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PRIMALITY TESTING
by

H.W. LENSTRA, Jr.

Two fundamental problems from elementary number theory are the following:
(a) (primality) given an integer n > 1, how can one tell whether n is prime
on composite?
(b) (factorization) if n is composite, how does one find a,b > 1 such that

n = ab?

Many mathematicians have been fascinated by these problems throughout history.
Among these are ERATOSTHENES (~-284 - ~-204), FIBONACCI (~1180 - ~1250), FERMAT
(1601 - 1665) , EULER (1707-1783), LEGENDRE (1752 - 1833) and GAUSS (1777 - 1855).

Some of the fascination of the subject derives from the fact that, roughly

speaking, prcoblem (a) is 'easy' and (b) is 'difficult'. Suppose, for example,
that two 50-digit numbers p and q have been proved prime; this is easily
within reach of the modern techniques for dealing with (a). Suppose further,
that the cleaning lady gives p and q by mistake to the garbage collector,
but that the product pq is saved. How to recover p and g? It must be felt as
a defeat for mathematics that, in these circumstances, the most promising
approaches are searching the garbage dump and applying mnemo-hypnotic tech-
niques. The 'numerologists' occupying themselves with (a) and (b) do not
accept this defeat. They imagine all composite numbers to be created by
multiplication on the zeroth day of Creation, and they make it their task to
unravel the mysteries involved in this process. In this connection, I may
remark that, to my knowledge, no clairvoyants have ever been employed to
identify Mersenne primes or to factorize large numbers. Such an attempt might
lead to new insights, if not in mathematics then in parapsychology.
"Numerology" ~ this condescending denomination for the branch of science
to which (a) and (b) belong was, until recently, fashionable among mathemati-
cians of good taste, in spite of the famous names listed above. Nowadays, a
change in this attitude is noticeable. Partly, this change is due to an in-
creased interest in general problems of feasibility of computations. The

revival of the specific problems (a) and (b) has, in addition, been stimulated
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by their striking application in cryptography. For the details of this appli-
cation we refer to the lecture of P.J. Hoogendoorn. Suffice it to say that,

in this application, it is essential that (a) is 'easy' and that (b) is 'hard'.
It is an ironic fact that the only existing evidence for the ‘'hardness' of

(b) is the failure of generations of 'numerologists' to come up with aneffi-
cient factorization algorithm.

This lecture is devoted to a discussion of problem (a). For (b), we
refer to the lecture of M. Voorhoeve. The basic reference on primality test-
ing is the beautiful paper by H.C. WILLIAMS [31]. It is not our purpose to
copy it here, but some overlap is unavoidable. We encourage the reader to
consult Williams' paper for many details and additional information.

In complexity theory, it is customary to call an algorithm good if its
running time is bounded by a polynomial in the length of the input. For
problems (a) and (b) the input is the number n, which can be specified by
[logn/log 21 + 1 binary digits. Thus the length of the input has the same
order of magnitude as logn.

A well known algorithm for solving (a) and (b) consists of trial divi-
sions of n by the numbers less than or equal to /n. In the worst case, this
may take Vn steps, which is exponential in the length of the input. We con-
clude that this algorithm is not 'good'.

Before one searches for a short proof that n is prime, or for a
short proof that n is composite, it is a good question to ask whether such
a proof exists. In this direction, we first have the following theorem;
an arithmetic operation is the addition, subtraction or multiplication of

two integers.

THEOREM 1. If n is composite, this can be proved using only O(l) arithme-

tic operations. Similarly if n is prime.

PROOF. For composite n, the theorem is trivial; to prove that n is composite,
it suffices to write down integers a,b > 1 and to do the single multiplication
necessary to verify that ab = n. Thus, in the composite case, the O-symbol

is even superfluous. For prime n, the theorem is less obvious. It is an out-
growth of the negative solution of HILBERT's tenth problem [7], that there

exists a polynomial in twenty-six variables

£eZlaBC ... XYz]
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with the property that the set of prime numbers coincides with the set of
positive values assumed by f if non-negative integers are substituted for
A,B,...,Z. Such a polynomial, of degree 25, is explicitly given in [11]. A
similar polynomial in 10 variables of degree 15905 is constructed in [15].
To prove that a positive integer n is prime it now suffices to write down
twenty-six non-negative integers A,B,...,Z and to do the bounded amount of
arithmetic necessary to verify that n = £(a,B,...,2). In fact, according to
[11, Theorem 5] no more than 87 arithmetic operations are needed in this

verification. This proves Theorem 1.

From a practical point of view Theorem 1 has two serious defects. The

first is, that it tells us that certain proofs exist, but it does not tell
6 .

us how to find them. Thus, F.M. Cole's proof that 2 7-—1 is composite con-

sists of sthe single observation that

267—1 = 193707721.761838257287.

But it had taken him 'three years of Sundays' to find his proof, and the
methods which he employed are far more interesting than the final proof it-
self [6,23].

With primes, the situation is slightly different. The proof that, for

prime n, there exist non-negative integers A,B,...,Z such that
n=£(A,B,...,2)

is completely constructive, see [11]. But for the polynomial from [11] it is

not difficult to prove that the largest of A,B,...,Z necessarily exceeds

(For a much better polynomial in this respect, see [1, Theorem 3.5]; cf. the
lecture of P. van Emde Boas.) The second defect of Theorem 1 is, that it is
clearly unrealistic to count an addition or multiplication of numbers of this
size as a single operation. It is more realistic to count bit operations,
which may be defined as arithmetic operations on numbers of one digit. Thus,

we have:
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THEOREM 2. If n is composite, this can be proved using only O((log n)2) bit

operations.

PROOF. The proof just consists of the remark that the usual algorithm to mul-
tiply two numbers less than n requires no more than O((log n)2) bit opera-
tions.

Using the fast multiplication routine of SCHONHAGE and STRASSEN [25] we
can replace (log n)2 in Theorem 2 by (log n)1+€, for any € > 0, or more pre-

cisely by O0((logn) ¢ (log logn) *(log log logn)) (for n > ee) .

THEOREM 3. (PRATT [23]). If n is prime, this can be proved using only

4
O((logn) ) bit operations.
. . 4 3+e
Again, using [25], we can replace (logn) by (logn) , for any ¢ > O.

PROOF. The proof relies on the structure of the group of units
*
(Z/nZ) = {(amodn): a ¢ Z, 0 < a < n, gcd(a,n) = 1}

of the ring Z/nZ of integers modulo n. This is a finite abelian group of
order ¢(n), where ¢ is the Euler function. If n is a prime number, then

(Z/nz)* is cyclic of order n-1. Conversely, if (Z/n?Z)* has order = n-1,
then n is a prime number. Thus we see that n is prime if and only if there

*
exists (amodn) € (Z/nZ) of order n-1. If we assume n to be odd and write

t
(1) n-1 = 1gO qll
qy =2
(2) a prime (1 <i <t)

then (amodn) has order n-1 in (z/nzz)* if and only if

(3) a‘(n—l)/2 =

-1 modn,

(4) a(nml)/qi Z 1 modn, for 1 <1i £ t.
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Therefore, to prove that n is prime, we can write down integers a, qy = 2,
QyreverQyr verify that (1), (3) and (4) hold, and prove (2) recursively. This
proof requires t multiplications in (1), and t+l exponentiations (modn) in
(3) and (4), plus what is needed for (2). So if f(n) denotes the total number

of multiplications and exponentiations in the proof, then
t
f(n) <t+t+ 1+ £(q,)
i=1

where we define £(2) = 1. By induction we prove that £(n) < 3¢(logn/log 2) - 2.

This is true for n = 2, and if it holds for the q; then

t
£(n) <2t + 1+ ] (3(logg,/log2) - 2)
i=1
t
= ( z 3(logqi/logz)) -2
i=0

3(log(n-1)/log2) - 2 < 3(logn/log2) - 2

]

as required.

We conclude that no more than O(logn) multiplications and exponentia-
tions are needed. Each exponentiation in (3), (4) can be done by O(logn)
squarings and multiplications modn. Finally, each of these multiplications,
squarings and multiplications modn (or mod a number smaller than n) can be
done with O((log n)z) bit operations. This leads to the bound
O((log n)+(log n)-*(log n)2) = 0((log n)4) stated in the theorem.

Theorems 2 and 3 still have the first defect of Theorem 1: one is not
told how to find the short proof whose existence is asserted. Nevertheless,
the proof we have given of Theorem 3 is not exclusively of theoretical inter-
est, and the same ideas are actually used in computer-assisted primality
proofs. To illustrate this, we begin with a particularly simple case, in

which n-1 has no odd prime factors at all.

THEOREM 4. (PI;JPIN, 1877). Let n = 2m+1, withm > 1. Then n is prime <>
- 2

3(n n/ = -1 modn.

PROOF. The implication ¢« follows from the proof of Theorem 3, with a= 3. Con-

versely, suppose that n is prime. Thenn is not divisible by 3, since n > 3, so m

is even. Then n = 2mod 3 and n = 1mod 4, so quadratic reciprocity gives
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3y Ry - (4 -
@ =G =G =-1.
By Euler's theorem, (%) = 3(n_1)/2modn. This proves Theorem 4.

241 can only be prime if m is a power of 2; then
= 2251, For k = 0,1,2,3,4 these numbers
1945)

It is known that n =

n is one of the Fermat numbers Fk

are actually prime, for 5 < k < 19 and some other values (such as k =
they are composite. It is reasonable to conjecture that they are, in fact,

all composite for k = 5. The number F, , has been proved composite by Pépin's

14
test, but no factor is known. To the uninitiated reader it may seem surpris-
ing that it is possible to prove that a number is composite, without the

proof yielding a factorization. This is surprising indeed; the phenomenon

will be further discussed at the end of this lecture. See [31, Sec. 5] for

more information
For general
(1) of n-1. Once

whether or not n

on the Fermat numbers.
n, the main difficulty is to find the complete factorization
this has been done, it is generally not difficult to decide

is prime. If the methods described below fail to show that

n is composite, it is usually easy to find an integer a for which (3) and

(4) hold. In fact, one may replace (4) by the weaker condition

(5) such that

for each i, 1 < i < t, there exists an integer ai

n-1 _
a, =
i

1modn, ain_l)/qi Z 1modn.
This can be verified with the arguments used in the proof of Theorem 5.

The following is a variant of the above test in which only a partial
factorization of n-1 is needed. For further variants, and references to the

literature, see [31, Sections 10,11] and [5].

THEOREM 5. Let n > 1 be an integer, and let

s k.

=m ¢ IT g_l

n-1 1 i=1 °i

where m, and the ki are positive integers, and 9q+19yr .19, are pairwise

1

relatively prime integers = 2. Let further bl’b2""'bs be positive integers

such that the following conditions hold:
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(al) every prime factor of 9 is 2 bi (e.g., bi =2, or bi =9 if 9; is

in

prime), for 1 < i s

(bi) for each i, 1 £ i £ s, there exists an integer a; such that

_ (n-1) /g,
(6) a? ! = 1{modn, gcd(ai l--1,n) = 1;
s ki 2
(cl) n < (1 + igl bi ) .

Then n is prime.

PROOF. Let p be any prime dividing n. From (6) we see that the oxder of

(a, mod p) divides n-1, but not (n—l)/gi. Hence this order is divisible by
qti, for some prime a dividing g5 - Also, the order diviges p-1, so qii
divides p-1. Since the 9; are coprime, it follows that igl q?i divides p-1,

ki

s s .
sop =1+ igl a; > 1 + ig b?l. From (Cl) it follows that n can have at

1
most one such prime factor. Hence n is prime, as required.

The gcd's in (6) can be calculated efficiently using Euclid's algorithm.
In fact, by a trick in [5, p.623], only one gcd computation is necessary.
Notice further that any known set of factorizations of n-1 can be brought
in the form needed in Theorem 5, even with m, = 1, by calculating finitely
many gcd's.

G.L. MILLER [16] introduced a different way to exploit the multiplica-
tive structure of the integers mod n in primality tests. It leads to the fol-
lowing theorem, in which "GRH" denotes the generalized Riemann hypothesis,

formulated in the course of the proof.

THEOREM 6. (MILLER). Assume the validity of GRH. Then there exists an algo-
rithm, described below, which in O((logn)s) steps decides whether or not n

is prime.

This theorem has none of the defects of Theorems 1, 2 and 3, but it has
a new one: the assumption of an unproved hypothesis.

Assume that n is odd, and write n-1 = u.2t, where u is odd and t = 1.
Employing RABIN's terminology [24], we call an integer a a witness to the
compositeness of n, or simply a witness for n, if the following three condi-

tions hold:

(7) n does not divide a,
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(8) a" #Z tmodn,

i
(9) a%? % —tmoan for i = 0,1,...,t-1.

(Others say in this situation, that n is "not a strong base a pseudoprime”
cee)e

Whether or not a is a witness for n depends only on a modn; soO we may
restrict to 0 <a<n. For a given such a, it takes only O((log n)3) steps to
check whether or not a is a witness for n, by the last paragraph of the proof
of Theorem 3.

We note that witnesses are reliable: if a is a witness to the composite-
ness of n, then n is composite. To see this, suppose that (7), (8), (9) hold
and that n is prime. By (7) and Fermat's theorem, au'2t = an—1 = 1 modn.

Hence the last term in the sequence

t
u u.2 u.?2
a ,a PR

is 1 modn, but by (8) the first term is not 1modn.Letb=au'2i be the last
term in the sequence which is not 1modn. Then 0 < i < t-1, and b2 = Ilmodn
while b # 1 modn. Since the integers modn form a field, this implies that
b = -1modn, contradicting (9).

The algorithm referred to in Theorem 6 now runs as follows. We may
assume that n is odd, and n > 1. Check whether there is a witness a for n
satisfying a < 70(log n)z. If there is one, n is composite. If there is none,
declare n to be prime. This algorithm clearly runs in time O((log n)5) .

To prove the correctness of the algorithm, we have to show that any com-
posite odd n has a positive witness a < 70 (log n)2, if GRH is assumed. We
sketch this proof only, referring to the literature for details.

First we describe the GRH as we need it. Let n be an arbitrary positive
integer, and let ¥: (Z/nZZ.)* > C* (the group of non-zero complex numbers) be
a group homomorphism., We view X as a function on Z by x(a) = x(amodn) if
gcd(a,n) = 1, and x(a) = O otherwise. Such a function on Z is called a

character modulo n. The L-series associated to X is defined by

L(s,X) = z —X—-(-Zi.

a=1 a
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If X is non-trivial, i.e. x(a) ¢ {0,1} for some a, this series converges for
all s € C with Re(s) > 0. We say that L(s,Xx) satisfies the generalized
Riemann hypothesis if L(s,x) # 0 for all s € € with Re(s) > % For trivial ¥,
this is only meaningful if L(s,X) has been analytically continued; to avoid
this, let us simply say that L(s,x), for trivial x, satisfies the generalized
Riemann hypothesis if and only if the classical Riemann hypothesis is true,

which is equivalent to

v -n? 1
¥ -—E——#O forallsed:with—2—<Re(s)<l.
a=1l a

The GRH in Theorem 6 is the conjunction of all generalized Riemann hypothesis

described above.

LEMMA. (ANKENY-MONTGOMERY). There is an absolute constant c with the follow-
ing property. Let X be a non~trivial character modulo n, and suppose that
L(s,x) satisfies the generalized Riemann hypothesis. Then there exists

aeZ, 0<acx< c'(logn)z, such that x(a) # 0 and x(a) # 1.

PROOF. See [19, Theorem 13.1], or [12, Corollary 1.3] for a version in which

also the classical Riemann hypothesis is needed.

* *
COROLLARY. Assume GRH, and let G # (Z/nZ) be a subgroup of (Z/nZ) . Then

there exists a € Z such that
0 <a < c~(logn)2, ged(a,n) = 1, (amodn) ¢ G,

with ¢ as in the lemma.

* *
PROOF. It suffices to apply the lemma to a non-trivial Xx: (Z/nZ) - ¢ which

is trivial on G.

Let now n > 1 be composite and odd. To finish the proof of Theorem 6,
with an unspecified constant ¢ instead of 70, it suffices, by the corollary,

*
to exhibit a proper subgroup G ¢ (Z/n%Z) containing all non-witnesses a which

are not divisible by n. For this we take (cf. [30])

G = {(amodn) ¢ (Z/nz)*; a(ﬁ“l)/2 _

= (g_) modn}




50

where (g) is the Jacobi symbol. It is a charming theorem of LEHMER [13, cf.

29] that G # (Z/nz)* for composite odd n. It is an equally charming result

of SELFRIDGE [31, Theorem 17.2] that G contains all non-witnesses (modn) not
divisible by n. This finishes the proof.

Using additional arguments it can be proved that the generalized
Riemann hypothesis is only needed for characters X of the form x(a) = (%ﬁ,
where d runs over the positive integers which are 1mod 4 and either prime or
the product of two distinct primes, see [14].

The value 70 for the constant is taken from [20, Theorem 4]; here again

the classical Riemann hypothesis is needed. It is reported that Weinberger

(unpublished) obtained sharper results.

The idea used in the proof of Theorem 6 has two other applications. The

first is a fast primality test for small numbers:

THEOREM 7. (SELFRIDGE & WAGSTAFF). Every odd composite n

satisfying: has a witness among:
n < 2047 2
n < 1373653 2,3
n < 109, n # 25326001, 161304001, 2,3,5
960946321
n < 25.10%, n # 3215031751 2,3,5,7

PROOF. By computer, see [22]. The numbers in the left hand column are

composite:
2047 = 23.89, 161304001 = 7333.21997,
1373653 = 829.1657, 960946321 = 11717.82013,
25326001 = 2251.11251, 3215031751 = 151.751.28351.

The test provided by Theorem 7 is easily implemented on a programmable pock-
et calculator. Thus, an HP-41C can decide the primality of an arbitrary
n < 109 within 100 seconds, using only 2, 3, 5 as possible witnesses.

The second application is based on the following theorem.

THEOREM 8. (RABIN). Every odd composite n has at least %{n—l) witnesses

among {1,2,...,n-1}.




51

The proof is an attractive exercise in elementary number theory, in
which the Carmichael numbers play a role. See [24,17].

Rabin proposes the following primality test. Let m be a large integer,
like 100, and choose randomly m integers a; € {1,2,...,n-1}, 1 < i < m. If
one of these ai is a witness for n, then n is composite. If none of the ai
is a witness for n, then either n is prime or we have extremely bad luck.
By Theorem 8, this bad luck occurs in at most one out of every 4™ cases.
While this method is basically incapable of yielding rigorous primality
proofs, it is difficult to doubt the correctness of the answers. In any
case, Rabin's method can be used to produce primes on a commercial basis:
if found defective, they can easily be replaced.

If we try to remove the unproved assumption from Theorem 6 we are left

with an algorithm which is no longer 'good':

THEOREM 9. (POLLARD). For any € > 0, there exists an algorithm which in

(1/8) +€)

O(n steps decides whether or not n is prime.

For the proof, and a description of the algorithm, we refer to [21,
Theorem 2]. It is based on a converse to Fermat's theorem, and has mainly
theoretical value.

The most successful methods described above make use of the multiplica-
tive structure of the ring %Z/nZ. In some of them information on the factors
of n-1 is needed; the number n-1 appears because, for n prime, the group
(z/nzn* is cyclic of oxrder n-1. We shall now describe some methods in which
information about the factors of n+l is needed. The usual way to describe
these methods employs LUCAS functions, see e.g. [31]. In order to offer some-
thing different, we present an algebraic approach here.

To explain the appearance of the number n+l, we observe that n+l =
(n2-1)/(n—1). Here n2—1 is, for n prime, the order of the cyclic multiplica-

2 elements, and n-1 is the order of the

tive group;Fzz of tﬁf fiild Fnz of n
subgroup Fn. Thus Fnz/Fn is cyclic of order n+l. Alternatively, the kernel
of the norm map Fn2 > Iﬁ is cyclic of order n+l.

Since we do not know beforehand that n is prime, we have to set up a
theoxry of quadratic extensions of %Z/nZ for arbitrary n > 1, cf. [4, ch.III,
Section 2.3]. For simplicity we take n odd.

Let R be a ring with 1 which, as an ébelian group, is isomorphic to
(Z/n7%Z) x (Z/nZ). Then Z/n% may be considered as a subring of R, and there

exists x € R such that every a € R can be uniquely written as a + bx, with
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a,b € Z/nZ. Let v,w € Z/nZ be chosen such that x2 = -w + vx. Then R is iso-
morphic to (Z/nZ)[X]/(XZ—vX+w), with x corresponding to the residue class
of X. The discriminant A = v2 - 4w of X2 -vX+w is called the discriminant

of R; it is well defined up to multiplication by squares of units of Z/nZ.
It is easy to check that two R's with the same discriminant are isomorphic.
In the sequel we assume that A is a unit in Z/nZ.

Let y = v-x. Then y2 = -w+ vy, and the map ¢ sending a + bx to a+by,
for a,b € Z/n%Z, is a ring automorphism of R. The norm of o € R is defined
by norm(e¢) = aco(a); this belongs to %Z/nZ, and the norm restricts to a
group homomorphism R* > (Z/nz)*. Without referring to x, we may describe
norm(a) as the determinant of the Z/nZ-linear map R - R mapping r to or. We
leave it to the reader to define o similarly. The group we are interested in

is defined by
*
H={y € R : norm(y) = 1}.

*
If o € R, then clearly o/o(a) € H. In particular, x/y € H if w is a unit in

Z/nZ. For us, the basic property of H is:
. . . . . A
(10) if n is prime, then H is cyclic of order n - (H) .

Here (%) isAthe Jacobi symlznol. The proof of (10) distinguishes two cases.

First let (H) = ~1. Then X -vX+w is irreducible over an, so R is a field:
R = ]E‘nz, and R* is cyclic of order n2—1. By the theory of finite fields we
know that R, besides the identity, has only the Frobenius automorphism, map-

+1
ping every o € R to o”. So this must be o, and norm(a) = acc(a) = o for

all a € R. It follows that H = {a ¢ ]F::z: ocn+1 = 1}, which is a cyclic group
of order n+l, as required. Next let (ﬁ-) = 1. Then X2—VX+W has two distinct
zeros &, n in IFn, and we may identify R with ]Fn X ]Fn (componentwise addi-
tion and multiplication) by mapping a+bx to (a+bg,a+bn), for a,b e IE‘n. We
have R* = ]F: X IF:1 The map ¢ interchanges the two coordinates, so H =
{(a,a—l) € Il:"’;1 X IF‘;}, which is isomorphic to :lFf1 and therefore cyclic of
order n-1. This proves (10).

The structure of the group H can also be determined for composite n,
but we shall not need it in the sequel. As an exercise, the reader may prove
that the converse of (10) is also true; but that there may exist composite
n for which H is non-cyclic of order n - (-ﬁ‘) .

The theory can be extended to cover the case that n is even, or that
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A is no unit in Z/nZ, but this has no applications to primality tests.
Starting from (10) one can, for practically every test based on factors
of n-1, devise a corresponding test based on factors of n+l. In the simplest

case, corresponding to Pépin's Theorem 4, the number n+l is a power of 2:

THEOREM 10. (LUCAS-LEHMER). Let n = 2°-1, withm > 2. Define (ek):=1 by

2 . , -
e, = 4, Cpp1 = ek-2. Then n is prime <=>em__1 = Omod n.

PROOF. First let m be even. Then n is divisible by 3, and not prime. Also,
em_1 = -1 mod 3 by induction, so em_1 # Omodn. This proves the theorem for
even m. Assume now that m is odd. We apply the above theory to the ring
R = (Z/nZZ)[X]/(XZ— V2% - 1), where V2 denotes any element of Z/nZ%Z with
/22 = 2; e.g., V3 = 2(m1)/2
by x, and y = V2 - x. Then x+y = /2, xy = =1. From these two relafions it

. As before, the residue class of X is denoted

follows easily by induction on k that

ok ok
x +y = (ek mod n) € Z/n%
for all k 2 1. We have A = /§2+4 =6, and fromn = I1mod 3, n = -1 mod 8 and
quadratic reciprocity it follows that (?Al-) = -1,
Now let first n be prime. Then norm(x) = xm'1 = xzm, as we have seen in
the proof of (10), and also norm(x) = xy = -1. So x2m = -1. Multiplying this

m-1
y2

by y2m-1 and using that xy = -1 we find x2m_1= - , i.e. (em_1 mod n) = 0.

This proves =,

om-1_

=0, so (x/y) 2m-1

Next suppose that (em_1 mod n) = 0. Then x2m_1+y ~-1.
Let p be any prime dividing n. Then the ring R' = R/pR is of the type de-
scribed above, with n replaced by p. The element x'/y' = (x/ymod pR) of R'
satisfies (x'/y')2m“1 = -1 # 1, so its multiplicative order is 2m. Also,
x'/y' is in the group H' belonging to R'. Hence (10) implies that 2" divides
P - (ﬁ—) = p*1. Therefore p = 2m—1, but p divides n = 2m-1, so p = n. This

proves that n is prime, as required.

It is known that n = 2™-1 can only be prime if m is prime: then n is one
of the Mersenne numbers Mp = 2P -1, p prime. These are known to be prime for

27 values of p:

2, 3, 5,7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607,
1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213,
19937, 21701, 23209, 44497,
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and composite for all other p < 44497, see [28]. It is reasonable to con-
jecture that there are infinitely many Mersenne primes, and that in fact
#{m < x: 2™-1 is prime}/logx tends to a finite non-zero limit for x - o,
It is an interesting problem to determine what this limit should be. GILLIES
[8] gives a probabilistic argument leading to the value 2/log 2, but it is
clearly in error since the same argument leads to a contradiction with the
prime number theorem, cf. [10, §22.20].

Notice that the calculations required for the Lucas-Lehmer test can be
done entirely within the ring Z/nZ, and that it is not necessary to calcu-
late in R. Suppose, generally, that o € R*, B = o(a) € R*, and that one is
interested in the powers of the element o/f of H. Instead of calculating

these directly in R, it is common to consider the Lucas functions

k-1

w (o) = J oI
j=0
= (@65 /(0-p) (if a-B ¢ RY),
vk(ot) = ak + Bk for k 2 0.

These belong to Z/nZ, and usually provide the required information. They

satisfy the recurrence relations

uk+2(oc) = (u+B)uk+1(0t) - aB'uk(a),

Viego (@) = (0t+fi)vk+1 (o) - aB-vy (a)
for k 2 0, with coefficients a+B, 0B € Z/nZ. There exist several identities
between the uk(oz) and Vi (a) which enable one to calculate uk(a) and vk(ot)
using O(logk) arithmetic operations modulo n, cf. [31, Section 12]. For
example, in the situation of Theorem 10 we have (ei mod n) = v2i(x) , and this
is calculated using i-1 squarings and i-1 subtractions mod n.

The following theorem is the analogue of Theorem 5. As before, n denotes
an odd integer > 1, and R = (Z/nz)[x]/(xz—vx+w) . We assume that A=v2- 4w

is a unit in Z/n%.

THEOREM 11. Let
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where m, and the Kj are positive integers, and hl’h2""’ht are pairwise
relatively prime integers = 2. Let further CyrCorenesCy be positive integers
such that the following conditions hold:

(a2) every prime factor of hj is = cj, for 1 <3 < t;

(b2) for each j, 1 £ j £ t, there exists aj € R* such that

*
— . R ’
(11) aj c(aj) €
(12) un+1(aj) = 0, gcd(u(n+l)/hj(uj),n) =1;
t L9
R J
(cz) n < (-1 + ﬂl cj ).

Then n is prime.

Notice that (11) is automatic if uj = x+b for some b € Z/nﬂh since
(x-y) = A 1s a unit. The test of Theorem 11 is only useful for (—) = -1,

since for (—0 =1 it is impossible to satisfy the conditions.

PROOF. The proof is completely analogous to the proof of Theorem 5. Let P
be a prime dividing n, put R' = R/pR, and let H' belong to R' just as H be-
longs to R. By (11) and the definition of uk(a.), condition (12) means that
the order of (a /c(a ) mod pR) € H' divides n+l1, but not (n+1)/h Hence this
order is lelSlble by r 1 for some prime rJ dZV1d1ng h]. Using (10) ang.the
coprimeness of the rJ one deduces that p - (~0 is divisible by ﬂ jJ’ so

p=-1+ ﬂ; I by (a,). From (c,) it now follows that n is prlme.

=1

The following theorem is a combination of Theorems 5 and 11, in which

conditions (cl), (c2) are replaced by a much weaker one.

THEOREM 12. Let the notations and the hypotheses be as in Theorems 5 and 11,
but let (Cl) and (c2) be replaced by

1
(c) n < (1 + E—d1d2)~max(1 + dl' -1 + d2)

where

A . ,
Assume moreover that (;9 = ~1. Then n is prime.
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PROOF. Suppose, to the contrary, that n = pem, with p prime and m > 1. By
the proofs of Theorems 5 and 11, we have

£

A t
= 1 mod [T, q. = (2 mod .M, r.
js) mo qa. ., p (p) 50 Ty

3

for certain primes q, 2 b., r, =2 ¢,, and these congruences are also true with

i’ 7]
p replaced by n, since (—0 = —1. By n = pem, —0 = (*0'(-4, they remain valid
with p replaced by m. One of ( ), ( ) equals 1, so one of p-1, m-1 is divis-
ible by
ﬁ ki ﬁ [‘J
lcm(i___l Cll ’ :|=1 rj )

which by gcd(n-1,n+1) = 2 is at least

1
155 23 0dtd, .

The other one of p, m is at least

k t L,

i J
+ i - + m > + -1 +
max(l {=1 d. s 1 §21 X, ) = max(l dl’ 1 dz).

This gives a contradiction with (c), and proves the theorem.

See [26] for a primality testing algorithm based on variants of Theorems
5, 11 and 12. For 'quadratic' analogues to the Miller-Rabin test we refer
to [3].

There is a different way to combine the n#l-tests, namely in the dis-
covery of large twin primes. Let m be a large number whose complete factori-
zation is known; such a number can be found by multiplying together small
numbers. Then (m+1) -1 and (m-1) +1 are completely factored, so we can apply
an (n-1)-primality test to m+l and an (n+1)-primality test to m-1. If both
numbers turn out to be prime we have found a pair of twin primes. The two
largest known pairs are

694503810+273%% 5 1 = 22395.32.5.7.11.13%.503 4 1,

1159142985'22304i 1 2304°32'5-7°11-13-25733i 1,

which have 703 decimal digits, see [2].




57
It is also possible to use higher degree extensions of Z/nZ in primal-
ity proofs. For these methods one needs information about the factorization
of @k(n), where @k is the k~th cyclotomic polynomial:

@, (m) =n-1, 2,(n) = n+1, ¢, (n) = n’4n+1,

n2-n+1,

]
]

®4(n) n2+1, @6(n)
The appearance of these numbers can be explained as before. If n is prime,
then the multiplicative group Eﬁk modulo the subgroup generated by the mul-
tiplicative groups of all proper subfields is cyclic of order @ (n); alterna-
tively, the subgroup H of E‘k consisting of all elements of relative norm 1
to every proper subfield is cyclic of this order. These methods can also be
combined with the ntl-methods discussed before, see [31, Sections 158167 for
references.

As we noted in connection with the Fermat numbers, it is surprising that
we can prove that a number is composite without actually finding a factor. To
analyze this situation, let us assume that we proved n composite by exhibit-

ing an integer a for which
n-1
(13) a Z 1modn, ged(a,n) =1,

and applying Fermat's theorem that (13) is impossible for prime n. To see why
this gives no factorization of n we must investigate how Fermat's theorem is
proved. One proof is based on the remark that the map sending i to a<i (modn)
is a permutation of {1,2,...,n-1}, so

-1 n-1 n-1
a “e(n-1)! = iU (ai) = 71, i = (n-1)! mod n.

=1 i=1
Hence (13) tells us that (n-1)! has a non-trivial gcd with n, which tells us
nothing more than that n is composite. Other proofs of Fermat's theorem have
similar defects. But it is worth mentioning that faster ways to calculate
factorials or binomial coefficients modulo n can be helpful for factorization.
This is clear from the proof of the following charming but useless theorem,
in which we also consider 'division with remainder' as an arithmetic opera-

tion.
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THEOREM 13. (SHAMIR). There is an algorithm which for every composite n yields

a non-trivial divisor of n, using no more than O(logn) arithmetic operations.

PROOF. We notice that n is composite if and only if 1 < gcd(ab,n) < n for
some positive integer aO. Since gcd(a!,n) is a non-decreasing function of a,
and is equal to 1, n for a = 1, n, respectively, we can determine such an ag
by O(logn) bisections, provided that we know how to calculate gcd(a!,n).
Once we know a!, we can determine the gcd by Euclid's algorithm in

O(logn) arithmetic steps. To calculate a!, we apply the formulae

(2b+1)! = (2b+1)-(2b)!,
. vy 2, 2b
(2p) ! = (bl) (b}

O(log a) times. To calculate the binomial coefficient (i?) needed here, we
remark that (%?) is the middle block of n binary digits in the binary expan-
sion of (2n+1)2b, for 2b < n; and the exponentiation can be done by O(log(2b))
multiplications.

This algorithm, as we described it, takes O((logn)3) arithmetic opera-
tions. For the modifications and tricks needed to bring it down to O(logn)
we refer to SHAMIR's paper [27]. More practical factorization algorithms are
discussed in the lecture of M. Voorhoeve, the thesis of L. MONIER [18], and
the beautiful paper of R.K. GUY [9]. '
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