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A Method of Hurwitz

The problem we considered in the previous section (this
journal, vol. 2, pp. 6) may be immediately generalised to
more general number fields. Let
g=X"+qu X" . Hq X +q

be an irreducible polynomial with rational coefficients;
let ¥ be a zero of g, and let K be the field generated by 7.
Each element ¢ of K is uniquely representable by an ex-
pression of the shape

(1) po+pyy+... v,

P0>P1s- - -» Pn_1 rational.

The norm N(£) of £ is defined to be the absolute value of
the product of the numbers (1) as v runs through the com-
plex zeros of g. Obviously we have N(¢n) = N(§)N(n) forall
£ and n in K, and it can be shown that N(£) is a rational
number which is zero only if £ = 0.

In K we shall consider rings R which, roughly speakmg,
are to be to K as the ring of integers is to the field of
rational numbers. More precisely, R is to satisfy two con-
ditions. Firstly, each element ¢ of K must have some multi-
ple m& in R, where m is a positive integer. Secondly, there
should be elements A4, 0, .. .,04_; in K such that an ele-
ment ¢ in K is in R if and only if it can be expressed in the
form

(2) t=aplta 6, +

a4y integers.

tag 1044,

Ao, dys -« o

[t can be shown that if such 6, . . ., 85 exist then they
can be chosen so that d = n; if so, the representation (2)
is unique. In order that R be a ring the ; must have the
property that all the products 6,0; are again of the shape
(2). Moreover, we shall always suppose that 1 belongs to
R.

We can readily find rings R that satisfy the conditions
just described. Suppose, for example, that the coefficients

*  Translated by Alf van der Poorten.
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q; of g are integers — this can always be arranged by replac-
ing v by some multiple my — then we may taked = n,

9; =7'. The elements of R now look exactly like the num-
bers (1) of the previous section:

n—1
tap Y

(3)

dg tayyt..

ag, a1, . - ., 4y integers.

It can be shown that the union R of all rings that
satisfy our conditions is itself a ring with those properties.
The ring R is called the ring of algebraic integers of K.

The ring R is said to be euclidean with respect to the
norm, or, more briefly, norm-euclidean if for every pair of
elements « and B of R, with § + 0, it is possible to find a
quotient k and a remainder p, both belonging to R, so that

a=KB+p
N(p) <N(B).

Here we observe that N(B) is always an integer if 8 belongs
to R. Indeed, if 8 is in R, and is not zero, one can inter-
pret N(B) as the number of residue classes of R modulo §.
Here two elements p and p’ of R are said to be in the same
residue class modulo 8if p — p’ is divisible in R by f.

We call the field K euclidean if R is norm-euclidean.
Actually it turns out that R, is the only R that can be
norm-euclidean.

The principal motive for this definition is the same as
in the previous section:

if R is norm-euclidean then the theorem of unique
factorisation into prime factors holds in R.

(4)

. Once again this can be demonstrated by Euclid’s argu-

ments.

The case n = 32 of the previous section showed us that
the converse does not hold. We get a simpler example by
considering the numbers a + b +/14 with a and b integers,
or the numbers £(a + b +/~19) with a and b integers and
a — b even.

How are we to decide whether R is norm-euclidean?

If we write £ = a/B then the definition implies:

R is norm-euclidean if and only if for each £ in K
we can find a k in R such that V(¢ — ) <1.
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We can use this to give a geometric formulation to the

problem.
The polynomial g has n complex zeros,  of which, say
Y1, - - -, ¥y are real. The remaining n — r zeros can be

arranged into s complex conjugate pairs. Choose one zero
from each pair, this gives s additional zeros 6, ..., 84 and
we have r + 25 = n. We embed the field K in the n-dimen-
sional real vector space IR” x C* by mapping the expres-
sion f(Y) =po +P1Y+... tpy_1y" ", asin (1), to

(1), - f), £(81), - - f(Bs))-

Then K is dense in R” x €°. Now
N =1 11 fr) - T 76, 161,

so we can extend the domain of definition of the norm NV
to the whole space IR” x C* by

¥ 5
N(xly"'9xrsyly"'sys)=|‘Hl xi"nl y]j;]la
i= j=

with the x; real and the y; complex.

The embedding in R” x C* makes R a lattice; that is to
say, there is a basis 0, . . ., 0,_; of R” x C* over the reals
so that the numbers in R become exactly the vectors of
the shape

(5) agbo ta0y+...*a, 10,1,

ag,ay, .+ .,a,_1 integers.
We see that:

(6) R is norm-euclidean if each element £ of R" x C*
can be expressed as the sum of an element « in R
and an element that belongs to the set

V={y My)<1}

In the case » =0, s = 1 the set V is an open disc with centre
0.If r=2,5=0then V is an unbounded set in the plane,
bordered by hyperbolae. Generally V is an open set con-
taining 0 and is bounded only if ¥ + s = 1. By virtue of
(6) the question now is whether the translates

k+V, kinR
together cover the whole space. In order to see whether §
belongs to one of these translates it is plain that we may
freely add elements of R to &; seeing that these elements
are of the shape (5) it follows that we need only consider
those £ that lie in the paralielepiped

(M) {g0b0+q101+...4qn_10,_1:0<qo <1,

0<‘11 <1,...,0<qn__] <l}.

Figure 1. This illustration shows a portion of the ring R = {a+ b6:
@ and b integers}, with 62 — 0 — 1 = 0, embedded in R xIR by
mapping e+ b to {g + b(1 + \/5)/2, a+b(l - \/g)/Z). The hyper-
bolae bound the region V consisting of points of norm less than
one. The elements of R lying on the hyperbolae are the units of
the ring. The shaded region is the parallelepiped (7). The small
part of this parallelepiped not contained in V is easily seen to be
contained in 1 + V. It follows from this that the ring R is norm-
euclidean.

This is a bounded set, and it is not difficult to see that if
it is covered by some infinite set of translates k + V, then
it is already covered by some finite subset thereof.

Should we happen to succeed in covering the parallel-
epiped (7) then we would have proved more than is strict-
ly necessary: to prove that R is norm-euclidean we need
consider only those vectors & which lie in K; these cor-
respond to rational g, 4y, . . ., §n—y in (7). Were the
converse of (6) to hold then the two questions would be
equivalent; however, this converse has not been proved,
nor is a counterexample known. One should compare
this with an unproved conjecture of Barnes and Swinner-
ton-Dyer [1, p. 313].

If we assume the converse of (6) then the question
whether R is euclidean with respect to the norm is decid-
able. Indeed, let 8y, 8,, B3, . . . be a list of all non-zero
elements of R. Then one can check sequentially for
n=1,2,3,...whether the following conditions are or
are not satisfied:

I,: There is an a in R such that a # p mod 8, for all
p in R with N(p) < N(B,);

II,;: The parallelepiped (7) is covered by the n + 1 trans-
lates V,B3, +V,... B, + V.




If one or other of the conditions is satisfied then stop: if
I,, holds then R is not norm-euclidean, and if /7,, holds
then R is norm-euclidean. Suppose that this decision pro-
cedure fails to terminate. Then both f,, and I, are false
for all n, so R is norm-euclidean though the translates

k + V with k in R fail to cover the space IR" x C*. This
contradicts our assumption of the converse of (6). We add
that it is decidable for any fixed n whether I,, and II,, are
satisfied.

It is indicative of the lack of general results in the the-
ory that even the decidability of the question whether R
is norm-euclidean cannot be established unconditionally.
The only thing in which the theory is rich is in examples,
but even the most clearcut question concerning the extent
of these riches:

are there, up to isomorphism, infinitely many
euclidean K?

remains unanswered. The most significant result of this
nature is a theorem of Davenport, see [2], which states
that, up to isomorphism, there are only finitely many
euclidean fields with r + s < 2. His methods have been
used to determine all euclidean K with n < 2. Finally
there is a finiteness theorem of Heilbronn which applies
to certain classes of abelian fields, see [5].

Up to isomorphism, 334 different euclidean fields are
known. The table below, derived from that in [7] and
including new fields found by Cioffari, Leutbecher, Mar-
tinet, Mestre and myself, indicates the distribution of
these fields relative to n and 7 + 5. '

n 1 2 3 4 5 6 7 8 9 10| total
r+s

1 1 5 6
2 16 52 34 102
3 57 11 12 28 108
4 9 10 30 27 27 103
5 1 7 1 2 0 2 13
6 2 0 0 00 2
total| 1 21109 54 23 67 28 29 0 2 334

" are integers and /', 1 <i<i' <m, elementsu and u’ of

For references to some of the immense volume of the
literature on these matters see [7].

Quite diverse methods have been applied to determine
these fields. For some elementary proofs in the quadratic
case (n = 2) one should consult Hardy and Wright
[4, § 14.7/8]. Most of the cubic examples (n = 3) have
been found with the aid of electronic computers; the tech-
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niques used can be viewed as refinements of the decision
procedure we sketched above.

We shall describe a method that harks back to an idea
of Hurwitz. He bases a now unfashionable approach to
ideal theory on the following variant of the euclidean
division algorithm which is valid for all K and R:

(8) there is an integer m > 1, so that for each £ in K
there is a k in R and an integer j, 0 <j <m, with

NG — k) <1.

Here m is dependent on R. It is plain that R is norm-
euclidean if and only if we can take m = 2.

We shall sketch a proof of (8). Because the set V' is
open we can choose a neighbourhood U of 0 in IR" x €*
so that U — U is contained in V; that is
(9) Nwu-u)<1, forall wu,u’inU.

Now let £ be an element of K and consider all the trans-
lates

E+U, i=1,2,...m
of U, where m is an integer greater than 1 which we fix
later. We adjust each element of i£ + U by subtracting that
element of R which brings the adjusted number into the
parallelepiped (7). This process yields a set, say (i¢ + U)¥,
contained in (7), and of the same volume as i§ + U. Were
this not so then there would be two distinct points of
i + U that are adjusted to the same point of (7), thus
points that have their difference in R; but this is impos-
sible because of (9).

If we note that i£ + U and U plainly have the same
volume then we can conclude that we have m sets

(10) (E+U)* 26+ U)*, ..., (mE+ U)*
contained in (7), each with a volume equal to that of U.
Suppose that we now choose m so that m times the vol-
ume of U is larger than the, plainly finite, volume of the
parallelepiped (7). This is a choice that does not depend
on £. Then the sets (10) cannot be disjoint and thus there
U, and \, \" in R so that

iEtu—N=it+u —N\.
Withk =X —Xandj=i — i we have

NGE —k)=NG'E—-N —iE+N)=Nu - u') <1,

and j is an integer, 0 <j < m. This proves Hurwitz’s theo-
rem.
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In order to make this proof yield as small a value of m
as possible one must of course attempt to choose U as
large as possible. Even then one obtains the desired m = 2
only in a few cases. Much more can be achieved by making
a small modification to Hurwitz’s theorem. If, in place of
thesets &+ U, 28+ U, ..., mE+ U, we were to consider
the sets w &+ U, wyrE+ U, .. ., wyE+ Uwith wy, w,,

., Wy, arbitrary elements of K, then in an entirely analo-
gous way we would find that

(11) there is an integer m > 1, so that for all wy, w,,
., Wy, and £ in K there isa k in R so that

(12) M(w; —wj)t—k)<1 forsomei,j, 1
Suppose now that the wy, w,, . . ., w,, can be so
chosen that all their differences w; — w; (i #) are units,
that is, they have an inverse in R. Then M(w; — w;) =1,

and (12) implies that

NE -k - (w; —wp) <1

Since k - (w; — coj)’1 is an element of R we conclude
that R is norm-euclidean. In other words

(13) if R has sufficiently many elements all differences
of which are units, then R is euclidean with respect
to the norm.

As an example we consider the field K generated by a
zeroyofg=X°% — X3+ X?* — X — 1, which hasr = 3
s = 1; for R we take the set of numbers (3). It turns out
that if U is well chosen in the above proof, then one can
take m = 5. So R is norm-euclidean if it is possible to find
five elements with all their differences units. We assert
that the five elements

01y L 11
| A

will do for our purpose. It is quite easy to see that this is
equivalent to the claim that all three of the elements v,
v —1and y% — g + 1 are units. But from

Y - +y’ —y—1=g(v)=0

it follows that
Y- (- ry-1=1
(r-1D-*+y+y=1
(P —y+1)- P+ -y -D=1.

We conclude that K is euclidean.

<i<j<m.

For further examples we refer the reader to [7]. The
present method also allows us to deal with a number of
the rings mentioned in the previous section.

Hurwitz’s theorem can also be used to prove a charm-
ing result of O’Meara [9]:

(14) there is a non-zero element § in R, so that the ring
T=R[67'], generated by R and the inverse of §, is
euclidean with respect to the function Ny defined
by
NT(O) =0
N7 () = number of residue classes of 7" modulo f,

BinT,B+#0.

Here we say that T is euclidean with respect to Ny if
forallaand fin T, 8% 0, one can find k and p in T so
that =k + p and Np(p) < Np(B). It turns out that to
prove O’Meara’s theorem it is sufficient to take & as the
product of all the numbers w; — wy, 1 <i<j<m, with
m as above and wy, w,, . . ., Wy, arbitrary distinct ele-
ments of R.

Actually, it is much easier to find a § so that the unique
factorisation theorem holds in R[6~1]. In the case R =R,
one can even choose § to be relatively prime to any arbi-
trarily nominated € in R; that is, so that A\§ + ue = 1 for

1
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Figure 2. The analogue of figure 1 for the ring 7= Z [ ] {a/b:
a and b are integers, and b is a power of 2}. The shaded strips are
background, and do not belong to the picture. Projection on the
horizontal axis vields the obvious inclusion of Z [—1~ ] into IR. Pro-
jection on the vertical axis yields the inclusion of Z [%} into the
field of 2-adic numbers. This field has been embedded topologi-
cally in IR by a method which we leave to the reader to find out;
the numbers along the vertical axis have been written in binary
notation. The set V of elements of norm less than 1 is now bound-
ed by “piecewise linear” hyperbolae. The elements of Z [% J1ying
on these hyperbolae are exactly the units of the ring: 1, + Zil,
+2*2 . . The shaded region corresponds to the parallelepiped
(7). It is contained in V, confirming that Z [—% ] is euclidean with
respect to Ny




some A, 4 in R. Whether one has the same freedom of
choice in (14) is an unsolved problem.

The rings T= R[6 ], with § in R, § non-zero, have
properties which in many respects are analogous to those
of the ring R itself. Much of what we have said in this sec-
tion can, with some modifications, also be said of the
rings 7. Then p-adic fields take their place next to that
of IR and C, as can be seen in figure 2. In any event,
O’Meara’s theorem shows that in this wider class of rings
there is no lack of examples of euclidean rings. We refer
to [8] for the proper generalisation of the theorem of
Davenport that we mentioned above.

The author is indebted to A. K. Lenstra for preparing
the drawings.
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