number  of known Euclidean fields 

253 

r + s  n Total 

I 2 3 4 5 6 7 8 9 10 

1 1 5 6 

2 16 52 32 100 

3 57 l l  12 28 108 

4 9 10 25 23 24 91 

5 1 2 0 0 0 1 4 

6 2 0 0 0 0 2 

Total 1 21 109 52 23 57 23 24 0 1 311 

to n and r+s. We indicate the sources;  the references are to the most  informat ive  
rather than to the or iginal  publ ica t ions .  
n < 2 :  see [13, Ch. 14]. 
n = 3 ,  r + s = 2 :  see [11, 35]. 
n = 3 ,  r + s = 3 :  see [9, 33, 34]. 
n=4 ,  r + s = 2 :  th i r ty  fields appea r  in [15];  for the other  two, with A =125  and 
A =229,  see (3.10). 
H = 4, r + s = 3 : see Section 3, Table  2. 
n=4 ,  r + s = 4 :  see [10]. 
n = 5, r + s = 3 : see Section 3, Table  3. 
n=5, r + s = 4 :  see Section 3, Table  4, and (3.17). 
n=5 ,  r + s = 5 :  see [10] or (3.3). 
n = 6, r +  s = 3: twenty-six fields appea r  in Section 3, Table  5; the o ther  two are 
Q(~7) and Q(~9) ,  with A = - 1 6 , 8 0 7  and A = -19 ,683 ,  see [20]. 
, = 6, r + s = 4: see Section 3, Table  6. 
, = 6, r + s = 5 : see Section 3, Table  7. 
t1=6, r + s = 6 :  see (3.5) and (3.3). 
n=7 ,  r + s = 4 :  see Section 3, Table  8. 
77=8, r + s = 4 :  twenty fields appea r  in Section 3, Table  9; the other  four are 
Q(~15) .  Q ( ~ 2 0 ) ,  Q ( ~ 2 4 )  and Q(~I~), having A=1,265,625,  A=4,000,000,  
1 = 5,308,416 and A = 16,777,216, respectively [20, 21, 27]. 
n=10 ,  r + s = 5 :  this is Q(~11), with A = -2 ,357 ,947 ,691 ,  see [20]. 

It has been proved  that  the only Eucl idean fields with n < 2  are the known  
ones [13, Ch. 14], and that  there  exist only finitely many  Eucl idean fields with r 
+ s < 2, up to i somorph i sm [3]. 
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