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In this paper we prove the following simplification 
of Miller’s primality criterion [2]. 

Theorem 1. Assume that for every integer d that is 
1 mod 4 and either prime or the product of two 
primes, the L-function I= & (k/d) l kmS satisfies the 
generalized Riemann hypothesis, where {kid) denotes 
the Jacobi symbol, defined below. Let n be an odd 
integer, n > I , and write n - I-= 2t l u, with t and u 
integers, and u odd. Then n is a prime number if and 
onlv if for every prime number a < c 9 (log nj2, a # n, 
we have 

a uz 1 modn (1) 

Or 

*2i- u_= 
- 1 mod n for some integer j, 0 < j < t. (2) 

Here c is some constant not depending on n, and log 
denotes the natural logarithm. 

This theorem differs in two respects from Miller’s 
result. In the first place, we require the generalized 
Riemann hypothesis for a smaller set of L-functions 
than Miller does. This results from a simplification 
(of Miller’s proof, which has been observed by several 
people and which consists in elirninating the modified 
Carlnichael function from the argument. In the sec- 
13nd Flare: we have suppressed Miller’s condition that 
12 is nl, pt;rfect power, i.e. n # ms for all integers m, s 
with s 2 2. This point could have been dealt with by 
applying Nfontgomerv’s version of Ankeny’s theorem 
‘3 Theorem 13.11 tcl 3 character of order p that is 
deiined modulop2, fcjrp prime, but this would have 
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required the generalized Riemann hypothesis for the 
L-functions attached to such characters. Instead we 
give a completely elementary argument, which 
requires no unproved hypotheses, and which leads 
to the following two results. 

Theorem 2. Let n be a positive integer, n # 4, and 
assume that a”- 1 3 1 mod n for every prime number 
a < (log nj2. l7ien n is the product of distinct prime 
numbers. 

Theorem 3. Let p be an odd prime number. 13ten we 
have ap-’ $1 mod p2 for some prime number 
a < 4 l (logp)2. 

It ,will be clear from the proof of Theorem 3, that 
for every E > 0 we can take a < @em2 + e) l (log Q)~ 
for all p exceeding a bound depending on e; here 
4K2 = 0.54134... . 

Theorem 3 is probably far from best possible, 
since it is likely that we can take a = 2 or a = 3 for 
every p. The heuristic argument for this is as follows. 
Fix an integer a > 1. Fermat’s little theorem [5, 
Theorem 131 asserts that, for p a prime not dividing 
a, the ‘Fermat quotient’ (ape* - 1)/p is an integer. 
Let us regard it as an ‘arbitrary’ integer modulo p, 
and assume that it is divisible by p with ‘probability’ 
l/p. Then we are led to expect that the total number 
of primes p G x for which ap-’ s 1 mod p2 is asymp- 
totically equal to 

2 F prime,p<x l/p - log logx 

for x tlending to infinity, an expectation that is borne 
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out by the numerica! rriatt rial of Brillhart, Tonascia 
and Weinberger [ 13. Lzt :low p be a prime >3. As- 
suming that the ‘eventC’ :!p-’ 3 1 mod p* and 3p-1 zz 
I mod p” are independent, we find that they occur 
simultaneously with ‘probability’ (11~)~. But 
z: p prime( l/p)* is convergent, so it is likely that the 
number N(X) of primes p < x for which we have both 
2p-1 zz II mod p* and 3P-f z 1 mod p* tends to a 
finite limit as x + 00. Since Iv(3 l 109) = 0, by [ 11, it 
is reasonable to conjecture that this limit is zero. In a 
similar way one is led to expect that, for any fixed 
integer a > 1, there exist only finitely many primes 
for which 8-l c I mod p3. 

Proof of Theorem 3. By [ 11, we may assume that 
p >3 l 109.PutA =4*(logp)2,K=2 l logp/logA, 
and let k be the greatest integer GK. We denote the 
number of primes CA by M; by [43, we have M > 
A/log A. 

Suppose that every prime a <A satisfies ape1 = 
1 mod p*. If b is an integer which can be written as 
the product of at most k primes 01, then we have 

0 <b <AK =p*, bPels 1 modp*. 

The number of such b is 

(M+ l)~(M+2)~~~(M+k)>Mk 

k! ‘k! ’ 

and all these b are mutually incongruent modulo p*. 
But it is well known that the congruence xP-’ E 
1 mod p* has only p - 1 solutions modulo p*. We 
con&de that 

Mk 
-Gp-l<p. 
k! 

On the other hand, using Stirling’s inequality 6 

kk 
k!< - 0 l ell(l*k) ma, 

e 

where e 1/(12X) l & is a monotonical!y increasing 
function of x, for x > l/6, we find that 

n!P 
-2 
k! 

. (el/(l*k) . ,/m)-l 

. (el/tl*W . dFK)-l 

>, (2e l log py-l * (e1/(12K) l d=)-1 . 

Forp >2 * lo’* we have 

eK > 2e . log p l (e1/(12K) . qm) 

and therefore 

Mk 
~>(2*logpF=A~I*=p, 

. 

contradicting what we found before. To deal with 
the remaining cases, we observe that 

Mk/k! > 8 - U-l9 ifp>3=10’, 

Mk/k! > lOlo ifp>8*109, 

Mk/k! >6 l 1Ca”” ifp > lOlo , 

@fk! >3 l 101* ifp >6 l 1O’l , 

soMk/k! >p for allp with 3 l IO9 <p < 2 l lOI*. 
This proves Theorem 3. 

Proof of Theorem 2. Suppose that n is not the product 
of distinct prime numbers. Then p* divides n for some 
prime number p. We have 2 < (log n)” since n # 4, so 
p-1 = - 1 mod n by the hypothesis of the theorem. It 
follows that n, and hence p, is odd. 

Let a < 4 l (log p)* be: a prime number. Then a < 
(log n)*, so a”+ z 1 mod n, and 2 fortiori an-’ z 
1 mod pt. Therefore the multiplicative order of a 
modulo p* is a divisor of lz - 1; in particular, it is 
relatively prime to p. Since by Euler’s theorem [S, 
Theorem 141 this multiplicative order is also a divisor 
of the Euler function (p@*) =p(zs - 1) we conclude 
that it is a divisor of p - 1. Hence apwl E 1 mod p* 
for every prime a < 4 . (log p)*, contradicting The- 
orem 3. This proves Theorem 2. 

The Jacobi symbol (k/d), which occurs in Theorem 
1, is defined for integers k and positive, odd integers 
d, in the following way. If p is an odd prime number, 
then Fermat’s little, theorem easily implies that 
kc”-‘I/* = - -1,O or 1 mod p, for every integer k; and 
(k/p) is defined to be the unique element from the 
set (- B , 0, 1) for which k(p-1)‘2 3 (k/p) mod p, For 

non-prime values of d, the symbol (k/d) is defined by 
repeated applications of the rule (k&&) = ~~/~~~~/~~). 
Notice that we have 

(31 
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Proof of Theorem 1. If n is prime, then for every 
integer a not divisible by n we have a2’, = an- ’ 3 

1 mod n, so if au $ I mod n then the last element in 
the sequence a’, azu . . . , a P1 u which is not 1 mod n 
ip .- I mod n. Hence ;: 1) or (2) holds. Next suppose 
that n is not a prime number. We have to prove that 
there exists a prime a < c(log n)2 for which (1) and 
(2) both fail. 

I_,et pI 4 be primes such that pq divides n. If p =q 
then by Theorem 2 there exists a prime a < (log n)2 
with a”-’ $ 1 mod n, and clearly this a does not 
satisfy (I ) or (2). Hence suppose that p # q. Inter- 
changing p and 4, if necessary, we can achieve that 
p - 1 is divisible by at least the same power of 2 as 
4- 1 is,Putd=p4ifp- 1 andq- 1 areinfact 
divisible by the same power of 2, and d =p otheNvise. 
Notice that cl f 1 mod 4. 

Denote by a the smallest positive integer for which 
the Jacobi symbol (a/d) equals -1. From (3) it is ob- 
vious that a is a prime number, and Montgomery’s 
version of Anleny’s theorem 13, Theorem 13. l] im- 
plies that a < c(log d)2 G c(log ~7)~ if the L-function 
zlT=, (k/d) kdS satisfies the generalized Riemann hypo- 
thesis. Here c is some constant not depending on d. 
We show that a does not satisfy (1) or (2). 

Put b = au. Since u is odd, we have (b/d) = (a/d) = 
-1. In particular, b $ 1 mod d, so (1) does not hold. 
If (2) holds, then 

b2h moclp, b21s-l mod4 

for somej, 0 <j < t, so the multiplicative order of b 
modufo p and the multiplicative order of b modulo 4 
are both equal to 2 i+‘. 

Let now first d =p. Then p - 1 is divisible by a 
higher power of 2 than 4 - 1. But by Fermat’s little 
theorem, 4 - 1 is divisible by the order of b mod 4, 

which equals 2 I+‘. Consequently, (p - 1)/2 is divisible 
by 2-? It follows that b(P-1)j2 zz 1 mod p, so 
(b/p) = 1, contradicting that (b/p) = (b/d) = -1. 

Next suppose that d = p4. Then (b/p) l (b/q) = -1, 
so interchanging p and 4, if necessary, we can achieve 
that (b/p) = -1 and (b/4) = 1. Then b(q-‘)i2 3 
1 mod 4, so the order of b mod 4, which equals 2 i+‘, 
divides (4 - 1)/2. But (4 - 1)/2 is divisible by the 
same power of 2 as 0, - 1)/2, so 2it1 also divides 
(p - 1)/2. As in the first case, this implies that 
(b/p) = 1, which is again a contradiction. 

This proves Theorem 1. 
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