RATIONAL FUNCTIONS INVARIANT UNDER A CYCLIC GROUP

H.W. Lenstra, Jr.

1. Introduction

Let k be a field, n a positive integer, and k(xl,xz,...,xn) a
purely transcendental field extension of k of transcendence degree n.

Let the field automorphism o of k(xl,xz,...,xn) be defined by

o(c) =c for cek, O(Xi)=xi+l (indices modn),

and denote the field of invariants of o by kn:
o} =
k = k(xl,xz,...,xn) = {fe k(xl,xz,...,xn) : 0 (f) £} .

The question is, whether kn is a purely transcendental field extension

of k.

By Cm we denote a primitive m-th root of unity in a fixed
algebraic closure of k or of @; which, will be clear from the

context.

Theorem 1. Let %k, n be as above, and put
»

V= {k( ¢): p is a prime number distinct from the
p
characteristic of k, s 1is a positive integer, and

p° divides n}.

Then kn is purely transcendental over k if and only if every KeV

satisfies the following condition:

K is cyclic over k, and if 9% generates the Galois group

Gal (K/k), then the following ideal of :z[c[K.k]] is principal:

(*) H (P' Q[K:k] ’tp) i

here the ideal product ranges over all pairs (p, s) as in the
desinition of V for which K=k(C S), the integer tp is

p
‘defined (modp! by OK(CE) =CFfp, and [K:k] is the degree

of K over k.

Proof. This is a restatement, for the cyclic case, of the main theorem
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of [6], which deals with arbitrary finite abelian groups. [J

We note some consequences of the main theorem. If k=@ and 8
divides n, then K==Q(C8) belongs to V and is not cyclic over 0,
so Qn is not purely transcendental over (. We remark that the
condition that every KeV is cyclic over k is satisfied if the

characteristic of k is non-zero or n is not divisible by 8.

If k=R or €, then [K:k]l<2 so the ring Z[C[K:k]:‘:z
is a principal ideal domain, and then certainly the ideal (*) is
principal. Hence for all n the field extensions ng/qR and En/c are
purely transcendental. A directproof of this will be given in section 2.
The set of n for which Qn/Q is purely transcendental will be

discussed in section 3.

Exercise. Let kO be the prime field of k, and k'==k(\ko(cn). Then

k'n/k' is purely transcendental if and oply if kn/k is.

Exercise. Let g be a prime power. Then (Eé)n/EE is purely
transcendental if there exists a positive integer m such that n==©m(q)
and gcd(r,m) =1; here @m denotes the m-th cyclotomic polynomial. In
particular, the field extensions (Eé)zp_l/ﬁé' for p prime, and

(F.) /F,, for k a non-negative integer, are purely transcendental.
2 22k+1 2

2. The complex numbers and the real numbers,

Let first k=C, and neZ, n=1l. We prove that a:n/m is purely

transcendental. Put
L = E(xl,xz,...,xn)
and let o© be as before. Define

X, (i modn),
j mod n

then by Vandermonde the xj can be expressed in the e;r so

L = m(el,e .,en)

27

and a short computation shows that




(+) e,y =z .e, .
1 n 1

= (
Let E el,e2

the e Then E =2z", and by (1) there is a surjective group

’ ...,en) c L* be the multiplicative group generated by

homomorphism

¢ : E—(g,)
¢(e) =o(e)/e.

Let ICE be the kernel of ¢. Then o(e)=e for all eeI, so
T(1) CL0=!En. The group I has index n in E, and from E = (1, el) ’
n

el €I, we see that

[C(E) : T(I)] < n.
But CL(E) =L and T(I)c En, while we know from Galois theory that
P (L: u:nJ = n.

We conclude that C(I)=C_. Sinle I is of finite index in E, it is
generated by n elements, and it follows that Cl:n is purely transcendental

over L. Explicitly,we have

n -2 -3 1-n
n:n = ﬂ:(eo, e v ezel , e3e:L Jeeoes en-lel ) .

This elegant proof is due to Fischer [3] (1915).

Next we treat the case k= IR by extending the base field from
IR to €, applying the above argument and descending from T to IR
by means of complex conjugation. More explicitly, define the field

automorphism 1t of L=¢(xl,x .,xn) by

2'..

T(e) = c (cel), T(Xi) =x; (i modn).
Then T and o commute, and

T
]‘R(xl,xz,...,xn) =1 = {felL:1(f) = £},
®r = 1H% =09 = @) =cmn’.

n n

We have 'r(ei) =e . (imodn), so E is a module over the group ring

z[t]. Further T(cn) : cn-l, and the map ¢ is a Z[t1]-homomorphism.

It follows that T is a Z[1]-sulmodule of E.
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From a general theorem on finitely generated, Z-free Z[t]-modules

[1, th. (74.3)] we know that I has a Z-basis
al,az, ...,ar, bl'bz' ""br’ cl,cz, e+ 1Cgs dl'dz"”'dt
satisfying 2r+s+t = n and

T(aj)=bj, T(bj)=aj, r(cj)=cj, 1'(dj)=dj .

Then we have, with i= ?;4:

T(I) =n:(al,...,dt) =
=C(a,+b., ia,-ib, (L<j<n),
J J J J
. 1<j<s),
5 (1<j<s)
(1+dj)/(i-—idj) (1=j=tv)),

L]
where the last 2r+s+t expressions are algebraically independent over

€ and invariant under TtT. Hence
T
]Rn = E(I)T = T (these expressions) = IR (these expressions),
which proves that JRn/]R is purely transcendental.

If we do explicit calculations to avoid application of the
theorem on Z[t1]-modules, then we find that t=0, and that the following

n expressions form a transcendence basis of ]Rn over 1R:

if n=2k:
-3 -3 -3 _ -3
e, . e + e ,.e l1.e, .¢e -1.€e ,.6e
i~ 1 -3 " -1 ' 3 } -j " -1
(2<j<k),
eo, ele_l,
if n=2k+1:
k¥l -k ksl -k k¥l -k _ . k¢l -k
€1 - S S S DL | | e B
-3 -5 -5 -3
eJ.el +e_j.e~l ’ l.e..el 1.e_J.e_l
(2=3<k),
eO.

The arguments of this section generalize without difficulty
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to the case of a finite abelian group acting IR-1linearly on ]Rxl + ..+ ]Rxn.

For general k the proof of theorem 1 runs along similar lines.
First one proves that without loss of generality it may be assumed that
n is not divisible by the characteristic of k. Next, one solves the
problem over the extension field k(cn), as above. Descending, finally,
from k(cn) to k one encounters the Z-free module I over the group
ring = [Gal(k(cn) /k)]. It turns out that the solution of the problem

depends on how this module looks like under the change of rings

Zz [Gal(k(cn)/k)]-—» Z [Gal(K/k)]—» =z [c[K:k]]

: : —
canonical OK 4 [K:k]

for KeV, Gal(K/k) = (oK) . This very short indication may at least
explain how the condition stated in theorem 1 arises in the proof. For

further details one should consult [6].

3. The rational numbers.

In this section we derive some consequences of theorem 1.

Proposition 2. Let n be a positive integer. Then the following

three assertions are equivalent:

a) Qn is purely transcendental over D ;
b) kn is purely transcendental over k, for every field k;

¢) n is not divisible by 8, and for every prime number p and every
integer s21 for which n is divisible by ps but not by ps+l,

the ring Z [C(p—l)ps‘lj contains an element of norm p.

Proof: b) = a) is obvious, and &) = c) follows by applying theorem 1 to
k=@, wusing that in that case there is only one factor in the product
(*). To prove c) ®b), let K = k(cpr) €V, with r<s. Then [K:k]

divides (p-1) ps-:L so taking the relative norm from Z [ -1] to

(p-1)pS
Z i .
[;[K:k]] one discovers that Z[C[K:k]] has an element of norm p if
c) is satisfied. Then every ideal of norm p in ZEC[K-k]] is
principal, and (*) is a product of principal ideals. Application of

theorem 1 concludes the proof of proposition 2. [
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Corollary 3. Let n = H ps(p ) be a positive integer, p running over
P
the set of primes and s(p) being a non-negative integer which is zero

for almost all p. Then Qn/Q is purely transcendental if and only if

st (p)/Q i1s purely transcendental for every prime number p.
Proof: Clear. [

Thus we see that the question whether Qn/qg is purely transcendental
is reduced to the case that n is a prime power. Prime powers which are

no primes can be completely dealt with, as proposition 4 shows.

Proposition 4. Let p be a prime number and s an integer, S =2. Then
2

st/qg is purely transcendental if and only if pS € {22, 3m, 5, 72 t:me Z,

m22}.
This proposition confirms a conjecture of Endo and Miyata [2, prop. 3.7].

s _.m

I3 = - =
Proof. If. For p =37, the number 1l-f.p.jc¢ 22[';3m-l] Z[C(p—l)ps‘lj
has norm 3, and we can apply proposition 2. For pS= 22, 52

or 72, the ring Z [z =Z[t;2], 22[@203 or Z[c42] has class

(p-1)ps-1]
number one [7] and an ideal of norm p, so again proposition 2 c¢) is

satisfied.

The only if part follows immediately from proposition 2 and the

following lemma.

Lemma 5. a) Let p25 be prime. Then Z[C(p-l)pzj contains no

element of norm p.

b) Let p=21ll be prime. Then Z[C(p—l)p] contains no

element of norm p.

P . h t
roof a) Suppose ac ﬁ[;(p_l)pzl as norm p, and let L be the
subfield of

le Q(z (p-—l)pz

Taking the norm to L, one finds an algebraic integer B in L of norm

) containing Q(cp_l) for which [L:Q(Cp_l)]=p.

p, so (B) =q where ¢ 1is a prime of L lying above p. Let
p=qnz [?;p_l] . Since p splits completely in Q(Cp_l) ' ax:xd D # Q(Cp_l)
(here we use that p25), the ideal p is different from p, where

denotes complex conjugation. It follows that ¢ #q.
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Put y=8/B and n=v/p(y), where p generates Gal(L/Q(gp_l) ).
Since ¢/p and ¢/p are totally ramified, we have p(q) =q and ¢ (q) =q.
Hence (y) =q/(2 is mapped to itself by p and therefore n=vy/po(y) is
a unit. Moreover, from Y;=l it follows that nﬁ=l, so n has
absolute value one under any embedding of L in &. It now follows
from Kronecker's theorem that n is a root of unity. But all roots of

unity in L 1lie in Q(cp_ ), so we have

1
p-1 _
n e Q(cp_l), n =1,
p
n* = norm (n) = norm (Y) /norm (p(y))
L/, ) /2 _)) L/t )

=1

and therefore n=1 and +vy=p(y). It follows that vyc¢ Q(cp_l) , which

contradicts its prime ideal decomposition (y) =q.é-l;€ (1) and the fact

that ¢, ¢ are totally ramified over p, p. This proves a).

b) Suppose Bez[c(p_l)p] has norm p, and let now p

generate the group Gal((Q(g )/Q(I;p_l)), which is cyclic of order

(p-L)p -
p-1l. As before one finds, with Yy=8/8, that n=v/p(y) is a root
of unity. Changing B by a suitable p-th root of unity we can achieve

that np—l= 1.

Again, (B)=¢ 4is totally ramified over p=¢gnz [t;p_l], and

¢#¢. The number of prime ideals of Z [Z;(P ] 1lying above p equals

-1)p
¢ (p-1) >2 (here we use that p=211); hence there is one, say ql,
different from both ¢ and (_{ The ideal a1 is generated by some
conjugate (over-lQ) Bl of B, and with Y1 =Bl/Bl, nl=yl/p (yl) we
again have nlp =1.
; a b

Since the map (Z /(p-1)z) x (Z/(p-1)Zz) — ( cp-—l>' (a,b) ¥n ny e
is clearly non-injective, there are integers a,be {0,1,...,p-2}, not
both zero, such that nanlb= 1. Then Yaylbe Q(z;p_l), which contradicts

a --a

the prime ideal decomposition (Yaylb)=q -q 'qlb' él'b as in the proof of

a). This proves the lemma.

The proof of the lemma leadsto divisibility statements for the
class number of cyclotomic fields which seem to be related to results of

Ribet [9].
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We are left with the question for which prime numbers p the
field Qp (not the p-adic numbers!) is purely transcendental over D.
Evidently this happens if szcp_l] has class number one, which by [7]

is the case if and only if
(#) p<43 or p=61, 67 or 71 (seventeen values).

For p=47, 79, 113, 137 and many more values (see proposition 6 below)
QP/Q is not purely transcendental. The cases p=53, 59, 73 are
undecided, but the tables of Reuschle [8] suggest that in these cases
QP/Q is not purely transcendental either.

It may well be that for only finitely many prime numbers p the
extension QP/Q is purely transcendental, and that perhaps (#) are the
only such p, but this seems difficult to prove. All we know is the

following proposition.

Proposition 6. For a real number x, let m(x) denote the number of

prime numbers <x, and let T*(x) denote the number of prime numbers
p=<x for which Qp is purely transcendental over Q. Then we have

. T (x)
lim 7;66-

X

= 0.

More precisely, we have

T*(x)

- -5 ©
e = O((log log logx) °) for x-+w,

and if certain generalized Riemann hypotheses are satisfied then

T*(x)

- -5 -
T - 0((log logx) “) for x-+o,

Proof (sketch; cf. [6, cor. (7.6)]). Let q be a prime which is 3 mod 4,
and p a prime for which QP/Q is purely transcendental. Using
proposition 2 and basic properties of the Hilbert class field one proves
that if p splits completely in Q(cq), then it also splits completely
in the Hilbert class field of Q(/TE). By Tchebotarev's density theorem
this implies that

Hnsup T8 < 11 [l - GeLhe )]
x> X g<y prime, q = 3mod 4 a=%)-alq

for every y, where h(q) denotes the class number of Q(v-q). Letting
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m*(x)

0 = 0. The more precise

y tend to infinity one now finds that lim
X->o0

assertions are obtained by choosing y as a function of x and
applying the effective versions of Tchebotarev's density theorem proved

in [4,5]. This proves proposition 6.
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