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VANISHING SUMS OF ROOTS OF UNITY

H.W. Lenstra, Jr.

INTRODUCTION

This paper is a survey of what is known about the magnitude of coeffi-
cients appearing in linear relations between roots of unity. The special
case of the cyclotomic polynomial is considered in section 1; section 2 is
devoted to more general relations. Various open problems will be indicated.

By n and m we shall always mean positive integers, and by p a prime
number; n is called squarefree if n is a product of distinct primes. By
m|n we mean that m divides n. An n-th root of unity, or simply an n-th root,
is a complex number o for which o = 1. It is called primitive if there
exists no m < n with o = 1. The ring of integers is denoted by %, and @
denotes the field of rational numbers.

Research for this paper was supported by the Netherlands Organization
for the Advancement of Pure Research (Z.W.0). Acknowledgements are due to

the I.H.E.S. for its hospitality and to C.L. Stewart for providing ref. [10].

1. Coefficients of the cyclotomic polynomial

The n-th cyclotomic polynomial ¢ is defined by
n

(1.1) o =1I(x-1),
nor

where [ ranges over the primitive n-th roots of unity. We have

(1.2) I =x-1

dln d

since both sides are equal to II (X -¢). From (1.2) one deduces, by

¢, g0=1
induction on n, that ¢n has coefficients in Z. Its degree is ¢(n), where

¢ is Euler's function:
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¢(n) = |[{3: 0<3<n, (§,n) =1}].

The cyclotomic polynomials are known to be irreducible in the polynomial

ring Q[x].
’ By Moebius inversion it follows from (1.2) that

(1.3) o = I -/

dln

Here U denotes the Moebius-function:

pm) = (-1)¥  if m is the product of r distinct
primes, r 2 0,
H(m) = 0 otherwise.

The polynomials Qn can be determined inductively, using the formulae

@1 =X=-1
- P . .
(1.4) an @n(X ) if p divides n,
(1.5) o =9 (Xp)/@ if p does not divide n.
np n n

To prove these relations, use (1.3), or check that both sides have the same
zeros. In a similar way one proves that |

(1.6) o, = -0*™ e (%) ifnis oda.
n n

For small n, no coefficient of Qn exceeds 1 in absolute value. In fact,

this is true for n = p:

® P o)/ (x=1) = 1+x+x2+... +x°71,

p

i

and also for n = pq, where p and q are different primes:

. pq i
1-x) (1- f,
= UK X)) (by (1.3))

[}
P4 (1-xP) (1-x%) %

8

= (1-%).

Il 0~

.. p=l
¥P T X 1op L Jx®
j k=0

=0



251

where o ranges over the numbers of the form jp+kq, with j 2 0, 0 < k < p;
it is easily proved that no integer has more than one such representation.
Multiplying Z x* by (1-X) we see that the non-zero coefficients of qu are
alternately +! and -1. For a different formula for qu' see (2.16).

From what we just proved and the formulae (1.4) and (1.6) it follows
immediately that no coefficient of @n exceeds 1 in absolute value if n has
at most two distinct odd prime factors. The smallest number n not satisfying

this condition is 3.5.7 = 105, and in fact in ¢ a coefficient -2 appears:

105

2 5 6 7 .8 .9
¢105-1+X+X - X - X =2X -X -X
+ X12 + X13 + X14 + Xl5 + X16 + X17
_ 420 L2224 26 (28
31 32 .33 .34 .35 36
+ X+ X7 +XTT + X+ X+ X
D39 440 | 4l 42 4346 4T 48

It was first proved by Schur (see [13]) that the coefficients of the
¢yclotomic polynomials are arbitrarily large in absolute value. In order
to present his argument it is convenient to rearrange formula (1.3) as

follows:
(1.7) @ = o (1-x%) 1T (14x 3k )

(n > 1), where in HI the product is over the divisors d of n with u(n/d) =1,
and in ntt over those for which u(n/d) = -1.

Now let t be an odd integer = 3, and let pl'PZ""'pt be prime numbers
with

2Py Py € e SR TPy YRy

such primes can be found for every t. We put n = PP,---P, and we calcu-
late Qn modulo terms of degree Zpt4-1 using formula (1.7). The only divi-
sors of n which are < py + 1 are 1,p1,p2,...,pt, and since t is odd we

obtain
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P p P P
8 = (1-x Ly (1-x &) ... (1=x &) (14xexZe. . ax ©)
o, D S P
= (1-X 1~x 2-—...—X t) (1+x+x2+...x t)

modulo terms of degree Zpt-+1. Multiplying out we find that the coefficient
at Xpt equals 1 -t, thus finishing the proof.

From (1.7) and the fact that Qn has degree less than n, for n > 1, it
is clear that any coefficient of ¢n is in absolute value less than or equal
to the corresponding coefficient of

I (1+Xd+X2d+... +x779) |

dln

Since the coefficients of this polynomial are positive, they are bound-

ed from above by the value of the polynomial in 1, which equals

R /2
dln

Here T(n) denotes the number of divisors of n. Using the fact that

T(n) < 2(1+e)log’n/log‘logn

for all € > 0 and all n > no(e) (see [9, theorem 317]) we find, after an

easy manipulation:

THEOREM (1.8) For every real number € > O there exists an integer no(s)
such that for all n > no(e) the absolute value of any coefficient of @n is
less than

(1+€) log 2 /log log n,

exp (n

Notice that this estimate, which is due to BATEMAN [2], is much better

than the trivial upper bound
2¢(n)
for the sum of the absolute values of the coefficients of @n, which one

obtains from (1.1) by using |z| = 1.

Bateman's estimate is in a sense best possible, since VAUGHAN [19] has
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shown that there are infinitely many n for which @n has a coefficient ex-
ceeding

log 2 /log log n)

exp(n

in absolute value.
Using Bateman's argument and [9, theorem 432] one finds that for every
e > 0 the sum of the absolute values of the coefficients of ¢n is less than

1+log 2+e€

exp((log n) )

for almost all n. Non-trivial lower bounds valid for almost all n are not
known.

Bounds of a different nature have been obtained for numbers n having
only a few odd prime factors. Using (1.4) and (1.6) we again restrict to
the case n is odd and squarefree.

For n = p and n = pq we have already seen that @n has no coefficient
exceeding 1 in absolute value. For n = pqgr, with p, g and r primes, 2 < p
< g < r, it was proved by BANG (see [4]) that all coefficients of @n are

at most

in absolute value. This bound was improved to
p-k ifp=4k+1, kez,

by BEITER [3], and she conjectured that it may further be lowered to

p+l
5
This result, if true, would be best possible, since MOLLER [[17] proved that
for every odd prime p there exist infinitely many prime pairs g, r, with
p < g < r, for which ¢ - has a coefficient %—(p+1).
For n = pgrs, with p,q,r,s primes, 2 < p < g < r < s, the coefficients

of Qn are bounded by

pp - pg - 1)
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in absolute value. This was proved by BLOOM [4]. He conjectured that, gener-
ally, for

n = PP, -P

with PyiPores Py primes, 2 < Py < b, < ... < pt, t 2 2, the coefficients
of ¢n are bounded in absolute value by a number depending only on PyiPoreces
P, _,- This conjecture was proved by FELSCH and SCHMIDT [8] and JUSTIN [11]:

THEOREM (1.9) There is a function £ on the positive integers, such that for

all m, and all primes p,q with

p#4a (pg,m) =1,

the coefficients of Qmpq are less than f£(m) in absolute value.

We present Justin's elegant proof of this theorem.

Define the polynomials Wn by

Let m,p,q be as in the theorem. Applying (1.5) twice we get
o (xF9) -0
m m

mpq ¢m(xp)-¢m(xq)

H

(1.10) o P o v (xP)ev (xT) (1 -x"P) o1 o5t
m m m m

A°B

[

where A is the product of the first four factors in (1.10), and B is the

power series

jmp + km
Z XJ P q’
J,k=20
If Qm =12 aixl, Wm =X bin, then the sum of the absolute values of the co-

efficien%s of A is cléarly bounded by

(1.11) J a2 b, D2,
i 1 i 1
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Further, if B = i ciXi then c, e {0,1} for all i < mpg, since no number less
than mpg has more than one representation jmp +kmg, j 2 0, k 2 0. Multiply-
ing A and B, and observing that the product Qmpq has degree <mpg, we con-
clude that all coefficients of Qmpq are bounded in absolute value by (1.11).
Since this number depends only on m the theorem follows.

An explicit function f for which the conclusion of the theorem holds
has been given by MOLLER [17].

In the next section we shall see that there exists a positive constant
<y such that for all squarefree n > 1 the number of non-zero coefficients

of & exceeds
n
2
Cl(logxﬂ /log logn,

see (2.8). Schinzel has posed the problem to improve this estimate. It is
known that for every e > O there exist infinitely many squarefree n for

which ¢n has less than

8,
13 ¢
n

non-zero coefficients (see (2.18)). This could be improved to (8n)1/2 if it
were known that for infinitely many primes p, one of 2p + 1 and 2p - 1 is
prime. It is an interesting problem to construct squarefree integers n for
which Qn has substantially fewer non-zero coefficients. A question which
may be related is the following: do there exist numbers n, divisible by
arbitrarily many distinct primes, for whica @n has only coefficients -1,
0,1?

Finally we mention some results on the behaviour of the i-th coeffi-
cient -i.e., the coefficient at Xi-of the cyclotomic polynomials, for fix-
ed i. For squarefree n, it is clear from (1.7) that the i-th coefficient
of Qn only depends on those primes p < i which divide n, and on the parity
of the total number of primes dividing n. In particular, the i-th coeffi-
cient can assume only finitely many values, and it is easily seen that this
assertion remains valid if we drop the restriction that n should be square-
free.

LEHMER [12] has given a table of the i-th coefficient of @n for i <10

and n odd and squarefree, distinguishing 16 cases according to the value of

1(n) and the greatest common divisor of n and 105. His table implies that
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for i £ 10 the i-th coefficient is one of 1, 0, -1, except if n = 105 PPy
<o Pop (pi distinct primes > 7), in which case the 7-th coefficient equals
-2. Compare also MOLLER [16].

ERDOS and VAUGHAN [7] proved that for all i the i-th coefficient of @n

iélbounded in absolute value by

..1/2 .3/8, .
exp(co i + C21 )
1
here C_, is some constant, and C,. = 2°I(1 - ~—~%——07 ~ 1.373580. On the other
2 0 P p(p+1)

hand, they proved that for some constant C, > 0 and all sufficiently large

3
i there exists n for which the i-th coefficient of @n exceeds

exp(C3(i/log i)%)

in absolute value. VAUGHAN [19] proved that for infinitely many i this can

be improved to

/4

exp(C4‘i1/2/(log iy 4y,

Here C4 denotes a positive constant.

2. Primitive relations between roots of unity.

Let {CI,CZ,...,ck} be a set of k distinct roots of unity, k > 0, which
is linearly dependent over @, while no proper subset is; proper means: not

empty, and not the whole set. Then there is a relation

I o~
>
.
]
e

PR A
i=1

(ki rational, not all zero), and this relation is uniquely determined up to
a rational multiple. Multiplying by a common denominator we can make the

'Ai into integers, and dividing by their greatest common divisor we arrive

at a relation

in which the coefficients a, are non-zero integers with greatest common
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divisor 1. A linear relation which arises in this way is called a primitive
relation. It is clear that if Z§=1 aici = 0 is another primitive relation
between the same Ci, then we have either ai = a:,L for all i, or ai = —ai for
all i.
" If we have Z§=1 aici = 0, and p is a root of unity, then we have also
Zt=1 ai(oCi) = 0; two such relations are said to be similar. Clearly, any
relation is similar to one with z, = 1.

The exponent of a relation Zi=1 ai;i = 0 is the smallest integer n > 0
for which C? = 1 for all i, and the reduced exponent is the smallest n for

B 1 for all i,j. Notice that two similar relations have the

which (¢, %)
1]
same reduced exponent, and that in the case where Cl = 1 the reduced expon-
ent coincides with the exponent.
If @n = I cin is the n-th cyclotomic polynomial, and { is a primitive

n-th root, then we have

(2.1) ) ¥ cici = 0.

¢, #0
This is a primitive relation, since ®n has leading coefficient 1 and is
irreducible over Q. The reduced exponent of (2.1) is the product of the dis-
tinct primes dividing n; this follows from (1.4) and the fact that cO # 0 #
# ¢y if n is squarefree (use (1.7)).

In this section we are interested in the number of terms k and the mag-
nitudes of the coefficients ai in a primitive relation of reduced exponent
n. The results are much less complete than those known in the special case
of the cyclotomic polynomial.

In (2.2) and (2.3) we describe the general technique for dealing with

vanishing sums of roots of unity, cf. [15, 6].

THEOREM (2.2) Let m be the product of the different primes dividing n, and
let g, denote primitive m~th and n-th roots, respectively. Then {el;j:

0 <i<m O<3j <n/m} is the set of n-th roots, and

m=1 (n/m)-1
z a..sli;:| =0 (a,. € Z)
i=0  3=0 M +J
if and only if
m-1 i
E a,.e =0
i=0
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for every j, 0 £ j < n/m.

/m n/m

This theorem readily follows from the irreducibility of Xn - T
over the field Q(e); to prove this irreducibility, just notice that
[9(z):0(e)] = ¢(n)/d(m) = n/m. For details we refer to [15, 6].

Theorem (2.2) reduces the analysis of vanishing sums of n-th roots to
the case that n is squarefree. It follows in particular, that the reduced
exponent of a primitive relation is necessarily squarefree.

Relations of squarefree exponent n can be treated by induction on the

number of primes dividing n, using the following theorem.

THEOREM (2.3) Let n = pm, where p is prime and p does not divide m, and let
€,C denote primitive m~th and p-th roots, respectively. Then {elcjz 0 <1ic«<

<m, 0 <3 < pl is the set of n-th roots, and

m-1 p-1 14
(2.4) Z z a. . € CJ =0 (a,., € &)
i=0 j=0 HJ +
if and only if
m-1 5 m-1 i
(2.5) E a;.e - E a;f = 0
i=o ] i=0

for all j, 1 £ 3j < p.

-1
The proof of this theorem depends on the irreducibility of e+

2
+ X +X+1 over Q(g), which is a consequence of [Q(e,Z):0(e)] = ¢(n)/¢(m) =
= p-1. Compare with [15, 6].
If, in (2.4), there exists j' with aij‘ = 0 for all i, then (2.5)

clearly yields

for all j, 0 £ j < p, which means that the vanishing sum (2.4) of n-th
roots decomposes in vanishing sums of m-th roots. On the other hand, if for
every J there exists i with aij # 0, then (2.4) has at least p non-zero

. . . k . s
terms. In particular, it follows that if Zi = 0 is a primitive rela-

a.t,
=1 "i7i
tion of reduced exponent n, then k = p, where p is the largest prime divid-
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ing n. A more precise result is given by the following theorem, due to
CONWAY and JONES [6]. In this theorem, we call a relation Z§=1 aici =0
minimal if there is no proper subset I < {1,2,...,k} with i?I ajt, = 0;
clearly, any primitive relation is minimal.

THEOREM (2.6) If Z?—l aici = 0 is a minimal relation of reduced exponent n,

then n is squarefree, and
(2.7) k2 ) (p-2)+2,
pln

the sum ranging over the primes p dividing n. Conversely, for every square-
free integer n there exists a minimal relation of reduced exponent n for

which equality holds in (2.7).

For the proof of this theorem we refer to [6]. Conway and Jones used
(2.6) to classify all linear relations between roots of unity of less than
10 terms.

As is remarked in [6], one can deduce from (2.6) that for every C > 1
there exists C' such that

n < C'.exp(C(k logk)%)

for all n, k as in (2.6). It follows that
2
(2.8) k > Cl'(log n)” /log logn (n > 1)

for some positive constant Cl.

Various interesting theorems in elementary geometry have been proved
by the use of the technique described in (2.2) and (2.3). An appropriate
one to mention at this occasion is a result appearing in G. Bol's "Beant-
woording van prijsvraag no. 17" [5]:

if n is odd, n 2 3, then no three diagonals of a regular n-

gon pass through one point, unless they have the same endpoint.
Let the n-gon have as its vertices the n-th roots of unity in the complex
plane, and suppose that the diagonals aB, Y8, € intersect in one point. For
a complex number x to be on the line through o and B it is necessary and

sufficient that
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. = = -1 e
which by a = a ~, B =B simplifies to
x+aBx = o +8,

Hence, if x is on all three diagonals aB, y§, € we must have

1 af o+B
(2.9) 1 y8§ «vy+8§| = 0.
1 et e+t

Working out the determinant we see that (2.9) is a vanishing sum of twelve
roots of unity. This observation makes (2.2), (2.3) applicable, and after
some work we arrive at Bol's result. For more applications of (2.2), (2.3)
we refer to [6].

The following theorem gives a bound for the coefficients appearing in

a primitive relation.

THEOREM (2.10) Let Z?_ at; = 0 be a primitive relation between k roots

1
of unity. Then

for i = 1,2,...,k.

In the proof of this theorem we denote by n the reduced exponent of
the relation. We know that n is squarefree, and we may assume that the Ci

are n-th roots.

LEMMA (2.11) [cf. 18]. Let. n be sguarefree. Then for every n-th root [

either ¢ or -C is a sum of distinct primitive n-th roots. Further, the pri-

mitive n-th roots are linearly independent over Q.

PROOF OF (2.11) We first prove by induction on the number of primes divid-
ing n that every n-th root ¢ is plus or minus a sum of primitive ones. For

n = 1 this is obvious. For n = p, the case ¢ = 1 is dealt with by
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(0 ranging over the primitive p-th roots), and in the case [ # 1 the repre-

sentation

works. If n # 1, p then we can write n = £°m, with £,m < n, (L,m) = 1. Every
n-th root ¢ has a unique representation ¢ = n6, where n,0 are £-th and m-th

roots, respectively. By the induction hypothesis, we can write

where B ranges over a certain set of primitive £-th roots and Y over a cer-

tain set of primitive m-th roots. Multiplying we find

¢ = iZBy.

Each term By is a primitive n-th root, and no primitive n-th root occurs
twice. This proves our assertion that every n-th root is % a sum of primi-
tive ones.

It follows that the ¢(n) primitive n-th roots span the Q-vector space
generated by all n-th roots. But by the irreducibility of @n this vector
space has dimension ¢(n). We conclude that the primitive n-th roots are
linearly independent over Q. In particular, for no n-th root ¢ can both
¢ and -C be written as a sum of distinct primitive n-th roots. This proves

lemma (2.11).

Continuing the proof of the theorem, we write, using the lemma

IA
-
IA

iti = g eiaa, 1 k,

with o ranging over the primitive n-th roots and eia = 0 or 1 for all i,o.
By the primitivity of the relation I aici = 0, the kx¢(n)-matrix (eiu)i,a
has rank k - 1. Choose a kx(k-1)-submatrix of rank k -1. If bl’bZ""’bk
denote the (k-1) x (k-1) determinants of this submatrix in a suitable

order, and provided with suitable signs, then
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for all o, so

[ty

(fb.)g, = 0.
i"7i

i=1

Here the coefficients fbi are in %, and they do not all vanish. Since the
relation Zk 1 aici = 0 is primitive it follows that ibi = ca, for some non-
i=

zero integer c and all i, so
la,l < |b, -
i i

Thus, to finish the proof of the theorem it suffices to prove the follow-

ing lemma.

LEMMA (2.12) ILet B = (B,.) be a (k-1) x (k-1)-matrix with 3., = 0 or 1 for
1] 1-k. k/2 +J
all i,j, 1 £ i,j < k-1. Then |det B] < 27 "k ’°.

PROOF. Define the kxk-matrix C = (y,.) by

1]
= 2 -1 1 <4,y £ k-1
Yig Bij i, ;
'\{kj=—1 ].Sjsk‘l,
= < i<
Yik 1 1 <1i <k,

-1
By elementary column operations, det C = 2k -det B. Further Yij = 41 for

all i,j, so from Hadamard's inequality

k
2.5
a < I
{ et(Yij)l I <ji1 iy
we get
laet c| < /2,
laet B| = |21 %-get c| < 217K K/2,

This proves (2.12) and (2.10).

It is not known whether theorem (2.10) is best possible.

If n = p is prime, then the only primitive relation of exponent n is
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¢ ranging over all n-th roots. In the case n = pq, p and g distinct primes,

all primitive relations have been determined by MANN [15]:

THEOREM (2.13) Let p and q be primes, p # q, and let A,A',B,B' be non-

empty sets of roots of unity such that

A v A'={all p-th rootsl, A nA'=
B U B' ={all g-th roots}, B n B
Then
z Z of - E Z af = 0.
o€A PeB aeA' BeB'

8,

This is a primitive relation of reduced exponent pq, and every primitive

relation of reduced exponent pq is similar to one of this form.

For the proof, which is a direct application of (2.3), we refer to [15].

Theorem (2.13) suggests a representation for ¢  which is different

i
from the one we have seen in section 1. Let qu =1 ciX , and let ¢ be a

primitive pg-th root. Then Zi c.#0 cicl = 0 is a primitive relation of re-
’ s

duced exponent pgq, and one may wonder which sets A,A',B,B' correspond to

this relation. A few trials suggest that one should take

IA

(2.14) a={9% o

IA

(2.15) B={¢P:0s51i<2}, B = {g'P: 2
where the integers A,u are determined by

1 mod q, 0 < A<gq,

m

Ap

g = 1 mod p, 0 < U < p.

j < ul, av = {27% uw<y <pl,

i< q},

Notice that Ap+ug = 1 +pg, since Ap+ug = 1 mod pqg, 1 < Ap +ug < 2pqg. Thus,

the choice (2.14), (2.15) for A,A',B,B' is correct if and only if
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iptia Y OB ipeigepg
X -/ VA X .

(2.16) ¢ = )
Pq =

Once discovered, this formula is easily verified: the right hand side equals

(1-x"P) 1-x"Y)  x"PxPY) (x"LxP)xPd

(1-xP) (1-x%) (1-xP) (1-x%)

and this simplifies to

(1-x) (1-xP%)

(1-xP) (1-x%)

which is qu' by (1.3).
From (2.16) one sees that the number of non-zero coefficients of @Pq

equals 2Ap -1. In the case g = 1 mod p we have u = 1, A = ((p-1)g+1)/p, so

(2.17) Ap-1 = 24 _1p) (g=1) | 4.

HOOLEY [10] has shown that for every e > O there exist infinitely many primes
q for which g -1 has a prime divisor p with p > q(S/B)_E. Putting n = pg
and using (2.17) we find that for every € > O there are infinitely many
squarefree n for which @n has less than

(2.18) n(8/13)+s

non-zero coefficients. This confirms a remark made in section 1. If g=2pti1,
then one obtains in the same way less than (8n)% non-zero coefficients,
with n = pg. It is unknown, however, whether for infinitely many primes p
one of 2p+1 and 2p -1 is prime.

Theorem (2.13) implies that primitive relations of reduced exponent pg
have no coefficients other than ¥ 1. Combining this observation with theorem
(1.9) one is led to the following question:

does there exist a function f on the positive integers, such that for

all m, and all primes p,q with p # q, (pg,m) = 1, and all primitive

relations Z?_ = 0 of reduced exponent mpg, the coefficients a,

a,c,
1 7i7i
are bounded in absolute value by £ (m)?

I do not know the answer to this question. Theorem (2.19) gives a partial




265

result.

THEOREM (2.19) There exists a function £ on the positive integers such that

for all m, all primes p not dividing m, and all primitive relations
k
e
i=1
f(m) in absolute value.

aici = 0 of reduced exponent mp, the coefficients ai are less than

PROOF. Let p be an odd prime not dividing m, let R be the set of p-th roots,
and let B be the set of m-th roots. Any mp-th root o has a unique expression
as o = Bp, with B € B, p € R, so the given primitive relation is similar to

one of the form

(2.20) ) L ag 80 =0
peR BeB(p) e

where B(p) < B for each p € R, and all aBp # 0. Using (2.3) we find that

B = 1} a

(2.21) ) a )
BeB(p")

B
BeB(p) Bo

Bp

for any two p,p' € R. Thus, if some B(p') were empty, then all these sums
would vanish, contradicting that (2.20) is a primitive relation of reduced

exponent mp. We conclude that the B(p) are non-empty. Next we claim that

(2.22) B(o) = B(c') = a, = a

8o for all B € B(0)

Bo’

(0,0' € R). In fact, if this would not be true, then by putting

= + Al

gp = 2p ifpeR, p#o0,0', B e Blp),

Cgo = g if B € B(0)

CBG' = ch if B € B(0)

we would get a relation

) ¥
Bp =0

A L CBD p ’

peR BeB(p)

which is not plus or minus the original relation (2.20) (here we use p 2 3),

contradicting the primitivity.
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Now let g be the smallest prime larger than 2m, and let T be the set
of g-th roots. The number of different sets B(p), p € R, is clearly less
than g, so we are able to choose, for every T € T, a subset C(T) < B such

that

{c(t): 1 e T} = {B(p): p € R}
Define b for T € T, B € C(1) by

BT

where 0 € R is chosen such that B(o) = C(1); by (2.22) this definition does

not depend on the choice of ¢. By (2.21) we have

v _ v
L bBTB a L bBT'B
BeC(1) BeC(t')
for all T,T' € T, so
(2.23) ) } b, BT =o0.

TeT BeC(T) Bt
We claim that this is a primitive relation between mg-th roots of unity.

Obviously the coefficients b, have greatest common divisor 1, so if (2.23)

is not primitive than there ziist subsets D(t) < C(t), not all empty, and

not all D(t) = C(t), such that {BT1: T € T, B € D(1)} is linearly dependent
over Q. Reversal of the above procedure would then, as the reader readily
checks, give rise to subsets E(p) < B(p), not all empty, and not all E(p)

= B(p), such that also {Bp: p-€¢ R, B ¢ E(p)} is linearly dependent over @,
and this would contradict that (2.20) is primitive.

Thus we have proved that any coefficient appearing in a primitive re-
lation of reduced exponent mp, with p an odd prime not dividing m, appears
in a primitive relation between mg-th roots. But g depends only on m, and
there are only finitely many primitive relations of given exponent. Hence

there are only finitely many coefficients, and this conclusion remains

unaffected if we also allow p = 2. This proves theorem (2.19).




267

REFERENCES

[1]

(2]

[3]

[4]

[51]

[6]

[7]

[8]

[o]

rio]

[11]

[12]

[13]

ria]

APOSTOL, T.M., The resultant of the cyclotomic polynomials Fm(ax) and

Fn(bx), Math. Comp. 29 (1975), p. 1-6.

BATEMAN, P.T., Note on the coefficients of the cyclotomic polynomial,
Bull. Amer. Math. Soc. 55 (1949), p. 1180-1181.

BEITER, M., Magnitude of the coefficients of the cyclotomic polynomial

Foqes TIs Duke Math. J. 38 (1971), p. 591-594.

BLOOM, D.M., On the coefficients of the cyclotomic polynomials, Amer.
Math. Monthly 75 (1968), p. 372-377.

BOL, G., Beantwoording van prijsvraag no. 17, Nieuw Archief voor Wis-

kunde (2), 18 (1936), p. 14-66; cf. Zentralblatt 237 #50008,
244 #50009.

CONWAY, J.H. & A.J. JONES, Trigonometric diophantine equations (On van-
ishing sums of roots of unity), Acta. Arith. 30 (1976), p. 229-
240.

ERDés, P. & R.C. VAUGHAN, Bounds for the r-th coefficients of cyclo-

tomic polynomials, J. London Math. Soc. (2), 8 (1974), p. 393~
401.

FELSCH, V. & E. SCHMIDT, Uber Perioden in den Koeffizienten der
Kreisteilungspolynome an(x), Math. z. 106 (1968), p. 267-272.

HARDY, G.H. & E.M. WRIGHT, An introduction to the theory of numbers,

fourth edition, Oxford University Press 1960.

HOOLEY, C., On the largest prime factor of p+a, Mathematika 20 (1973),
p. 135-143,

JUSTIN, J., Bornes des coefficients du polyndme cyclotomique et de cer
tains autres polyndmes, C.R. Acad. Sci. Paris 268 (1969), sSér.

A, p. 995-997.

LEHMER, D.H., Some properties of the cyclotomic polynomial, J. Math.
Anal. Appl. 15 (1966), p. 105-117.

LEHMER, E., On the magnitude of the coefficients of the cyclotomic

polynomial, Bull. Amer. Math. Soc. 42 (1936), 389-392.

LeVEQUE, W.J., Reviews in number theory, vol. I, Bmer. Math. Soc., 1974 .




268

[15] MANN, H.B., On linear relations between roots of unity, Mathematika 12
(1965), p. 107-117. '

[16] MOLLER, H., Uber die i-ten Koeffizienten der Kreisteilungspolynome,
B Math. Ann. 188 (1970), p. 26-38.

[17] MéLLER, H., Uber die Koeffizienten des n-ten Kreisteilungspolynoms,
Math. Z. 119 (1971), p. 33-40.

[18] RéDEI, L., Natirliche Basen des Kreisteilungskdrpers, I, Abh. Math.
Sem. Univ. Hamburg 23 (1959), p. 180-200; id., II, ibid., 24
(1960), p. 12-40.

[19] VAUGHAN, R.C., Bounds for the coefficients of cyclotomic polynomials,
Michigan Math. J. 21 (1975), p. 289-295.

For more references to the literature about cyclotomic polynomials, one

should consult [1] and [14, pp. 404-4117.




