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Euclidean ideal classes

H.W. LENSTRA, Jr.

Introduction,

A classical method to establish that a given commutative ring R 1is
a principal ideal ring consists in showing that R is Euclidean, i.e. that
there exists a map ¢ from R - {0} to a well-ordered set W such that for

all a,b R ,b# 0, a ¢Rb, there exist q,r € R such that a = gb + r

and ¢(r) < e¢(b) . Such a map ¢ is said to be a Euclidean algorithm on R ,

and R 1is called Euclidean with respect to ¢ .

In this paper we consider a variant of this concept, which leads, not

to principal ideal rings, but to Dedekind rings with finite cyclic class groups.

We first discuss a special case, Let K be an algebraic number field

of finite degree over the field @ of rational numbers, denote by R the ring

of algebraic integers in K , and let the norm N : R+ N = {0,1,2,...} be
defined by

N(x) = # (R/Rx) (x # 0) ,

N(O) = 0 ,

where # S denotes the cardinality of S . By multiplicativity, we extend the
norm to a function K - Q>O , which is again denoted by N . It is well known
and easy to prove that N , restricted to R - {0} , 1s a Euclidean algorithm

on R if and only if



(0.1) ¥x €K : By €R : N(x-y) <1 .

Let ¢ be a fractional ideal of R , and consider the following property of ¢ :

(0.2) ¥x € K: Hy € ¢ : N(x-y) < N(e) ,

where N(c) 1is the ideal norm of ¢ , defined by N(c) = 4 (R/c) if c cR
and extended by multiplicativity to the set of all fractional ideals of R .
If ¢ is principal, ¢ = Rc , then N(c) = N(¢) , and dividing by c¢ 1in (0.2)
we see that (0.2) is equivalent to (0.1) . In the general case this argument

shows that (0.2) depends only on the ideal class C of ¢ . If (0.2) holds,

we call this ideal class Euclidean for the norm or norm-Euclidean.

As we shall see in (2.2), the ring R has at most one ideal class
which is Euclidean for the norm, and if there is one, then it generates the
class group. The ring R.=IZ[V15] is an example of a ring having a non-princi-

pal norm-Euclidean ideal class, cf. (1.3).

In the general case the definition reads as follows. For unexplained

terminology, see section 1.
Definition. Suppose R 1is a domain, and put
E=1{b:b is a fractional ideal of R, and R cb} .

Let W be a well-ordered set, { : E -+ W a map, C an invertible ideal class

of R, and ¢ € C . We say that | is a Euclidean algorithm for C or that

C 1is Euclidean with respect to ¢ , if the following condition is satisfied:

(0.3) for all b € E and all x € b c, x ¢ ¢, there exists

z € x + ¢ such that (b ¢ 21 < y(b)



We call C Euclidean if there exists a Euclidean algorithm for ¢

It is readily verified that the definition does not depend on the
choice of ¢ in C , and that, in the given circumstances, we have =z # 0 and
b z‘1 ¢ E .

To obtain the earlier definition from the new one, in the number field
case, take {(b) = N(h)“1 . The inequality (b ¢ zml) < §(b) occurring in (0.3)

then simplifies to N(z) < N(c) . Using that UbEE b c =K, and writing

z = x-y , we then find that (0.3) is equivalent to (0.2) . Hence C is Euclidean

with respect to § 1if and only if C 1is norm-Euclidean,

If C 1is the principal ideal class we can take ¢ = R 1in the defini-

1 1

tion. With b =Rb ~ , x = ab " , r = zb condition (0.3) then gives

for all b € R, b#0 , and all a ¢R , a ¢ Rb ,

there exists r € a + Rb such that w(Rr-l) < w(Rb—l)

Hence, if the principal ideal class is Euclidean with respect to | , then the
ring R 1is Euclidean with respect to the map ¢ : R - {0} + W defined by

1

~(b) = w(Rb )

The converse is also true. If R 1is Euclidean with respect to a map
@w: R~ {0} 2 W , then R 1is a principal ideal ring, so
E = {Rb—1 : b € R - {0}}, and a Euclidean algorithm for the principal ideal

class is then given by

§(B) = (b) 1if b = Ro L

we remark that ¢ can be chosen such that this definition does not depend on



the choice of b , see [25, prop. 47 .

We conclude that R 1is Euclidean if and only if the principal ideal

class of R 1is Euclidean,

Many results known about Euclidean rings have immediate generalizations
for rings possessing a Euclidean ideal class. The most striking example is the
following theorem, which generalizes the classical observation that Euclidean

domains are principal ideal domains.

Theorem., Suppose R 1s a domain, and C 1s an invertible ideal class of R
which admits a Euclidean algorithm, Then R 1is a Dedekind domain, and the

class group of R 1s a finite cyclic group, generated by C .

For a proof of this theorem, and for other elementary properties of
Euclidean ideal classes, we refer to section 1, and to theorem (1,2) in particu-
lar. As a rule, we have, in thils section, suppressed arguments which are routine

verifications or direct generalizations of proofs given by Samuel [25].

Examples given at the end of section 1 show that every positive integer

occurs as the class number of a ring having a Euclidean ideal class.

In section 2 we consider rings of arithmetic type, restricting ourselves
to maps { defined by {(b) = N(E)~l , where N 1is a naturally defined ideal
norm. Typical examples are given by the rings of integers in algebraic number

fields, as discussed above. Our main interest is with rings having two primes at

infinity. In particular, we give a complete list of quadratic number fields
whose rings of integers have a norm-Euclidean ideal class, see (2,11) and (2.13).
Our discusslon in this section has the character of a survey, and proofs are

mostly omitted, Various open problems are indicated.



The same class of arithmetic rings 1s considered in section 3, now
without any restriction on . If such a ring R has only finitely many units,
then each Euclidean ideal class of R 1is actually norm-Euclidean, and a com-
plete list of examples can be given. If R has infinitely many units the situa-
tion is different : in this case every ideal
class C generating the ideal class groupis Euclidean with respect to a suitable
1 (depending on C ) , if certain generalized Riemann hypotheses are satisfied,.
This is the analogue of the theorem of Weinberger and Queen [28,24] in the clas-

sical case.

Research for this paper was supported by the Netherlands Organization

for the Advancement of Pure Research (Z.W.0.).

1. Elementary properties.

In this paper R 1is a domain, i.e., a commutative ring, without zero
divisors, with a unit element different from zero. The group of units of R

is denoted by R* , and K denotes its field of fractions. A fractional ideal

of R 1is a subset d c K with the property that da = {xa : x € d} 1is a non-
zero ideal of R for some a ¢ K. A fractional ideal d 1is called integral

if d R . We put

E=f{b:b is a fractional ideal of R , and R c b}.
The ideal class [g] of a fractional ideal d 1is the set {g a : a € K*} . Every
element of ([d] 1is a fractional ideal, and two ideal classes are either the
same or disjoint. The class [R] 1is called the principal ideal class. The pro-

duct d-e of two fractional ideals is the fractional ideal {2?=0 diei :n €N,

d;ed , e; €e (0 <1i<n)}, and ideal classes are multiplied by

[d)-[e] = [d-e] . We call d invertible if d-e = R for some e ; if such an



e exists, it is uniquely determined by d , and denoted by g~1 . If d is

invertible, then so are all elements of [d] . In that case, [d] 1is called

an invertible ideal class, and we put [Q]-l = [Q—I] . The ring R 1is called

a Dedekind domain if every fractional ideal of R 1is invertible, cf. [4, §2].

The set of fractional ideals of a Dedekind domain R 1is a group with respect
to multiplication, and the same is true for the set of ideal classes. The latter

group 1s called the ideal class group, or class group, of R and denoted by

C4(R) . Its unit element is [R] , and its order is called the class number of R .

The letter W denotes a well-ordered set, which, for convenience, we

assume to consist of ordinal numbers,

(1.1) Lemma. If { : E+W 1is a Euclidean algorithm for the invertible ideal

class C , then for every b € E , b # R, there exists n € N such that
bl=c , 0<n < b

Proof. We use induction on w(k) . Let ¢ €C . Since ¢ 1is invertible and
b#R, we have b c # ¢ , so there exists x € b ¢ - ¢ . By the definition given
in the introduction, we can find z € x + ¢ such that the fractional ideal

a=hb E'zul € E satisfies {(a) < §(b) . Notice that [b] = ¢! . [a7 .

If a =R then [b]= ¢t , and {§(b) > ¢(a) =20, so n =1 satisfies

our requirements.

If a # R, then by the induction hypothesis there exists m €N with

[a] = ¢c™ and 0<m < y(a) , so with n = m+l we have [b] = ¢ and

0 <n < {(a) +1 < §(b) . This proves (1.1)

The theorem stated in the introduction 1s contained in theorem (1.2)



(1.2) Theorem. Suppose R 1is a domain, and C 1is an invertible ideal class

of R which is Euclidean with respect to { : E + W . Then R 1is a Dedekind
domain, and Cg(R) 1is a finite cyclic group generated by C . The class number

h of R satisfies
-1
h < y(Ra )

for every a ¢ R - R¥ , a # 0 .

Proof. Let d be any fractional ideal of R, and x € d , x # 0 . Then

gx—l €E, so [d] = [gx—lj =¢™™ for some n €N , by lemma (1.1)

(if gx_l = R we can take n = 0 ) . Hence every ideal class is invertible, so
R 1is Dedekind. We also see that C4(R) = {C_n : n € N} . In particular, C = ¢ "
for some n €N , so the order of C , which equals the class number of R ,

is finite, If a € R - R* , a # 0 , then with b = Ra"! in lemma (1.1) we find
that [R] = [Ra_lj =¢™ for some n €N with 0 <n < w(Ra_l) . Therefore

the order of C 1is at most ¢(Ra—1) . This proves (1.2)

We remark that the theorem remains valid if the invertibility assumption

on C 1is replaced by the weaker condition that

R={x € K: xc cc}

for

Ke}
m
(@)

(1.3) Example. Let R =2%[\-5], ¢ = (2,1 +\-5) , C =[c] , and let N be
1

defined as in the introduction. Define | : E N by ((b) = N(b) ~ . The ideal

class C 1is invertible, since c - %’E = R , and we claim that it is Euclidean

with respect to | . As we have seen in the introduction, this statement is

equivalent to



(1.4) Vx €K : dy € ¢ : N(x-y) <N(c) =2 .

If K = @(\-5) 1is considered as a subfield of the field of complex numbers ¢ ,

then N(z) = |z|2 for z € K, so (1.4) is true 1if we have
Vx €€ : 8y € ¢ : |x-y| < \2

This statement is indeed correct, as may be seen by drawing a picture [5] or
by applying Dirichlet's hexagon lemma [7, ch.IX, th, VII]. One readily verifies
that 52 is principal, but that ¢ 1is not, so we conclude that R 1is a

Dedekind domain with class number two,

(1.5) Remark. It might be argued that in this example we have used, rather than

proved, that R 1is a Dedekind domain, by appealing to the multiplicativity of

the ideal norm N . Closer inspection reveals that this is not the case, More
generally, suppose that R/a has finite length as an R-module for every non-
zero ideal a c R , and let for every R-module of finite length M a positive
integer f(M) be given such that £(M').-£f(M") = £(M) for every exact R-sequence
0-+M > MM 50 ; e.g., £(M=4M in the above example. Put

N(a) = f(R/a) for a an integral ideal of R . Then it is not difficult to

prove that for integral ideals a, b we have

N(a b) = N(a)-N(b) if a or b 1is invertible.

This restricted multiplicativity is all that is needed in (1.3), both for the
extension of N to the set of all fractional ideals and for the argument in

the introduction leading to (1.4).

(1.6) Proposition. Let the invertible ideal class C be Euclidean with respect

to § , and b €E .



il

If y(b) = min{y(d) : d € E} then b =R .

1

i

1f  y(b) = min{y(d)

|o.

€E,d#R} then becC

Proof, Assume, without loss of generality, that the image of ¢ 1s a beginning

segment of the ordinals., Then (1.6) follows from (1.1), with y(b) =0 or 1

(1.7) Corollary. If { : E W 1is a map, then there is at most one invertible

ideal class € of R which is Euclidean with respect to y .

Proof. This is immediate from the second assertion in (1.6).

(1.8) Corollary. Let { be a Euclidean algorithm for the invertible ideal

class C, and a, a' ¢E, aca' . Then {(a) < y(a') , with equality if

and only if a = a'

Proof. Fix a € E , and define §, : E 4 W by wl(g) = y(a b) . This is readily

verified to be a Euclidean algorithm for C , so (1.8) follows by applying

the first assertion of (1.6) to ¢1,

Let { : E W be a Euclidean algorithm for the invertible ideal
class C , and R' —c K a subring containing R . Then R' 1is Dedekind, and
there is a natural surjective map £ from the group of fractional ideals of R
to the group of fractional ideals of R' , mapping a to the R-module generated
by a . put E' = {b' : b' is a fractional ideal of R' with R' cbh'} = f[ET,
and define ' : E' 2 W by '(b') = min{y(b) : b ¢ E , f(b) = b'} . Denote
by C' the image of C under the map CA(R) - C4(R') induced by £ . With

these hypotheses and notations, we have

(1.9) pProposition. The ideal class C' of R' is Euclidean with respect to
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The proof is routine,

(1.10) Corollary. In the above situation, the following three assertions are

equivalent :

(a) R' 1is a principal ideal domain,
(b) R' is Euclidean,

(¢) c'=1[r'].

Proof. The implications (b) = (a) and (a) = (c) are obvious, and
(¢) » (b) follows from (1.9), since we have seen in the introduction that the

principal ideal class is Euclidean if and only if the ring is Euclidean.

From (1.3) and (1.10) it follows that every principal ideal domain
contained in Q(\[~5) 1is Euclidean. This generalizes Wedderburn's observation

[27, p.138] that Z[\-5, 1/3] is Euclidean.

Suppose that C 1is an invertible Euclidean ideal class of R , and

put

v=f{y:E-aW: ¢ 1is a Euclidean algorithm for C} ,

where W 1is the set of ordinals of cardinality < # E . Then V¥ 1is non-empty,

and the map 9 : E + W defined by
8(b) = min{y(b) : | € v}

is a Euclidean algorithm for C , cf. [25, prop. 9] . It is called the smallest

algorithm for C .

(1.11) Proposition., Let b € E be such that e(h) is finite. Then [b7] = C—G(E)u




Proof. We use induction on @4(b) . If §(b) = 0 then the statement follows
from (1.6) . Let @(b) =n >0, and ¢ € C . If for all x € b ¢ - ¢ there

would exist z ¢ x + ¢ with 2a(b ¢ zgl) < n-2 then the map 1y : E + W defined

by

il

§(®) = n-1, §(d) = 8(d)  (d # b)

would be a FEuclidean algorithm for € smaller than @ , contradicting that @
is the smallest one. Hence for some x € E c-c there exists z € x + ¢ with
a(b ¢ z ) =n-1 . By the induction hypothesis we have [b c z"1] = Cmthl , and

it follows that [b]=C . This proves (1.11)

(1.12) Proposition. For a, b ¢ E we have #(a b) = g(a) + o(b)

Proof. For fixed a we can write g@(a b) = g(a) + y(b) , for some y : E 4 W ,
by (1.8). By the proof of (1.8), the map x is a Euclidean algorithm for C

Hence we have y(b) = 6(b) , and proposition (1.12) follows.

We remark that (1.12) is also valid if the ordinal addition is replaced

by Hessenberg addition,

The transfinite construction by which the smallest algorithm for C
can be "computed" is easily generalized from the classical case [25, sec.4].

We just mention one comsequence,

(1.13) Proposition. Let b ¢ E . Then 4(b) =1 if and only if p = 2_1 is a

non-zero prime ideal of R such that p € C and the natural map R* 4 (R/p)*

is surjective,

The proof is left to the reader.
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(1.14) Corollary. Let C be an invertible Euclidean ideal class of R with

smallest algorithm @ , let h denote the class number of R , and let, for

p a non-zero prime ideal of R , the number ?B be defined by
n =j if pecl, 2<j<hn,
n =1 if p € C and R¥* (R/B)* is surjective,

h+l if p €C and R¥* o (R[R)* is not surjective,

n =
P
ord (a) ,
Then for every a =1 p 2 € E , with QrdE(g_) Ezso , we bave
R ‘
(1.15) 9(a) = 5 (-ord (a)):n
b~ 2l

P

Proof. This follows from (1.11), (1.12) and (1.13).

(1.16) Example. We give a series of examples which shows that every positive

integer occurs as the class number of a ring having a Euclidean ideal class.

Let k be a field, K = k(t) a simple transcendental extension of k ,
and f € k[t] an irreducible polynomial. We denote the degree of f by h .

Put

=0
1]

{a/b €K : a,b € k[t] , b 1is a power of f , deg(a) < deg(b)} R

{a/b € R : deg(a) < deg(b)} .

lo
1

It is readily verified that R is a ring, and that ¢ 1is an invertible ideal
of R with R/c =k . Let a/b € R - {0} , with a,b € k[t] relatively prime;

then b is a constant times a power of f , and we claim that

(1.17) dim, R/R(a/b) = deg(b)
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If b ¢ k this is clear. If b ¢ k , then we can write an arbitrary element
of R in the form c/b" , with ¢ e k[t] , m €N , m =1 . Choose d,e € k[t]
with ¢ = d.a + e-b™ 1 and deg(d) < deg(d™ 1) , then we have

¢/b™ = (a/b™ 1), (a/b) + (e/b) = e/b mod R(a/b) . Hence the map

fe € k[t] : deg(e) < deg(b)} -» R/R(a/b) mapping e to the residue class of
e/b is surjective, and its kernel is easily seen to be k-.a . Counting dimen-

sions we find (1.17)

We conclude that dimkR[i < «» for every integral ideal a of R .

Define
dimkR/_g

N(a) = 2
and extend N by multiplicativity (cf. remark (1.5)) to the set of all fractio-
nal ideals of R . We write N(x) = N(Rx) for x € K* , and N(0) = O . By
(1.17), we have

—ordf(x)-h
N(x) = 2 for x € K,

where ordf(x) €z U {m} is the number of factors f in x .

Using partial fraction expansions we can write any x € K 1in the form
x = (c/f) +2z , with neN, ¢ € k[t] , degl(e) < deg(fn) , z2 €K, ordf(z) = 0,

Then c/fne c , so with y = c/f" we see that
¥x € K: @y € c: N(x-y) <1 <2 = N(c)

By an argument given in the introduction this means that the map { : E + NN
-1
defined by {(b) = N(b) is a Euclidean algorithm for C = [c¢] . Hence R

is a Dedekind domain, and Cg¢(R) 1s generated by C .

We calculate the class number of R . From N(Eh) = N(g_)h = oM = N(R-(1/E))
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(by (1.5) and (1.17)) and Eh c {a/b € R : deg(a) < deg(b)-h} = R-(1/f) we

see that EF = R-(1/f) , so the class number of R divides h . Conversely, if

m

= R.x 1s principal, then comparing norms we see that m = —ordf(x)-h s SO

m 1is divisible by h .

We conclude that the class number of R equals h . Since for every
positive integer h there exists a field k and an irreducible polynomial

f € k[t] of degree h this proves the claim made at the beginning of (1.16)

If f is not assumed to be irreducible then similar results are valid,.
In this case, the class number equals the greatest common divisor of the degrees
of the factors of f . This can be proved by similar methods, or by reducing
the general case to the case treated above using proposition (1.9), or by apply-

ing the following proposition,.

(1.18) Proposition. Let k be a field, and K a function field in one variable

of genus zero over k , having k as its exact field of constants. Let S be
a finite non-empty set of prime divisors of K/k and R the subring
R={f € K: f has noples outside S } of K . Denote the greatest common

divisor of the degrees of all divisors of K/k by & , and of those in S by

6'
a) If & =1 then the map ¢ : E »IN defined by
y(b) = dim_b/R

is a Euclidean algorithm for the ideal class

C={c:c 1is a fractional ideal of R , and

the degree of ¢ 1is 1 mod &'} ,
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and the class number of R equals §' . Moreover, if k 1is infinite or
# S8 =1, then C 1is the only Euclidean ideal class of R, and ¢ 1is the

smallest algorithm for C

b) If & # 1 then R has no Euclidean ideal class,

The proof of this proposition is completely analogous to the proof

given by Samuel in the classical case [25, sec.6].

If k is finite and # S =2 in a) , then any ideal class generating
C4(R) 1is Euclidean, and { is not the smallest algorithm for any of them.

This follows from (3.3) and (3.7).

2. Norm-Euclidean ideal classes in global fields.

Let K be a global field, i.e, a finite extension of Q or a function
field in one variable over a finite field imq . By P we denote the set of all
non-trivial prime divisors of K , and S 1is a finite non-empty subset of P
containing the set S of archimedean prime divisors of K . For each p ¢ P,

let be an absolute value of K corresponding to p . By R we denote

1y
the ring of S-integers in K :

R={x €K: ‘X‘R <1 for all p € pP-S} .

This is a Dedekind domain with field of fractions K , whose non-zero prime
ideals correspond bijectively with the elements of P-S . If a R 1is a non-
zero ideal, then R/a 1is a finite ring, whose cardinality 1is called the norm
of a and denoted by N(a) . By multiplicativily we extend N to a group

homomorphism from the group of fractional ideals of R to Q*>O . We put
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N(x) = N(Rx) for x € K¥ , and N(0) = 0 . If the absolute values ‘ IR are

suitably normalized, then we have
(2.1) N(x) = T |x]
pEs =

for x € K . In the case that K 1s a number field, and S = Soo , the ring R
consists of the algebraic integers in K , and N : K+ Q@ 1is the absolute value

of the field norm.

In this section we are interested in conditions under which R has a

norm-Euclidean ideal class, i.e., an 1ideal class which is Euclidean with respect

to the map { : E + N defined by y(b) = N(_]_)_)_1 = # b/R .

(2.2) Proposition. Every norm-Euclidean ideal class of R contains all integral

ideals ¢ of R for which
N(c) = min{N(a) : a is an integral ideal # R} .

The ring R has at most one norm-Euclidean ideal class. If there is one, then

it generates the class group, and the class number h of R satisfies
(2.3) h < N(a) for all a ¢ R-R* , a #0 .

Proof. This is a consequence of (1.6), (1.7) and (1.2), with ¢ : E +IN defined

by §(b) = N(b) -1

If K 1is a number field of degree n over Q@ , and S = Sco , then
(2.3) with a =2 yields h < 2™ . The inequality (2.3) can often be improved.

For example, assuming that R has a norm-Euclidean ideal class, we have

(2.4) h < log N(a)/log q for all a € R -R*, a#0,

if TFq cK,
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(2.5) h <# {r:r is a prime power, 1 < r < N(a)}

for all a € R-R , a#0 s

(2.6) h divides n if K/Q 1is Galois of degree n and S =8

@

To prove (2.4) ome applies (1.2) with y(b) = -log N(b)/log q , which assumes
values in N if EA_C:K . The proof of (2.5) depends on a modified version of
lemma (1.1) and is left to the reader. We shall not make use of (2.5) in the
sequel. To prove (2.6), let G = Gat(K/Q) and let C = [c] be norm-Euclidean.
Then for every O € G the ideal class oC = [QSJ is norm-Euclidean, sao

oC = C by (2.2) . Hence ¢ = H@eq [oc] = [RN(c)] = [R] , and the class number

divides n . This proves (2.6)

As we have seen in the introduction, C 1is norm-Euclidean if and only

if
(2.7 ¥x € K: 8y € ¢ : N(x-y) < N(c) ,

where c¢ € C . This property is usually investigated in the completion of K
at the primes in S . More precisely, for p € S let KE be the p-adic com-

pletion of K , and put KS = UBGS KR . This is a locally compact topological

ring, We regard K as being embedded in K_, along the diagonal. Then K is

S

dense in KS , and every fractional ideal a of R 1s a discrete subgroup of

K, with Ks/g compact, We extend N to a map K

S » R

s TRy DY

N(x) = 11 lx | if x = (x) € K, ,
" pes RE p'pes S

cf. (2.1) . This is a continuous function satisfying N(xy) = N(x)N(y) for

X,y € KS . For t eﬂgﬂ we put

v, = {z € Kg : N(z) <t} ;
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for each t , this is an open neighborhood of 0 1in K_ . Clearly, (2.7) is

S

equivalent to

Koce+Vyy= U b+ VN(c)) .
= yee <

It seems that in all cases in which this condition 1s known to be satisfied we

actually have

(2.8) K, =¢c+V

S N(e)

= ?
(2.9) Problem. 1Is it true that K cc + N(e) if and only 1f kg = c + N(e)

If F is a compact subset of K¢ with Ko = ¢+ F , then (2.8) is

equivalent to

Fcc+V = U (y+vV )
N(e) yee N(e)

which by compactness of F is true if and only if

m
F U(yi+v

) for certain VAT ST TR AN €c.
i=1

N(c)

Using this remark, and the countability of K , one can show that an affirmative
answer to (2.9) implies that the problem whether for an explicitly given pair
K,8 the ring R has a norm-Euclidean ideal class is effectively decidable,

I do not know how to prove this decidability without unproved assumptions,

The following proposition, essentially due to Barnes and Swinnerton-

Dyer [3, th.M] is the only known result concerning problem (2.9).

(2.10) proposition. Suppose that # S < 2 , and that t G m>0 . Then K <e¢ 1V,

implies that Rg = ¢t Vt+€ for every ¢ € R>0 ; I #S=1 or K 1is a

function field this is also true for e =0 .
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We do not give the proof here,

In the case # S =1 all R having a norm-Euclidean ideal class can
be determined. In the number field case they are the rings of algebraic integers

in the fields

(2.11) K=@, Q(\-d) , d=3,4,7,8,11,15,20 ,

with class number two if K = Q(\-15) or Q({-20) and class number one other-
wise, If K 1is a function field and # S =1 , then R has a norm-Euclidean
ideal class if and only if K has genus zero. By (1.18), the class number then
equals the degree of the unique prime in S .

In the case # S =2, 8 = Soo , it has been proved by Davenport
[9,10,11; cf.6] that only finitely many R, up to isomorphism, are Euclidean

with respect to the norm., This result can be generalized as follows.

(2.12) Proposition. Suppose that # S =2 . Then R has a norm-Euclidean ideal

class if and only if

(a) K 1is one of the fields listed in (2.11) ;

or (b) R belongs, up to isomorphism, to a certain finite list of number
rings;
or (¢) K 1is a function field of genus zero,

The finite list mentioned under (b) is not completely known. As we

shall see below, it contains at least 107 rings.

The rings with # S = 2 can be divided in five categories



S = Sm , and K 1s real quadratic;

S=9S8 , and K 1is complex cubic;
«©0

§S=95 , and K 1s totally complex quartic;

[oe]

wn
]

{EmtR} , with p = archimedean and p non—archimedeah;

K 1is a function field.

We discuss each of these categories in greater detail,

(2.13) s =5_, K is real quadratic, and R 1is its ring of integers. It is,
in this case, an immediate consequence of a theorem of Davenport [9, th.2]

that R can only have a norm-Euclidean ideal class if the discriminant A of
K over ( satisfies A< 214 = 16384 . A simpler proof by Cassels [6] yields
A < 2044 , and Ennola [13] improved this to A < 943. We remark that the ratio-
nality arguments in the proofs of Davenport and Cassels can be replaced by an
application of (2.10). These results have been used [8,13] to determine all R ,

in this category, for which the principal ideal class is norm-Euclidean. They

correspond to the sixteen values
A= 5,8,12,13,17,21,24,28,29,33,37,41,44,57,73,76 .

By similar methods as those used in [13, lemma 11] I found that R has a non-

principal norm-Euclidean ideal class if and only if
A= 40, 60 or 85 .

In these cases, we have h =2 by (2.6). We conclude that this category contri-
butes precisely 19 rings to the list in (2.12) (b)

(2.14) s =8 , K is complex cubic, and R 1{s 1ts ring of integers. 1I R

[oe]

has o norm-Euclidean Ldeal class, then by a theovem of Davenport [10, th.2] the
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discriminant A of K over @ satisfies -A < 5.93 x 1027 , and Cassels [6]
improved this to =-A < 170523 ., Taylor [26] lists 52 examples with class number 1,
but the list is not claimed to be complete. It would be of interest to obtain
examples, in this category, where the class number is larger; it is at most 4,

if R has a norm-Euclidean ideal class.

(2.15) S =8 , K 1is totally complex quartic, and R is its ring of integers.
[«2}
Suppose that R has a norm-Euclidean ideal class. Then the discriminant A

2 by a result of Davenport [11l, th.2] .

of K over @ is < 5.21 x 10%2
Cassels [67] improved this to A < 24,845,989, and an obvious modification of his
lemma 15 leads to A < 20,435,007. Thirty-two examples with class number one,
mainly due to Lakein [17,18,20], are known, and his methods can be used to prove
that the ring of integers of K = @(\-3, \13) has a non-principal norm-Euclidean
ideal class and class number 2. Hence this category contributes at least 33

rings to (2.12) (b). Examples with class number larger than six do not exist in

this category.

(2.16) s = {Rm’B} , with p  archimedean and p non-archimedean. In this case
K 1is either @ or an imaginary quadratic number field, and if A 1is the ring
of integers of K , then R = A[E-I] , where the symbol p 1is also used to
denote the maximal ideal of A corresponding to the prime divisor p of K .
Let A be the discriminant of K over @ , denote the characteristic of A/p
by p , and suppose that R has a norm-Euclidean ideal class. Then Cassels's
mode of proof [6] can be used to show that
256 P _\4

la] === - (p—l) .

Hence, leaving aside only finitely many possibilities for R , we have lA‘ < 85.

For each of the remaining values for A one can show, by a different argument,
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that there are only finitely many possibilities for p , except if

A € {1,—3,—4,—7,—8,—11,—15,—20] . In the excepted cases, K 1is one of the fields
(2.11), so A has a norm-Euclidean ideal class. Using (1.9) one then easily
proves that the same 1is true for A[E-lj , regardless of the choice of P -

This gives an infinity of examples in this category, falling under (2.12) (a).

Three examples falling under (2.12) (b) are known; they are
-1
R =2z[% \-197 , z[3, \-67 , z[\-6,(1+4\-6) "]

and have class number one., The last two are due to G. Cooke (unpublished).
There are probably many more examples in this category, and it seems an attrac-

tive problem to determine them all. One can show that h £ 2 1in all cases.

(2.17) K 1is a function field. If K has genus zero, then R has a norm-
Euclidean ideal class, by (1.18), and for # S = 2 the converse can be proved
by a suitable adaptation of Cassels's method [6] . The class number of such a

ring R 1is the g.c.d. of the degrees of the two primes in S .

The function field case of (2.12) can be used to answer a question left
open by Armitage [1] : if K 1is cubic over Eé(t) , with p an odd prime,
and the infinite prime of imp[t] has precisely two extenslons to K , then the
integral closure R of in[t] in K 1is Euclidean with respect to the norm

if and only if the discriminant of R over ﬁmp[t] has degree < 4 ,

It is not clear how proposition (2.12) should be formulated such that
it has a chance of being valid for higher values of # S , e.g. # S =3

In the function field case, the ring

R = ]FZ[X,I/X,I/(X+1),Y]/(Y2+Y+X3+X+l)
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is Euclidean with respect to the norm, it has # S = 3 , and its field of
fractions has genus one. In the number field case, (2.12) is equivalent to the
assertion that there exist, up to isomorphism, only finitely many R with
# S = 2 having a norm-Euclidean ideal class for which S 1is minimal with
respect to this property, i.e. for no S'cS, S'# S, S' o8 does the ring
R' of S'- integers have a norm-Euclidean ideal class., But the corresponding

assertion for # S = 3 1s wrong, since it can be proved that in the case
K=q(\14) , s=5 U {R} (p non-archimedean)
(-]

the ring R has a norm-Euclidean ideal class if and only if the prime divisor
p corresponds to a prime ideal of Z[\147 which is generated by an element

which is not 1 mod 2.

For unbounded # S an infinity of examples can be deduced from a
theorem of O'Meara [237 : for any global field K there exists a finite subset
ScP,S#6, SD S, » such that the ring R of S-integers is Euclidean with
respect to the norm. It is unknown whether S can be taken to satisfy

SNT=@ , where T 1is a given finite subset of P with S NT= @ .

It may be true that in the case § = S°° there are only finitely many
R , up to isomorphism, which possess a norm-Euclidean ideal class, There are
318 examples known, 312 with class number one [20,22] and 6 with class number
two (see (2.11), (2.13) and (2.15)) . Finiteness results for certain classes of
cyclic fields have been proved by Heilbronn [14,15] in the case of class number
one, I do not know whether his results carry over to the case of larger class

numbers,
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3. Other Euclidean algorithms in global fields,

In this section K , S and R have the same meaning as in section 2,
except in proposition (3.1) and lemma (3.5) which are more generally valid.
By C we denote an ideal class of R ., From (1,2) we know that for C to be
Euclidean it is necessary that C generates the class group, and in this sec-
tion we are interested in whether the converse is true. Further, if C 1is

Euclidean, we are interested in its smallest algorithm.

It turns out that the situation much depends on whether # S =1
or # S =2 . Notice that, by the Dirichlet unit theorem, we have # S =1 1if

and only if R¥ is finite. We discuss both cases in more detail.

First let # S =1, S = {p} . Then |XIR > 1 for all x € R - {0} ,
with equality if and only if x € R¥ ., Hence the following proposition applies
to our situation, with v = | |

D"

(3.1) proposition. Let R be an arbitrary domain which is no field, with field

of fractions K , and let v : K »iRZo be an absolute value on K with the

property
v(x) = 1 for all x € R - {0} , with equality if and only if x € R¥,

Suppose that C 1is an invertible ideal class of R which is Euclidean., Then

we have

(a) if v 1is archimedean, then K 1is one of the fields

Qx Q(V'd) ) d = 334’738)11’15’203

R 1is the ring of algebraic integers in K , the ideal class
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C 1is the unique generator of Cg(R) , and v belongs to the unique

archimedean prime divisor of K ;

(b) if v 1s non-archimedean, then K = k(t) for some field k , with t
transcendental over k , the absolute value v 1is trivial on k , and if

p denotes the prime divisor of K/k to which v belongs then

R={x €K: Ix‘_q < 1 for all prime divisors

q # p of K/k}

Moreover, the class number h of R equals the degree of p over

k , and C consists of the fractional ideals of degree 1 mod h .

We do not give the proof of (3.1) here. It makes use of the theorem
of Artin and Whaples [2] to show that K 1is a number field or a function field.
The number field case is then dealt with by the methods of [19, sec. 107, and
in the function field case a similar argument, depending on Riemann-Roch, can
be applied to show that the genus 1s zero. Application of (1.18) then concludes

the proof.

It follows from (3.1) and (1.18), (2.11) that in the case 4 S =1
an ideal class is Euclidean if and only if it is norm-Euclidean, In the function
field case the smallest algorithm is described in (1.18),and in the number

field case we have the following approximate description.

(3.2) Proposition. Let K be one of the fields listed in (3.1) (a), and put

O=%ifK=Q:
1 1 4 3 9 4 9 . - -
P=3:3235%77° 570 f K=QU-d,

d =3, 4, 7, 8, 11, 15, 20 , respectively,
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Let R be the ring of algebraic integers in K , and define { : E 4 IN by

§(b) = (greatest integer < log N(b)/log p) ,

for b € E , with N as defined in the introduction. Then { 1is a Euclidean
algorithm for the unique ideal class C which generates Cg4(R) . Moreover,
if f 1is the smallest Euclidean algorithm for C , then there exists a real

number s such that

(k) < ¢(b) < 8(b) +s for all b €E

The proof uses the methods of [19, sec.107.

It follows from (3.1) (a) that if R 1is the ring of integers in an
imaginary quadratic number field of discriminant A, A= -19 or A< -20,
then R has no Euclidean ideal class, even if Cg(R) 1is cyclic, as is the

case for

- A= 19, 23, 24, 31, 35, 39, 40, 43, 47

and probably infinitely many others,

Next we suppose that # S = 2 . We have, in thils case, the following
proposition, which generalizes the theorem of Weinberger and Queen [28,247 in

the classical case, cf. [217.

(3.3) Proposition. Let K be a global field, S a finite set of prime divi-

sors of K containing S such that # S =2 , and R the ring of S-integers
o0
in K . Further, if K 1is a number field, assume that for every squarefree

1/n) , with

integer n the (-function of the field K((;n , R¥
- denoting a primitive n-th root of unity, satisfies the generalized Riemann

hypothesis. Then every ideal class C which generates the class group of R
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is Euclidean.

It follows from (3.3) that the rings Z[(1 + \65)/2] and Z[(,,] »
which have no norm-Euclidean ideal classes, do have Euclidean ideal classes
if the Riemann hypotheses are true. If no unproved hypotheses are assumed then
all known Euclidean classes in number rings are actually norm-Euclidean. Changing

this situation should be easier than proving the Riemann hypotheses.

The proof of (3.3) yields in fact a Euclidean algorithm for C .
Assume that C generates Cg(R) , put h = # Cg(R) , and let, for p a non-

zero prime ideal of R , the number ?R be defined by

mP_=h+j if pecl,2<j<h,

m =h+tl 1f p €C and R* - (R/R)* is surjective,

]

m

b 2h+l if p € C and R¥ + (R/p)¥* is not surjective,

so. m, = §R+ h with n, as in (1.14). Then the map { : E 9+ IN defined by

ord (b)
(3.4) \I](b) =3 (- ord (b))-m s for b =1 P P ¢cE,
- R~ B -
B P
is a FEuclidean algorithm for C , under the hypotheses of (3.3). The proof

makes use of the following lemma, which rephrases the definition of a Euclidean

algorithm in terms of integral ideals.

(3.5) Lemma. Let R be an arbitrary Dedekind domain. If a, b, f are integral

ideals of R, let a = b mod £ express that a 3—1 = Ra for some

ael+ f E_l . Let ¢ : E-»W be amap, C an ideal class of R , and put
ola) = w(g—l) if a 1is an integral ideal of R . Then ¢ 1is a Euclidean

algorithm for C 1if and only if for all integral ideals a, f of R for which

a¢f,aectre,
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there exists b = a mod f such that (b)) < @(g)

The proof is left to the reader.

The congruence notion defined in the lemma coincides, in the global
field case, with ray class congruence if a and b are coprime with f ,
except that no conditions at the primes in S are imposed on a . If a and
f are not necessarily coprime, a + £ =4d , then an integral ideal b satisfies
1 1 1

a=bmod f if and only if b+ f£=4d and a d mod £ d”

=bd

Using the lemma, one finds that to prove that | 1is a Euclidean algo-
rithm for C it suffices to establish the existence of prime ideals p in
certain ray classes for which the map R¥ + (R/p)* 1is surjective. Here the
unit group R® is infinite, since # S > 2 . This problem can be dealt with by
an analogue of Artin's conjecture on primes with prescribed primitive roots
which is discussed in [217. The validity of this conjecture is a consequence

of the Riemann hypotheses we assumed [167.

The map { defined by (3.4) does not assume the value 1 and 1is there-
fore not the smallest algorithm for C . It is a natural question to ask whether

the map v : E +IN defined by

(3.6) (b) = 3 (-ord (b))-n
X 2 . b2 p
with nR = mR- h as in (1.14), is a Euclidean algorithm for C . If it is one,

then it is the smallest one, by (1.14). The answer, modulo the Riemann hypotheses,
is affirmative, except in a very special case, which can be completely charac-

terized :
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(3.7) Proposition. Let the hypotheses and notations be as in (3.3), and let C

be a generator of Cg(R) , with smallest algorithm @ . Then equality holds in
(1.15), i.e., @ equals the map y defined by (3.6), except if for some prime

ideal 4 of R the following conditions are satisfied :

(3.8) K 1is a totally complex number field, R 1is its ring of integers

(so S=8 ), Cg(R) has order 2 and is generated by [g] , we have
o L

&2 = R.2 , the natural map R¥ =+ (R/g)* 1is surjective, for every

u € R¥ there exists x € R with x2 = u mod &? , and for some v € R*

the extension K(\2v)/K is totally unramified.

If (3.8) holds, then @ 1is given by

a(b) = x(b) + (—ordﬁ(h)) if ordz(g) is even,

8(b) = x(b) + (—ordz(h)) -1 if ordz(g) is odd,

for b ¢ E , with y defined by (3.6).
The proof of (3.7) again uses the techniques of [217 .

Examples in which (3.8), with v =1 , is satisfied are the rings

1/2)1/2) 1/2

of integers of the fields K = Q((-5 + 5 and K = Q((-6)""", cos(21/9)).
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