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1. Games and sets.

The games we shall consider have three characteristics. First, they are
played by two players, who move alternately according to certain rules.
Secondly, we require that in any game it happens, after a finite number of
moves, that the player whose turn it is has no legal move; and thirdly, we
adopt the convention that this player then is the loser. Of the several

possiblé ways to formalize this concept the following is probably the simplest.

Definition. A game is a set.

A few words of explanation may be in order. If a, b are two positions
in a game, then we say that b 1is an option of a if, according to the
rules of the game, it is legal to move from a to b; it is assumed that
this only depends on a and b, and not on whose turn it is. We identify
each position with the set of its options, and each game with its initial
position; whence the definition. Notice that an element of a game, or of a

position, is itself a position; hence all sets we are considering have only
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sets as their elements, as is usual in axiomatic set theories.
Thus, playing a set S is done as follows. The first player chooses

an element of §, say S'. DNext the second player chooses an element, say

S", of §', whereafter the first player chooses an element of S", The
ame continues in this way until one of the players - the loser! - has to
g Y pLay

choose an element from the empty set; the axiom of regularity (any non-empty
set x contains an element disjoint from %) easily implies that this
situation actually occurs after a finite number of moves,

Example. Let n be a natural number, i.e. a finite ordinal. If we adopt the
usual definition of ordinal numbers, which implies that

a = {8: B is an ordinal <’m§ for every ordinal q,

then we have
n=1{0,1, 2, ..., n-1}.

The game n can be played with =n counters; moving just means taking away
an arbitrary non-empty subset of these counters. Notice that the first player
has an easy win by taking all counters, if n > 0; if n = O, the first
player has no move and loses. The reader may wish to analyze the game WN =
{n: n is a natural number} (including zero).

Example. T, the complex numbers. The following annotated game will make the

-

rules clear.

White Black
1. 3 -2i {33{}
2. 35 (22/7}@
3. (bby,,-14,)7 { -44., |
- (0pys 4l )!

5. White resigns.

Comment. 1. White selected a complex number. Black knows that T = R x R,

by ‘a + bi = (a,b), and remembers Kuratowski's definition of an ordered pair:



(x,y) = {{x},{x,y}}. Thus Black must choose an element of i{BEJ, i3ﬂ¥ -Zﬂli%;
The index R here, and later 0§, Z and IN, serve to distinguish between
real numbers, rational numbers, integers and natural numbers usually denoted
by the same symbol. Black's move leaves White a minimum of choice, but it is
not the best one.

2. White has no choice. The "Dedekind cut" definition of IR which the
players agreed upon identifies a real number with the set of all strictly
larger rational numbers; so Black's move is legal.

3. A rational number is an equivalence class of pairs of integers (a,b),
with b # 0; here (a,b) represents the rational number a/b. The question
mark denotes that White's move is a bad one.

4. The pair (a,b) of natural numbers represents the integer a -b.
Black's move is the only winning one.

44 In

5. White resigns, since he can choose between {0 and

EN} §ODN’ ]N}'

both cases Black will reply by O_. , which is the empty set.

N

2. Nim addition and multiplication.

The sum J + K of two games is recursively defined by
J+K=1{j +K J+k: jeJ, kek},

the recursion being justified by the axiom of regularity. Informally,
playing a sum of two games means selecting one of the component games,
making any legal move in that game, and not touching the other one. The next
player then also selects one of the component games - possibly the same,
possibly not -, makes a legal move in it, and does not touch the other game.
The game continues in this way until some player is unable to move in any of
the two components; by our convention, this player has then lost.

Notice that + 1is commutative and associative. We denote repeated sums
by J + K+ ... + M; they are played in a similar manner.

Example. NIM is played with a finite number of heaps of counters, the i-th



heap counting n, counters, say (0 < i < t). A legal move is to decrease

strictly the number of counters in any heap. Clearly, this is the game

n.,+n, + ... +n
t-1

with n, as in section 1, and + not to be confused with ordinary addition
of natural numbers.

The analysis of NIM is well-known, and due to C.L. Bouton (Nim, a game
with a complete mathematical theory, Ann. Math. 3 (1902), 35-39). Let the
nim-sum a @ b of two natural numbers a and b be obtained by writing
them down in binary and then adding them without carrying; e.g. 5@ 9 =
(101)269(1001)2 = (1100)2 = 12, Clearly, (IN,®) is an abelian group of
exponent two. Bouton showed that a winning strategy for NIM consists of
always moving to positions for which Qyﬁ%fﬁa,.ﬁmtml = 0; such a move is
impossible if the position one has to move from already has this property,
but this is only natural, as the opponent may be following the strategy.

It was noted by R.P, Sprague (Uber mathematische Kampfspiele, T8hoku

7

Math. J. 41 (1935/6), 438-444) and P.M. Grundy (Mathematics and games,
Eureka 2 (1939), 6-8) that the analysis applies to arbitrary sums, in the

following manner.

Let the Grundy number G(J) of a game J be recursively defined by

G(J) = smallest ordinal not of the form G(j), with j € J.

The reader who dislikes ordinals may restrict to bounded games, i.e. games J

with the property that for some fixed n € W no chain X € X1 € ... € Xy

€ Xy = J exists. For such games, and all their positions, the Grundy numbers

are finite. Examples of bounded games are short games, i.e. finite sets all of
whose elements are short ("hereditarily finite sets"),

We have G(9) = 0, and more generally G(n) =n if n is a natural

number. Notice that

G(J) # 0 & HicT: 6(3j) = 0,
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From this it follows recursively that the first player has a winning strategy

in the game J if and only if G(J) # 0, and that, for such J, the choice

of an element j € J is a winning move if and only if G(j) = 0. Thus to win

a game one has to know the zeros of G. The result of Sprague and Grundy implies
that the Grundy number of the sum of two games only depends on the Grundy numbers

of the components:
Sum theorem. G(J + K) = G(J) & G(K).

Here @ 1is defined for ordinals as for natural numbers: write each of the two
ordinals to be nim-added as a strictly decreasing sum of ordinals of the form
2a, delete the terms occurring in both expressions, and add the remaining

terms in decreasing order. The class On of ordinal numbers with the operation

® satisfies the group axioms, except that the underlying domain is no set.

Following Conway, we say that (On, ®) is a Group. The exponent is again two.

Exercise. Determine the unique winning move in the game W + Z + Q@ + R + T,

the conventions being as in section 1.

The proof of the sum theorem may be left to the reader. The essential
property of @ which one needs is that for any three ordinals «, B, y with
v <o DB there exists o' <a with o' @8 =v or g' <B with o P g' = v.
Since for o' #a, B' # B one certainly has o' @B #a DB #a ®B', it

follows that

a @ B is the smallest ordinal number different from all o' ® B
(2.1
with o' <o and from all o @® B' with g' < B.

It was noticed by Conway that this property may in fact be taken as a recursive
definition of @®. A charming feature of the definition is that no mention is
made of the binary system; on the ofher hand, (2.1) cannot be taken as a basis
for an efficient algorithm to calculate o @ B.

As Conway remarks, @ 1is in a sense the simplest addition making the

ordinals into a Group. More precisely, if % 1is any Group operation on the



ordinals, then surely

a* B #a' B for all o' # a,
o * B #a# B for all B' # B.

Taking for o # B the smallest ordinal not forbidden by these rules, for

§

i
@

a' < g and B' < B (since o'#B, oq#B' must "already exist") we obtain
It is remarkable that starting from the inequalities above we arrive in this

way at a Group structure. Precisely the same thing happens for nim multiplication.

The basic inequality to be used here expresses that we wish no zero-divisors, i.e.
(a - a").(b -b") #0

for a # a', b # b', so
ab # a'b + ab' - a'b’,

For us, + = - = @, so we are led to the following definition of nim multiplication,

due to Conway:

oo is the smallest ordi number different from 211 ordinals
(a'eB) ® (aep') @ (a'op'), with o' <a, B' < B.

For example, if o = O, then no o' < g exists, so there are no forbidden

elements; hence 008 = 0 for all B. In a similar way one proves that 1.5 = @

tfor all g.

Conway's amazing result is:

Theorem. The class On of ordinal pnumbers, with addition @ and multiplication

°, is an algebraically closed Field of characteristic 2,

This field is denoted by On,.
In the next section we shall see which role the nim product plays in the

analysis of games. In section 4 the subfield W of On, will be considered,

2

and section 5 is devoted to the nim-algebra of transfinite ordinals.
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3. Coin turning games.

It is not difficult to define a multiplication of games such that the

multiplicative analogue of the sum theorem holds: if we put
IxK=1{(ixK +0xk +(jxk: j€J, keK|
then one easily checks that
G(J x K) = G(J)°G(K)

for all games J, K. Unlike sums, however, products do not naturally turn
up in the analysis of games, and it is in fact hard to see how a product lends
itself to practical play. For example, consider the game n X m, with =n, m

natural numbers. After t moves the position will be of the form

(3.1) (a1><b1) +(a2><b2)+... + ( ),

9e41 X P2e4
with all a; bi natural numbers. A legal move is to replace one of thel
terms, (axb) (say), by three terms (a'xb) + (axb') + (a'xb'), with
a' < a, b'" <b. Conway, in his game "Diminishing rectangles’”, represents
the position (3.1) by 2t + 1 rectangular cards placed on a table, the i-th
card measuring a, inches in one direction and bi in the other. Cards with
a, = 0 or bi = 0 are naturally invisible, which corresponds to @ x J =J x @
= (¢ for all games J. Conway assumes that the players have an indefinitely
large stock of cards and a pair of scissors at their disposal; for a description
of the ritual, see ONAG, p. 132.

A more playable version of the same game is obtained if we observe that,
for any two fixed natural numbers a and b, the number of times (a x b)
occurs as a term in (3.1) is only relevant modulo two, as far as the Grundy
number is concerned. This is an immediate consequence of the sum theorem and
the fact that On, has characteristic 2. Thus we may restrict attention to

2

positions

‘ ) - . .
(3.2) CH xbl) | (az><b2) oL (au><bu)

in which all pairs (ai,h,\ are distincet. Moving now means {irst to replace
i R NCAS



one of the terms (axb) by three terms (a'xb) + (axb') + (a'xb'), with
a'<a, b'<b, and next to remo?e terms occurring twice,

We represent the position (3.2) by a rectangular array of coins, with
those coins showing heads occupying positions (Hi’bi}’ cees (aujbu), the
coordinates numbering from zero. 4 legal move clearly consists of turning the
coins at the four corners of a rectangle with horizontal and vertical sides,
subject to the condition that the top right-hand coin goes from heads to
tails.

This is an example of a coin turning game. As we have seen, the Grundy

number of a position is the nim sum, over all the heads, of the nim product
of the two coordinates. The corresponding one-dimensional game is played with
a row of coins, a legal move being to turn two coins, of which the right-most
goes from heads to tails. This game is easily seen to be a disguise of NIM;
so the two-dimensional version might be called NIMxNIM,

Generally, a coin turning game is specified by a partially ordered set P,

the board, and a set J of finite subsets of P, the turning sets. It is

required that there are no infinite strictly decreasing chains in P, and that
each element of J has precisely one maximal element. In a typical position of
the game, the board is covered with coins, with only finitely many coins showing
heads. A legal move consists of turning the coins occupying a turning set,
subject to the condition that the coin occupying the maximal element of the
turning set goes fromheads to tails. More formally, a position is determined

by a finite subset A of P, and a legal move is to replace A by its
symmetric difference with some element T of J, subject to the condition
that the maximal element of T 1is contained in A. As usual, two players

move alternately, and if no legal move in possible -~ this is bound to happen
after finitely many turns - the last player is the winner,

In the coin turning game specified by P and J, let A_ _ denote the
' ' ‘ ‘ J

n
s

position determined by the finite subset A of P. It is easily checked that



(3.3) G(AP’J) = ¥ G(fafP’J)

acA
(¥ denotes nim summation), and that G(§a}P 3) is the smallest ordinal
distinct from all ordinals &tET, ta G(;tfP,K)’ with T ranging over all

elements of J which have a as their maximal element.

If Pl’ 31 and P2, 32 specify coin turning games, then the product
of these games is specified by P, J, where P is the cartesian product of

P1 and P2, and

T =T xTy: T €3, T, €T,

The ordering on P is defined by

in P and a, <b in

(a ,az) < (bl’bZ) if and only if a 1 1 ) <b,

<
1 sh

1
It is easily seen that P and J satisfy our requirements. The product

theorem states that we have

c({(a,p)}, ) = c({a} )oG({b} )
P, Prody Pysdy
for all (a,b) € P, hence
cla_ ) = b (G({a} YoG({b} )
B3 (a,bea Pysdy Pysdy

for all finite A C P. The proofs may be left to the reader.

Any game J can be represented by a coin turning game: define P(J),

J(J) by
P(J) = {J} U U P() (the "set of all positions of J"),
jeJ
3(3) = {{a,b} © P(D): a ¢ b},

and impose on P(J) the weakest partial ordering for which a < b for all
a, b ¢ P(J) with a € b. It can be checked that, in the game specified by
P(J) and J(J), the position determined by the one-element subset {J} of

P(J) is J itself:

{ai J.

P(3),T(3)
Several examples of coin turning games are given in the forthcoming book

by E.R. Berlekamp, J.H. Conway and R.K. Guy ("Winning Ways", Freeman, = 1978).



We describe here a class of examples, invented by
interesting connection with coding theory.

Let d, n be natural numbers, satisfying n >d > 1.
n = 503 1, ..., n-1} with the natural ordering, and J = {T
Thus, the coin turning game specified by P and T is
of n coins, and a legal move is to turn less than d
one, the right-most going from heads to tails.

We identify the positions in this game with the el

Conway, which has an

We P

choose
P

played with a row

coins, but at least

o I
ements of IF

2 (here

. : . ; (-1 e g 0 .
Eé is the two-element field), the element (aiiim@ of &? corresponding

to the subset - a, = By (3.3), the map 9

kS - 4

each position to its Grundy number, is IF, ~linear; here
b

I3 3 . 3 (e} 1 4 p— ol p

space with nim addition., Therefore the subset K ﬁ?l

zero Grundy number is a linear subspace of . . Recal
F )

n
I,

-» IN which maps

N is ¥

-vector
2

an
of positions with

1 that the positions

with zero Grundy number are exactly those which one should move to in order

to win.

o -
We give

p
3]
=}

lexicographically,

with

1 < #T < af.

a, =0, b, =1, a, =b, for all 1 ¢ n i .
1 J ! L ) )
e T
The Hamming distance & on TF, by
> v
. ( ,
6Cla,),  ,(b,), ) =#{i ¢ n: a, # b},
i%ién’ i ien Pesos i i’
, (0) (1) (k-1) ‘ n
Now we comstruct a sequence of elements ¢, ¢ s eeaes C of TFZ
in the following inductive manner:
(i) e
c for which
i
it no such x tops, and we put k = i, Clearly,
. 0y (D (k-1) , .
all elements ot ©C = %C , C R | have Hamming distance at
) . S +
least d; in ¢ C of T, is a
L.

code of word length n and distance d oves

C is the
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lexicographically first such code, in an obvious sense.

Notice that c(o) =0 ¢ Eén, and that

c(o) < c(l) < .. <

(k-1)
c .
The definition of the c(l) makes it clear that in the game we are discussing
D) C(J)

to , for any pair j, i, but that for

(i) C(j)

it is illegal to move from

n . .
every X € Eé not appearing among the ¢ there exists a < x such

(i
that it is legal to move from x to ¢ J These properties imply that the

(1)
c

are exactly the positions one should move to in order to win, i.e.,
C = K.

It thus follows that the lexicographically first code of given word length
and distance over ZTZ is linear. It is an amusing exercise to prove this
directly.

Conway observed that for specific choices of d and n some well known
codes appear.
d = 1. 1In this case, C = Eén; the game is a very quick win for the second
player.
d = 2, Here CC Eén is the "parity check code', consisting of all vectors
with an even number of coordinates equal to one. The game is known as '"She loves
me, she loves me not'.

m

d = 3. This game is a disguise of NIM. For n = 2 - 1, for some m > 2, the

code is the Hamming code; this is a perfect one error correcting binary code.

Its dimension is n - m.

. . . . m . .
d = 4., Here we obtain, in dimension n = 2, the extended Hamming code, which

is obtained from the Hamming code by adding a parity check bit in front. We
leave the analysis of the game to the reader.

d =5, n=17. This yields the quadratic residue code with the prime 17, of

dimension 9.

d = 6, n=18. The same, extended by a parity check bit,
d =7, n =23, The code obtained here is the famous Golay code, a perfect
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binary three-error correcting code of word length 23 and dimension 12.

d = 8, n= 24. The same, extended. The group of all permutations of the n
coordinates of Eén mapping the code to itself is the Mathieu group Mé&”
It acts 5-fold transitively, and has order 24,23.22,21.20.48.

The reader easily checks that, for odd d, the passage from d, n to
d +1, n +1 generally corresponds to adding a parity check bit in front of

the code C.

4, Exercises with natural numbers,

The set W of natural numbers is a subfield of On, which is isomorphic to
i

the quadratic closure of IF,. We recall Conway's more precise results. For

proofs, see ONAG or section 5,

The quadratic closure of IF, may be described as

Egﬁxo,xl,xz,.u,)

where the X, satisfy the equations

(4.1 xzz +x, 4+ J] x, = 0.
1 L j < 3

ey

For each i we have

ﬁ?(xo,x

IERRRRLT IR
and X, is quadratic over this field., It follows that any element of

T, (x - .) can be written in a unique way as

ZARNIRRS R L
(4,2) ST X
Ve iev

where W is a finite set of finite subsets of N,

Any natural number can be uniquely written as 3 2 with W IN finite.

keW ’

Writing each k ¢ W as 7, . 2 for some finite V < IN depending on k we see

that every natural number has a unique representation
o2t
(4.3) oI 2,
Vel iev

with W as before.
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Conway proved that there is a field isomorphism (IN,®,°) - Eé(xo,xl,...)

mapping the element (4.3) to (4.2). In view of (4.1) we are thus able to nim-

2?2 ol ol 50 5l
multiply any two natural numbers. For example, 77 = 27 <27 + 27 27 + 2" + 1

maps to X)Xy + X% + Xy + 1, so 77077 maps to
2 2 2
1 1 + Xy + 1

O N

KaX, + XX

2 2
= X, + XX X, = X + X x = x_+ 1 reduces to

which by X 2 1 O, 1 1 0’ 0 0

NN NN

X %) + XXyt XX + Xy + 1.

2 1 2 .0 1 .0 1
This is the image of 22 '22 + 22 '22 + 22 '22 + 22 + 1 =109, so

7777 = 109.

The isomorphism implies that for each i the number 2 = {O, 1, 2, .., 2 —1}

is a subfield of N,

Exercise 1. From the definition of the nim product it is clear that ne°m < nm,
since the number of "forbidden values" is at most nm. For which pairs of

natural numbers does equality hold?

i i+1
)i i
Exercise 2. Prove that 2~ 1is a primitive root of the field 2 if and only

if 1 =0 or 1.

. 2 . . .
Exercise 3, Prove that x°°3 = 2 has three solutions in W, for each i > 2.
Here, of course, x°°3 = x°x°x, Can the solutions be explicitly written down?

(To the last question I have no satisfactory answer).

Exercise 4. Prove that the following algorithm to calculate the nim product
of two natural numbers is correct,

Write each of the two numbers n, m to be nim-multiplied in the binary

system:
n =173 a 2k, m=3b 2k,
k k
k
with all ak, bk equal to zero or omne, and almost all to zero. For any natural
= ¥ i - init -4 * = i i
number k LieV 27 (Vo IN finite) we define k ZiEV 37, Multiply the two

3# 3
polynomials 3, aka and e kak in ﬁWz[X]. Let the result be
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f=7cX ¢ F,[X], c, € {0, 1} = T,.
£
# If now every 4 with ¢, = 1 is of the form k¥*, then with dk = Crx we
can write f = Zk dekw, and the product of n and m is given by
nem = ¥ dkzk
k

where dk € {0, 1} is interpreted as an element of .

If however c{= 1 for some £ not of the form k%, then let h denote the

largest such . The number h has a 2 in its ternary expansion, say at

position j (i.e., corresponding to 33), with j minimal. Redefine f and ¢

L

_ad (a3t Ly
£ o= g o4 Xt g xPT3T g3 D /2 (in T,[X]),

and return to #.

Exercise 5. Prove that the following algorithm to determine the nim inverse

17n  of a non-zero natural number n terminates. If n = 1, put 1/n = 1.

If n > 1, then determine the largest natural number i with n >2 , put
21

a = [n/2" ] (greatest integer brackets), calculate m = 1¥(nc(n®a)) by

recursion and put 1/n = (n®a)om.

Exercise 6. Let ¢ be a natural number which is a field, i.e. q = 2 for
i . . . . .
some n. Then {q : i ¢ W} is a q-basis for IN, and if we express the

q-linear map F: IN-> IN defined by
F(X) = Xooq

(repeated nim multiplication, cf. exercise 3) on this basis:

2 i
qleog = 3 bijﬁq ,
icIN
with bij € q, b‘j = 0 for almost all i (for fixed j), the coefficients
bij satisfy
b,, =0 if i > i,
13
b =1 for all 7,
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bj 1 =1 for all j,

bj 342 does not depend on j, only on ¢, and equals O or 1.
In particular
qeeq = q® 1 =4q + 1,
2 2 2
qQecq=qg ©9De=qg +q+e
where ¢ = bOiZG {O, l}.
Exercise 7, For q=2, 4, 16, 256, 65536 we have e=0,1,1,0,0 in the previous

exercise, respectively. What is the general rule? (I do not know the answer).

Exercise 8. Let the 2n><2n—matrices An, B over :WZ be defined by

0 Aﬂ
Ao = (1), Aoyt = K
LA J
n n
{
B = (1), B o=| & oy
0 n+1 0 B
n

Prove that if we put q = 2 in exercise 6 we have

B = (biJ)Osl,an’

n
2 -
and that Aan = BnAn’ for all n > 0. (See page 16 for the matrix B5°)

Exercise 9. Let q € IN be a field. We extend the g-vector space structure on IN

to a module structure over the polynomial ring q[X] by
X.n = nooq for n € IN.

Prove that for every i € IN the number ql is a q[X]-submodule of W, and that

IN has no other gq[X7]-submodules except itself.

Exercise 10. Let the natural numbers q, r be fields, with q <r, and let x € r.
Prove that the elements o(x), with o ranging over the Galois group of r

over ¢, constitute a q-basis of r if and only if x > r/q.

Exercise 11. Let n be a natural number which is a group, i. e. a power of 2.

Prove that the sequence (nec°q) q ranging through the natural

q=2, 4,16, ...’

numbers which are fields, is monotonically non-increasing with limit n.
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a°°(2j).

n

Prove that
2
1

i, 3®(n-3)

Prove that

IN.

~
<

a, n €& IN.
(a®i) =
n

. n
1<

TeT

1
1

Exercise 12. Let
Exercise 13, Let
1

b}

1

1

1

1

1
1

1
1

1
1
1

1
1

1
1

11111
1

1
1
1

11
11
1
11111111
1

1
1111

111111

1

1
1
1

1
1
1

1111
1

11
11111
1
11
1

1
11

1
1
1

1
1
1

1

1
i

ot

1

1
1

1
1

i

o e

1

1

1

1

1

1

1

1

1

-t

1

1

et

i

1

1

1

1

1

1

1111

i

et

1

]

1
1

11111
1

1
shown.

1
Zeros are not

{see exercise 8),

L

/

By

The matrix
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Exercise 14. Let q € IN be a field. Prove that the (q + 1)-st nim-roots of

unity different from 1 are the numbers
((x°x) ®qD (q/2)) 7 ({xex) Bx B (4/2)), 0<x<q.
Here / denotes nim division.
Exercise 15.(S. Norton). Define a &b, for natural numbers a and b, by

a&b = smallest natural number different from all numbers
a'é&b, with a' < a,
a&b', with D' < b,

a &b", with a" < a, b" < b, a&b" = a" &b.

Prove that (IN, &) 1is an abelian group of exponent three, and that a&b 1is
obtained by writing a and b in the ternary system and adding without

carrying.

Exercise 16. Is there a multiplication %* on IN, with a similar definition
as ©°, such that (NN, &, %) is a field of characteristic three? And what

about characteristics 5, 7, 11, ..., 0 ? (I do not know).

5. Transfinite nim-algebra.

This section is devoted to the nim-algebraic properties of ordinals. For the
ordinary arithmetic of ordinals to be used, see H. Bachmann, Transfinite
Zahlen, Springer, Berlin etc., 19672. We denote by @ the least infinite
ordinal, and we adopt the convention ¢ = 58: B is an ordinal < ¢} for
ordinals ¢; so w = IN. We call o a group, ring, etc., if it is one with
respect to the nim operations.

The basis for all we shall say is formed by Conway's simplest extension

theorems, which state that an ordinal ¢ behaves algebraically in the simplest
possible way with respect to the set o of smaller ordinals. More precisely,
if @ > 2 then we have:

- if @ 1is no group, then o = g ® vy, where (B,y) is any lexicographically
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least pair of elements of o with B @ vy € a;

- if o 1is a group but no ring, then ¢ = Beoy, where (B,y) is any
lexicographically least pair of elements of o with B°vy & q;

- if o 1is a ring but no field, then ¢ = 178, where B is the least non-
zero element of o with 178 ¢ a;

- if ¢ 1is a field but not perfect, then ¢geoq = B, where B is the least
element of o having no nim-square root in «a;

- if o 1is a perfect field but not algebraically closed, then o 1is a zero
of the lexicographically least polynomial with coefficients in «q having no
zero in ¢ (in the lexicographic order, consider high degree coefficients
first);

- 1if @ is an algebraically closed field, then « is transcendental over «.

Exercise. Let ¢, B be fields, o < B. Show that f§ = qY for some vy. Prove

2
that if vy = 4, then also o is a field.

w
The foregoing results were used by Conway to show that ww is an

algebraic closure of 2 = {0, 1}, see ONAG, Ch. 6, th. 49. For a proof that

W

in w” the nim operations can be performed effectively, if the ordinals are

represented in Cantor normal form, see HWLJ, On the algebraic closure of two,
Proc. Kon. Ned. Akad. Wet. 80 = Indag. Math. 39 (1977), 389-397. The reader is

invited to solve the following problem, and to communicate the solution to me:

is it true that
13 7
(W oos7 = ¥ +1 2

Let t be an ordinal which is an algebraically closed field, e.g. t =

w . Then t 1is transcendental over t, so a t-basis for ¢t(t) 1is given by
B = {toon: new} U {(t®a)eo(-n): a€t, n€w, n# o0}

{"partial fraction expansions"). It can be deduced from the simplest extension

theorems that

teon < teem if n, mcw, n<m,
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toon < (tPqa)e°(-m) if n,méw, m# 0, a € t,
(tBa)oo(-n) < (£tDa)eo(-m) if n,méw, 0<n<m ac€t,

(t@on)”(-—n) < (t@B)OO("m) if n, me w, # O) Q, B € t, a < B)
and that, for qb, Bb € t, oy = Bb = 0 for almost all b € B, we have

¥ o,°b< ¥ B, °b
beB b beB b

if and only there exists b' € B with 0y o <ﬁBb,, o = Bb for all b ¢ B

with b > b'. So the well-ordering of t(t) is lexicographic with respect to

the t-basis B. Since B has order type w.(l1+t) =t (use the last exercise!)
it follows that t(t) = t5. 1In particular:

W
w

W, e, o) = ]T‘Z(t) .

The field t(t) is made perfect by adjoining t°°(1/2") for all n € w. That
t

yields a tower of w quadratic extensions, so the perfect closure of ¢t is
A t . .
(¢ =t in particular
u0(11)(‘04-1 wd”
w is the perfect closure of .

Since algebraic extensions of perfect fields are perfect, the next nim-square
root extraction will only take place after the next transcendental.

We prove:

Theorem. If the ordinal t 1is an algebraically closed field, then the
quadratic closure of t(t) 1is

t
. t'/ n
lim p//f/;,

new

in particular
w

_ 1 W/ onx
€y = lim w/
new
is isomorphic to the quadratic closure of ﬁ}(t).

We make some definitions. For an ordinal x, let P(x) = x°x & x, and

denote by x%* the smallest y with (y) = x; the other y is then x¥* B 1.
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Notice that x*Py*=(xPy)¥* for all x and y. If the ordinal u is a

field, we put P[u] = {P(x): x€u}; this is a nim-additive subgroup of u.

The field wu 1is quadratically closed if and only if u 1is perfect and [u] = u,

i.e. x¥%* ¢ u for all =x € u. If u 1is perfect but not quadratically closed,
then u = x¥* with x the smallest element of u - P[u]. Clearly, this x is

also the smallest element of

L(u) = {A€u: there is no Bcu such that ADP(B) can be written

as a finite nim sum of ordinals <Al.

We notice that every A € L(u) is a group, and that L(u) represents a 2-basis

for u/P[u]. One should think of L(u) as "the list of elements )\ for which
t

A% must be adjoined”. In the case wu = t(t) = t it is straightforward to

verify that
L(t5) = {(too(2nt1)) oA, ((£@a)oo(-2n-1))°h: ne€w, a,A€t, A a group}.

(Notice that ®[t] = t.) The order type of L(e%) s s.t, where 2° = t.
If u/u' is algebraic and purely inseparable, then L(u) = L(u'), as

one easily checks. Thus L(t™) = L(t%). The above theorem now follows from

the following more general claim, in which an e-number is an ordinal o with

2OL = (.

Claim. Let the ordinal u be a perfect field, and let v be the order type of

L(u). Suppose that v # O. Then the quadratic closure of u is u°, where ¢

-

is the smallest ¢-number > v,

For u=2 we find v =1, ¢ =y, so  is the quadratic closure of 2,
as asserted in section 4. The multiplication rules in @ can easily be deduced
from the proof of the claim given below.

Proof of the claim. The quadratic closure w of wu is an ascending union

C e Cu Cu C eae (U =W
2 w wtl y

for some y to be determined, where the u, are defined as follows: u :
. m Q

. .. . 2 )
lim u = U u_ for a limit ordinal, and u =u (u ) = u with u = )\ %,
a a o+l o« a a a



...2]_._

where Aa is the smallest element of L(ua); if L(ua) =@ then o =y and
(04

we have reached the quadratic closure. Clearly, u =u for all a <y.

To determine y we investigate the lists L(ua). It is straightforward

to prove that

L(ué) = 1im L(ua) = |J N L(uB) = N U L(uB)
a<d a<d B> a<d B

if & is a limit ordinal,

Lu ) = (L(ua) —MOL})U {ua.x: A€ L(ua)} if Llu) 0.
It follows that if we put

Mla) = U L(uB), for o <y,
<t

then M(a) is a beginning segment of M(a'), for a <a' <y, and L(HI)
consists of all elements of M(q) except the first ¢ ones. Consequently, if

f(q) is the order type of M(a), then we have

£(0) = v,
f(lim o) = 1im £(a),

fla+1) = £fla) + (a0 + £(a)) if fla) > a,

a. Notice that f(a) >qa for all o < vy,

and y 1is the only o with £(a)
and that f(q) < f(a') if a <a' <y.

Let first 1 < v <w. Then one easily checks that f(n) = ~(2"n-1) +v.2"
for all n<w, so flw =w, y=w, w= u2y= uw, and since g 1is the smallest

¢-number > v the claim follows.

v.2" for all n < w, so flw) = v.w

]

Next assume that v > w. Then £(n)
> w.w > w, hence y > w. From the definition of f it is clear that f(q) g,v;2a
whenever f(y) is defined, i.e. whenever o < y. Let now ¢ denote the smallest
e-number >v. If ¢ <y then f(¢) is defined, and f£(g) < v.2% = ¢ (cf.
Bachmann, section 15), contradicting that ¢ < y. We conclude that ¢ >y.

We prove below:
(5.1) w<B<e= £(B) is defined and > g + 2P,

It follows that every B <e 1is <y, so € <y since ¢ 1is a limit ordinal.



We conclude that € =y, and

The proof of (5.1) is by induction on B.

.
> wow > .2 =g + 2V

V. , as required. Next,

so f(B+l) 1is defined, and since B >w

£(g+l) = £(8) + (=g + £(8) >p + 2P

required. It remains to do the case of a

ordinal. Then f£(g) = lim £(q) > lim (a + 2%) = 2

‘ B - 0B tor el ordines

i.e. &+ 27 =2 for all ordinals

8<2P then 28 =g+ 2P ana £(p) > + 28,
then B = 26 and B 1is an e-number. But ¢

and B < e, so we must have B < v. Since £

£(0) = v, we have f(a) >v +a for all q,

f(B>v +8 B + 26,

v

g+g-=
as required. This proves (5.1), the claim, and

Problem. Can all field operations be performed

. E
w =u = u =u

implies 1
+ 2B g1+

limit ordinal.

as required.

For w we have f(B) =

B:
£(B) L

B

if > B then f£(B) > B,
B

2F = we have in fact

By of s gy + 2P as

Let B < ¢ be a limit

B. Now 28 is a "v-number",

8 <:’28 (see Bachmann, section 15), so if

as required. If however @ ZTZB

is the smallest e¢-number > v,

is strictly increasing and

in particular

the theorem.

effectively in the field eo,

if all ordinals are written in Cantor normal form? Can all quadratic equations

be solved effectively in ¢_.? (The above proof

0O
answers.)

03]
. . ; L
Exercise. Prove that €0003 = w” .

Prove that ¢ (the least ec-number

Exercise. 1

of €5°
It is unknown which ordinal number is the
propose a conjecture. For ordinals
all 0, we define f(x;ao,a},qz,,a.)
f(x;0,0,0,...) =% + 1,

f(x;ao+1,a1,a2,.

(left iteration),

x5 &05 al, x

D) = f(f(x;&ﬁgﬁl,az,ew~)30>“1’a

seems to indicate two affirmative

> EO) is the quadratic closure

algebraic closure of ¢ We

0

99 (indices € @), almost

as follows:

greee)

f(x;0,...,0,8,a s oo = Lim £(x;0,...,0 s R
( 3 \—’/"'i' ».\J’ L iak +i ] ukFZ 3 ) lfn {(X 3 NI \,}“&”'& Q3Gk+1 Gk+2 5 )
<X a<B lex
if B is a limit ordinal, and k ¢ W,
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f(x,gl;ﬁiig,ak+l,Qk+i5qk+2,.‘,} smallest y > x for which

f(O;Qiﬁiiig,yﬁaksak+i,ak+2,e..) =y, if k€ w, k>1.

The proof that the definition makes sense is left to the reader.
Conjecture. If the ordinal t 1is an algebraically closed field, then the

algebraic closure of t(t) equals lim f(t;g,...,ojl,0,0,.,“),

new T onx
The conjecture is based on the assumption that any polynomial is irreducible,

except if one explicitly adjoined a zero of it. Clearly, the assumption is wrong,

but it may well be "cofinal" with the true state of affairs.

Problem. Prove that the algebraic closure of t(t) is at most its conjectured

value. (This should be the easy part.)

Exercise. Prove that f(x:;a,B,0,0,0,...) =@ +a if =x 4’m%, and = x + 1 +

Exercise. Prove that £(0;0,0,2,0,0,...) 1is the least ordinal o with Eag}xcm

in Conway's notation (ONAG, p. 63).
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