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(Théorie des Hombres)
19e année, 1977/78, n° 15, 14 p. 12 décembre 1978

PERFECT ARTITHMETIC CODES

by H. W. LENSTRA Jr

L. Cyclic Al-codes.,

Let r» and n be integers with r» 22 and n =23 . For x , y € g/(rn-llz s
the arithmetic distance d(x ’ y) is defined to be the smallestinteger +t >0 for

which there exists a representation

X -y = <Z§:l c; rn(i) mod (" - 1),

with ci,n(i)eg, le.] <r, n{di) 20, for 1 <1<+t . Itis easily seen

that d is a metric on ‘g/(rn - 1)Z .

An arithmetic code, or more precisely a cyclic All-code of word length =n in

base v, is a subgroup C of g/(rn - 1)Z . The "AN" in the terminology is

explained by the observation that every such code can be represented as
¢ = {AN mod (r" - 1) ; 0LN<B},

for a unique pair A , B of positive integers, with AB = v - 1. The adjective
eyclid! doesnot referto the group structure of the code, but to the following pro-
verty. Let the elements of g/(rn - l)g be represented by their digits in base r ,
i. e. let the "word" (Ci)z;é represent the element Z?;é ci ri mod (rn - 1) H
only O mod (rn - 1) has two such representations. Then, for every cyclic AN-co-

de C , and every word (ci)?:é € C , also the cyclically permuted word (Ci—l)gzé ,

with C_i = Cpq belongs to C , since
sn~1 i n-1 i n
25 T =T Zi:O c, r mod (r~ - 1) .

Arithmetic codes are used for checking additions and subtractions of numbers
written in base r , see ([9], [11], [12]). The procedure is roughly as follows. To
add two numbers N1 ’ N2 , one encodes them as ANl ’ AN2 , and one adds the en-
coded numbers in 3/(r" - 1)Z ; let the result be S . Next, one determines M, e,
with d(AN3 , ) least possible. If no errors have been made, then AN3 =3 , and

N, is the sum of N, and N (mod B) . Generally, d(AN3 , 8) is a lower bound

3 2
for the number of errors which have been made, and N3 ig the most likely result
of the addition N, + ¥, (mod B) .

1 2

In this way, all combinations of e , or fewer errors, can be corrected if, and
only if, for every x € g/(rn - l)g , there is at most one c¢ € C , with

ax , ¢) < e . A code having this property is called e-error-—correcting. If, for

every x € g/(rn - 1)Z , there exists exactly one c¢ € C , with d(x , ¢) <e , the

code is called perfect. If we put

Se:{sezj(rnul)g; a(s , 0) < e},
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then a subgroup C c‘g/(rn - I)Z_ is a perfect e-error-correcting arithmetic code
if, and only if, every x € g/(rn - 1)2‘ has a unique representation x =8 + ¢,
with s € S and c € C . We will be interested in the case e =1 , of. ([1],

SG
(3], [41, [5]).

2. Perfect one~error-correcting arithmetic codes.

Example, — Let r =mn = 3, then ¥ - 1 =26 . We have

H-

s, ={0,+1,+2,%£3,%6,%9,= 18} < z/267 .

It is easily checked that, for every x € E/ZQQ , we have either XEESl s or
x e 13 + Sl . Hence the subgroup C = {0 , 13} is a perfect one-error-correcting
cyclic 13N-code of word length 3 in base 3 . This code can be used to check addi-

tions modulo 2 (= B) on a ternary computer.

In the general case, we have

Sl = {0, = c.r?d mod ¢ - 1 ; lL&egr-1, 0L5< n} ,

#sl =1+ 2(r-1)m

(here, we use that n >3 ). Let C c,g/(rn - 1)Z be generated by A mod (" - 1),

\ A n . . . .
where A divides r - 1 . This is a perfect one-error-correcting code if, and on+

ly if, every x € g/(rn - l)Z_ is uniquely representable as

.

x = AV, or x = AN &+ cr? 5

with ANeC, IlI<ec 0< j<n . If this condition is satisfied, then

7
=
i
—

n ..
l:#C#Sl:—I:-T-JL(l—k—Q(r-l)n) 9

)

i

r
so A eand n determine each other by

A-1=2(r~1)n.

i

Passing to (g/(rn - 1)2)/¢ £ 2/AZ , we see that C is perfect one-error-correct-

ing if, and only if, every =x € Q/Aé can be written in a unique way &as
z = (0 mod A) , Or X = (& ch mnod A) y
with 1 gce<r-1, 0< j<n.It was observed by GOTO and FUKUMURA.[4], and by

. ~ N

BOJARINOV and KABATJANSKIJ [ 1] that this condition implies that A is prime. To

see this, suppose that A =ab , with a<A, b<A.Vith x = (a mod A) , we
find a = + cr? mod A , s0 a divides cr? s but a is coprime with r , since
it divides 1 - 1 , 80 a divides c¢ , hence a <7r . Similarly b <1r . Then
A< r2 , 80 A has in base r at most two digits : A = C; T+ Cy oy 0L s <r,

But then =x = (cO mod A) has two representations,

mod &) , x = (-c T mod &),

X:(C 1

0

contradicting our uniqueness assumption. We conclude that A is prime.
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n-1 . . S .
} is a subgroup of FY¥ , we arrive at the fol-

Observing that {1 , r, .v. , T i

lowing proposition.

(2.1) PROPOSITION., - Let A be a positive integer. Then A generates a perfect

one-error-correcting cyclic AN-code in base r if, and only if, A is prime, and

(i) and (ii) hold :

(i) The subgroup {(r mod A) f gﬁ has index 2 din the subgroup

{r mod £, ~ 1 mod &) ;

(1i) The subgroup {(r mod & , = 1 mod A) has index r -1 in EX , with

1,2, cee g7 =1 (mod &) as a complete system of representatives.

The word length n of the code is determined by
n = ET%—E%%T-: #{r mod A) 3
it is necessarily odd, since (- 1 mod A) ¢ {r mod A) , by (i). Wotice that, in
(ii), we may replace 1 , 2, wee , T ~1 by 2,3, «oe , 7 -1, r, since

r=1 mod {r mod 4 , -— 1 mod A) .

Example [11]. - Let r = 2 ., In this case (i) and (ii) mean

L

(2 mod A) ; @ wod A , =1 mod &) = oo
and this is easily seen to be equivalent to
A=7 mod 8 and - 2 is a primitive root mod A .
Exemples are A =7 , 23, 47, 71, 79 , 103 , 167 , ... « If Artin's conjectu-
re on primes, with a prescrived primitive root, is true, the condition is satisfied
for 18,69779... % of all prime numbers. We remark that this conjecture is known to

be a consequence of the generalized Riemann hypothesis [6].

Example [5]. - Let r = 3 . In this case, (3 mod A) must have odd order
(A - 1)/4 in F, . Then, A =5 umod 8, and - 1 ¢ (3 mod 4) , and
2¢ (3 wod A, -1 mod A) are automatically satisfied. Examples are A = 13,

>

A

109 , 18L , 229 , 277 , 421 , ... . lodulo the Riemann hypotheses, 3,739558 % of

all primes satisfy the condition.

In the general case, we are interested in conditions on r which are nccessary
and probably sufficient for the existence of perfect one-error~correcting codes in

base r .
Assume that 4 as in (2.1) exists. Then

(2.2) r is no square,

, o 2 A-1)/(r=1. n  n , _ o1
since if r = s , say, then S< )/ ) =8 =7 =1 mod A , so 85% mod A,
for some 1 , contradicting that s , by condition <ii), represents a non-trivial

element in the group Ej/(r mod A , ~ 1 mod A) == Z/(r - 1)& .

By‘(ii), the canonical map
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(2,3, vee, -1, 1} —->£X’/<r mod A , - 1 mod A)
is bijective, and this gives :

(2.3) There exists a group multiplication =+ on V = 2,3, 0., v -1, 1}

such that ¢
(2.4) (v s %) is a cyclic group of order r - 1 with neutral element T 3
(2.5) a % b =ab vhenever a , b € V are such that abe V j
(2.6) If p is prime and 2p divides r - 1 , then p is a square in (V , %) ;
(2,7) If v =- 1 mod 4 , then 2 1is no square in (v , k) .
To prove (2.6), notice that A = 1 + 2(r = 1)n =1 wod 4p , so the Legendre sym-—

bol (p/A) equals 1, and (p mod A) € Exz . This proves (2.6). Similarly, if

-1 mod 4 , then A =5 mod 8, since n is odd, so (2/A) = - 1, which

1l

r

implies that 2 is not a square in (V , %) . This proves (2.7).

Example. ~ Let T = 10, and suppose that V= {2, 3, ... , 9, 10} has a cy-
clic group structure satisfying (2.4) and (2.5). Since 23 =8 # 10 ( = unit ele-
ment), the order of 2 in V is 9 , so 2 generates the group, and

1
2:2,22:4,23:8,29=10,28:5(Since 2.5 = 10 ).

let 3 =2, Clearly, x#1,2, 3,8 or 9 .If x=4,5 or 6, then

2
9=3 = 28 ’ 2l or 23 =5, 2 or 8, acontradiction. Also x =7 leads to a

X+1 8

contradiction 6 =2 =2 =5, We conclude that no perfect one-error-correc-

ting arithmetic code in base 10 exists, cf. ([4] (for the case A < 106 ), [37).

The following theérem shows that the necessary conditions (2.2), (2.3), (2.4),
(2.5), (2.6), (2.7), for the existence of a perfect one-error-correcting arithmetic
code in base r , are, conversely, sufficient for the existence of infinitely many
such codes, if certain Riemann hypotheses are true. If M is a set of prime num-
bers, the limit

lm Hps pel, p<x}
x»o 7{p 3 p prime, p<x}’

if it exists, is called the density of M , and denoted by d(i) .

(2.8) THEOREM, - Let r Dbe an integer > 2 satisfying (2.2)—(2.7), and suppose

that, for every squarefree integer m , the ({-function of the field

Q(QZm(r—l) ’ mQr“l)v?@ satisfies the generalized Riemann hypothesis. Iere gk de~

notes a primitive k-th root of unity. Then, there exist infinitely many prime num-

bers A which gencrate a perfect one-error-correcting cyclic All-code inbase r ; mo-

re precisely the set S of these prime nuwmbers has strictly positive density.

The proof of this theorem is outlined in the following sections We shall also

give a precise formula for a(S) , under the assumptions of the theorem.
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3. Proof of the theorem.

Denote by L the infinite Galois extension of Q obtained by adjoining gk and
k ) ) i . .
Ja to Q, forall kez, kzl, acg, a>0,wth { asin (2.8). Ve
translate the conditions (2.1) (i) and (2.1) (ii) on 4 in conditions about the

behaviour of the prime A in L/Q .

Tet 4 be prime, and let (A 5 L[@) denote the set of all ¢ € Gal(LA@) for
which there exists a prime O of L 1lying over A such that o(a) = QA mod & ,

for all algebraic integers o € L . Let o € (A ’ LAQ) o

If (2.1) (i) and (2.1) (ii) hold, then EX has a subgroup of index 2(r - l) ;

so A =1 mod 2(r - 1) . This is cquivalent to

(3.1) O(Qz(r~1)> = Eo(r-1) ?
if A > 1 . The requirement that gﬁa(rﬁl) contains (r mod A) , but not

(- 1 mod &) , is expressed by

(3.2) 0<2(r"1X/E}= 2(r_1)v@7,
(3-3) @<2(r~l)\/ﬂ)7£ Z(T—l)r/:——‘ .

Notice that (3.1} and (3.3) are together equivalent to

(3.4) (G (rm1)) = 7 Cy(rn)

Condition (2.1) (ii) implies that no two of 2 , 3 , ese , ¢ =1, v (mod 4)

se(r-1)

are congruent modulo the subgroup EQ, , which is expressed by

(3.5) a(F/ ) # Tﬂ%]ia;b , forall a,b€eZ, 2ga<bgr.
We have not yet expressed the condition that Ez(rnl) is generated by (r mod &)

and (~ 1 mod A) . This is equivalent to the non-existence of a prime ¢ dividing

the index [£E(r'l> : (v mod &, — 1 mod A&)], i. e, for which A=1 mod 2(r-1)4

and (r wmod A) e=£Z(r"l>£

. This leads to
(3.6) o]{g2<r_l>ﬂ , (r~l>%v?} #1id , for every prime number % ,
in the case 4 = A , this may be wrong for some, but not all, o € (A, L[Q) .

We conclude that a prime number A satisfies (2.1) (i) and (2.1) (ii) if, and

only if, A > r and
(4, /9 nU#P,
where
(3.7) U= {oe Gal(L[@) ) satisfies (3.2), (3.4), (3.5), (3.6))}
Let | denote the Haar measure on Gal(LAg) , normalized such that p(Gal(L/@»: 1.
(3.8) PROPOSITION. - Let the hypothescs and notations be as in (2.9), (3.7). Then
a(s) = wu) .

v
Proof. - The proposition would be an immediate consequence of the Cebotarev den-
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sity theorem ([107], Chap. 7, § 3) if (3.6) would only be required for finitely
many primes ¢ . In our situation, the desired conclusion can be drawn by appealing
to a suitably generaligzed form of Artin's conjecture on primesg with prescribed
primitive roots, which is known to be a counsequence of the Riemann hypotheses men-—

tioned in (2.9) (see [2], [6], [8]). This proves (3.8).

We remarlk that, without any unproved hypothesis, it can be proved that
+/
d(8) < w(u) , where

Fray s FA 3 AE€S , A< x)
a’(s) = Lin FUPy 0 #A ;. A is prime, A < x)

To prove the theorem, it suffices to show that (W) >0 if (2.2), (2.3), (2.4),
(2.5), (2.6), (2.7) are satisfied. In [8], it is proved that, for sets U of the ty-

pe, we are considering it is true that
w() >0 if, and only if, U# ¢ .
We give an outline of the proof that U# ¢ if (2.2)-(2.7) hold.

We begin with an explicit desofiption of Gal(LK@) . Choose gk = eXp(Zﬂi/k> R
k,fé_:exp((loga)/k>9for ke, k21, aeQ, a>0, and let Z ve the

¢

profinite completion of Z , with group of units 2" .

(3.9) PROPOSITION, - Let o e Gal(L/Q) . Then, there is a unique element u e Z¥ ,

and a unigue sequence (v(p)) , with v(p) e Z , for p prime, such that

P prime

(3.10) a(g,) = QE , for all ke 2, k21 ;

(3.11) o5/ = gl‘:(p) K/o, forall keZ, k21, and all primes p ;

(3.12) (- 1)V(p) = C%) (Jacobi-symbol), Tor all primes p

A.e-

Conversely, if ue 2" , v(p) E,Z (for p prime) satisfy (3.12), then there is

a unique element o e Gal(LA@) satisfying (3.10), (3.11).

Proof, - The existence of unique u , v(p) such that (3.10), (3.11) hold is
obvious, and (3.12) is proved by calculeting cC/ﬁ)/JE' in two ways : using (3.11),

or using (3.10), with ./p expressed as a Gauss sum.

The converge follows by Kummer theory over the base field K:gg(;k s k=1,2,3,.0.)
if we know that

Y

(3.13) For all u eﬁZ* , there exists o € Gal(K{g) such that (3.10) holds g

k>1, aefl, a>0}nk= {%/g_; ae, a>0}.

~F

(3- 14‘) {k/\/-a? H k e

[

FRE)
Here (3513) follows from the irreducibility of the cyclotomic polynomials, the

inclusion o in (3.14) is proved by expressing square roots as Causs sums, and the

opposite inclusion is proved as follows. Let %/5'6 K, with kez, k=21,

aeQ, a>0, let 7e Gal(K/Q) be complex conjugation, and let p e Gal(K/Q)

be arbitrary. Then, p(%]g) = T kJE , for some 1 , with ﬂk =1 , and () = ﬂ"l y



k ke
T(,JE) = .Ja . Since Gal(KAg) is abelian, we have
k k k= -k -1 k
p(;/a) = pT( VE) = Tp(%/é) = T(ﬂ Ja) = 0 JE .

Multiplying by p(5¢g) = T kJE', we find Q(EJQE) = &Ja2 , for all p , so0

|

k /75 < - - .
b = //a2 pelongs to Q , and %Ja = %/b , as requirea. This proves (3.9).

it (v(p)) is as in (3.9), then, for me 2, m >0 , we define v(m)

p prime
by
(3015) V(Pl p2 e s ph) = V(pl) + V(p2) + oeee v(ph) € E
( T T prime). Notice that we then have o(kvﬁ) = Q;(m) %/E", for

all k€2, kzl, in the situation of (3.9).

Suppose now that (2.2)-(2.7) are satisfied, and let ¢ : (7, %) — 7/(r-1)2
be a group isomorphism. Here, we use (2.4). We claim that, for an element o of

¢al(L/Q) to belong to U, it suffices that the numbers wu , v(p) from (3.9) sa-

tisfy

(3.16) v(r) 20 mod 2(r - 1) ;

(3.17) wz1+ 2(r =1) mod 4(r - 1)

(3.18) v(p) = ¢(p) mod (r - 1) , for all primes p < T ;

(3.19) For no prime number £ , we have both
u=1 mod 2(r - e, v(r) =0 mod (r - 1)0 .

The properties (3.2), (3.4), (3.6) of o are obviously equivalent to (3.16),
(3.17), (3.19), respectively. From (3.18), (3.15), (2.5) and the fact that ¢ is a
group homomorphism, we sez that v(a) = w(a) mod (r - 1) , for all a € Z,

2<agr, so the fact that ¢ is bijective gives (3.5). This proves our claim.

By (2.6), (2.7), we have
(3.20) If p is prime and 2pir - 1, then ¢(p> is even ;
(3.21) If r =3 mod 4 , then ¢(2) dis odd.

To finish the proof that U # o] , and hence the proof of the theorem, it suffices
to see bthat the conditions (3.12), (3.16), (3.17), (3.18), (3.19) are compatible if
(2.2), (3.20), (3.21) hold. This is an entirely straightforwardcombinatorial exer-

cise, “hich we leave to the reader ; notice that (3.20), (3.21) are forced by

(3.12), (3.17), (3,18\. 'his concludes our outbline of the proof of theorem (2.9).

Jith slightly more effort, one can determine the number p(U) , which by (3.8)

equals d(S) if the Riemann hypotheses are true. The result is as follows.

(3.22) PROPOSITION. - Let v be an integer > 2 which is no square, and define

g=#p; p prime, psT},

ot

il

#p; p prime, 2plr -1},



w=mex{m e 23 r is an u-th power) .

Let U bve as in (3.7), and W the set of group maltiplications % on

.

Ve{2,3,..,r=-1,r} satisfying (2.4), (2.5), (2.6), (2.7). Further, if

r is even, put

C = ) L ) H’[(l -—-]:-é-') HI:C(]. - I
4(r - 1)% 2
L I
with [T renging over the primes § with zir -1, zYw , and [ over those

with sf2(r -~ 1) . If r is odd, then, for * e W , puf
-2 . .
2 N 1 ALV 2 TW 1 \
= -— 1 - -
T L-Z -y O -q=
with THLI ranging over the primes ¢ with Jfjr -1, g/ZW , the product TFV
over those primes LT er - 1, which are squares in (v , %) , and TN over

the primes 4 > v . Then, we have :
; 2
(e) f r=r1r Ty

, with T 0dd and squarefree, and r even, then

(r.-1)/2 ,
wly) = #.e(l + (- 1) 0 M . -1 ),

with [] ranging over the primes 4 dividing Ty v

(b) If v is even, but not as in (a)? i. e. 2 occurs to an odd power in T ,

then

p(u) = #W.c ;

(c) If r=1 mod 4, then

W) =2 5 ey s

(%]

m

=
St
o

(a)

b
H
i

r =73 wod 4 , then

i

(1)

4, Perfect negacyclic codes.

. - 3 5 . . N - n A\ r
A negacyclic AN-code of word length n in base r 18 a subgroup bc.g/(r +1)Z,

vherc 1 is an integer > 2 . Arithmetic distance and perfectness arve defined as

in the cyclic case.

Dxample. - Let r =2, n=>5, then L= 33 . The elements of Z/B}é y

with arithmnetic distance <

(401 0, 1,2 ,+4, 8,16,

Bvery x € 2/31£ is of exactly one of the three forms x =8 , X =35+ 11,

x =8 + 22 , with s one of the elements (4.1). It follows that C={C, 11, 22}

is a perfect one—error-correcting negacyclic codc.

The results of the preceding sections all have analogues for perfect one~error-

correcting negacyclic AN-codes. The modifications are as follows.
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Tn proposition (2.1), condition (i) is replaced by
(1) {r mod 4) = {r mod A, - 1 mod A) .

The word length n = (& = 1)/2(r = 1) = (1/2)#{(r nod A) is not necessarily odd,
and the proof that conditions (2.2) and (2.7) are necessary breaks down. o new

conditions take their place, and we have the following theorem.

(4.2) THECREM. —- Let 1 be an integer =2 satisfying (2.3), (2.4)9 (2.5), (2.6)

and suppose that, for every squarefree integer mn , the (~function of the field

I
m{r~1 A . - . ,
£K22m<r ) . &/r) satisfies the generalized Riemann hypothesis. Then, there
bl ¥

exist infinitely many prime numbers A which generate a perfect one-error-correct-

gt

ing negacyclic AN-code in base r 3 more precisely, the set 8! of these prime

numbers has strictly positive density.

In the proof of this theorem, the role of U is playved by
U = {o e Gal(L/Q) ; o satisfies (3.1), (3.5), (3.6) and G(rm¥d§'s r~%[;} .
The Riemann hypotheses imply that

a(@r) = plu) ,

and M(U)) is given by the following proposition.

(4.3) PROPOSITION, -~ Let r be an integer =2 , and q , t , w as in (3.22). Let

Ut be as just defined, and W' +the set of group multiplications on

V={2,3, ve. , v =1, r} satisfying (2.4), (2.5), (2.6). Define ¢ , if r

pam———

ig even, and c¢, , if r is odd, for % € W' , as in (3.22). Then, we have :

S
g

bS

- 2
a) If r=r»r_ 1 with =r sQuarefree r. =1 mnmod and T even, then
( )-"~ o "1°7 O - ? 0 4 e e

wun) = 2 ol - T——2—) ,
-0 -1

with ¢ ranging over the primes 7 dividing rO :

(b) If r is even, but not as in (a), then

(') = x #Wee

(c) If r is an odd square, then

w(uw) = 2 ZQEW‘ Cy 3

(a) r is odd, but not a square, then

!’Mx
=

p,(“ll‘) = Z C% .

5 . EXB.ILI‘Q].@S s

(5.1) PROPOSITION, - No perfect one-error-correcting cvclic or negacyclic AlN-codes

in base v exist if r assumes one of the following values :

(a) r=5,9, 10, 13, 25 ;




(b) r=s", with wfr - 1 .

In addition, no perfect one-error-correcting cyclic All-code in hase r
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existe if

r is a sqguare.

Proof., - For v = 10, see (2.8). The other four cases are similar to

we only treat r =25 ., Let V=1{2,3, «o. , 24, 25} have a group
.

tion « satisfving (2.4), (2.5), (2.6). By (2.6), the nuabers 2

each other

multiplica=~

snd 3 are

squares in (V , %) , and since 5 has order two, it is also a square. This gives

fifteen sguares in V

[es]

2,3,4,5,6,

L9, 10, 12,15, 16 , 18 , 20 ; 24 , 25,

contradicting that, in a cyclic group of order 24 , there are only twelve squares.

For the last statement of (5.1), see (2.2). This proves (5.1).

Notice that powers of two fall under (5.1) (v) « If = 2" , w>1, and w
divides 2" -1 , then let ¢ be the smallest prime dividing w . From
(q =1, w) =1, 2qml = 1 mod q , 2" =1 mod g , it then follows that
2l =1 mnod q , & contradiction. Hence, there exist no perfect one-error~correcting

w

aritimetic codes in base 2 , w > 1 . The result is due to BOJARINOV and

KABATJANSKIJ [17].

I do not know whether, for all =r , other than those in (5,1) perfect aritimetic

codes do exist. I'odulo the Riemann hypotheses, this problem comes down o cons-

tructing group multiplications % as in (2.3)., I can only do this in certain spe-

cial cases.
One wey to proceed is as follows. Suppose one finds a map
4 : {p; p prime, pgr)—>2/(r-1)2
such that { , when extended to V= {2, 3, «v. , T} Dy the rule
§(ab) = ¢la) + 4(v) ,
becomes a bijection satisfying
(5.2) 4(x) =0
(5.3) (p) ié even if p is prime and oplr - 1

(5.4) ¢(2) dis odd if 7 =3 mod 4 .

Then, a2 group multiplication « on V satisfying (2.4), (2.5), (2.6), (2.7) is

given by a %« b = ¢”1(¢(a) + ¢(b)) .

For example, if r = 6 , one can take y(2) =1, ¥(3) =4, $(5) = 3 (mod 5)

and if r = 15 , then W(2> =1, W<3) =4, ¢<5) = 10 , ¢<7) =

12,

(1) =7,

y(13) =9 (mod 14) works. A11 v £ 60 , except those in (5.1), can be treated in

this woy.

The following heuristic argument leads one to cxpect that, for all sufficiently

?
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lerge 1 with wi(r - l) (cf. (3.22), (5.1) (b)), such a § can be found. The

nuaber of maps {p 3 p prime, p < r} —*fygy(r -1)2 dis (z = 1)q , with g as

in (3.22). The probability that the extended map V —> %/ (r - 1)z satisfies (5.2),
(5.3), (5.4) is W.Z“G/(r - 1) or w.2_t_l/(r - 1), with t as in (3.22). If we

)r—l

purther cstimate the probability for the map to be bijective to be (rml i/ (r-1
p o & J 3

then we ind

w.(r = 1)qml (p - 1)1
M) gyt

as the number of maps | we may expect to satisfy our conditions. The reader easi-

1y checks that this espression tends to infinity with o .

(5.5) PROPOSITION, — Let r be an integer satisfying one of the following condi-

tiong ¢

(a) r is prime, and r =1 mod 8 ;

. . 2 2 . .
(b) r is prime, and r =x +y + 1, for certain integers x , v , with

(X7y):’l;

(c r is prime, and 2vr - 1 18 prime ;
2 A kit

() »=23p, where p, 2p -1 and 2r - 1 are prime, and p =5.

PRenEY

Further, let the Riemann hypotheses mentioned in (2,9) be satisfied. Then, there

exist infinitely many perfect one-error-correcting cyclic AN-codes in base 1 ,

and the same is true for negacyclic codes.

Proof. ~ We define the group multiplication 4 on V such that the following

naps are group isomorphisms : In cases (a) and (b),
v ‘“9'£i , T—s (i mod r) , aw> (8 mod r) (a # 1) 3
in case (c¢),
Vs /i)
T3 {& 1 mod 2r ~ 1} , &3 {# a mod 2r - 1} (a #71) 3
and in case (d)
Vs F /1),
T {£ 1 mod 2r -~ 1} , pl—s {& 2p mod 2r - 1},
2p —> {+ (2p = 1) mod 2r - 1} , 2p = 1 —> {+ p mod 2r - 1} ,
ai—s {£a mod 2r - 1} (a#r ,p, 2p, 2p = 1) «

Then (V , %) clearlysatisfies (2.4), condition {2.5) is easily checked, and
(2.6), (2.7) are proved by the quadratic reciprocity law. In case (v), notice that
v - 1 Thas no divisors which are 3 mod 4 . The proposition now follows from (2.9)

and (4.2).
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Bxanples.,
(a) =
(v)

(¢) v=2,3,7,19, 3L, 37,17 , 97, and probably infinitely many others;

17, 41, 73, 89 , 97 , and infinitely many others ;

i

g

~2,3, 11,5 , 83, 107, and infinitely many othcrs, cf. 177
(&) r =21, 57, 47L, 597, 687 , 1137 , 1317 , 1731 , and probably infinitely

Generators for perfect arithmetic codes in bases 2 and 3 ave ecasily obtained
from the tables of WESTERN and HILLER [13]. in teble 1, one finds all primes
A< 105 which generate a perTect one-error-correcting cyclic or negacyclic AMleco~
de in base 6 or 7 , and all A< 107 , for bases 11 and 12 . In cach case, the
word length n is given by n = (A - 1)/(2r - 2) . In table 2 , one finds, for all
r <15, not dealt with by (5.1),the densities (modulo the Riemann hypothesés) of

the sets 3 , and S!' defined in (2.9) and (4.2).

& . . 7 .
There are 9592 and 664579 primes less than 107 and 10 , respectively. The
reader may decide for himself to which extent our results cast doubt on the validie-

ty of the Riemann hypothesos.

Table 1 : Generators for perfect codes.

r cyclic negacyclic
6 18191 7741
20611 10831
22391 11171
25031 15161
27791 22741
37511 23431
38011 23531
40031 39971
50231 42131
50971 46381
53591 46471
56591 49261
56951 56081
59011 64451
76871 65581
82031 75641
36491 79691
91281 81371
61401
93251
7 19237 56053
300173 67453
73453 98893

voi/oen
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r cyclic negacyclic
11 1513021 4723981
5652421 7556701

6169021

bzet221
12 5187359 1588423
8936159 3079627
4911941
58477029

Table 2 : Denmsities of S and S' (modulo Riemann hypotheses)

T a(s) ast)

> 1.8698 x 107 3.7396 x 107"
3 3.7396 x 1072 3.7396 x 10™2
6 1.5116 x 1077 3.0231 x 1072
7 3.1608 x 1074 3.1608 x 107%
11 6.1369 x 1070 6.1369 x 1070
12 5.5774 x 1070 9.2956 x 1070
14 3.8757 x 107 7.7513 x 107
15 2,7936 x 107" 4.0724 x 1071
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