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Artin’s Conjecture

In the previous sections, when we spoke of division with
remainder: a = kf + p with p smaller than 8, we did our
measuring by means of the norm:

N(p) <N(B).

In this section we see just what freedom we gain in admit-
ting functions other than the norm.

Let T be a commutative ring with 1, 1 5 0, without
divisors of zero. We will mostly be interested in rings of
the type R[87!], see section 2, (14). We call these rings
number rings. If \ is a map which associates to each non-
zero element § of T a non-negative integer Y(fB), then T is
said to be euclidean with respect to {, or ¥ is said to be a
division algorithm on T, if for all ¢ and 8 in T, B # O,
there are k and p in T with

(1) a=«B+p, and p=0 or Y(p)<Y(B).
If there is such a  then we call T euclidean. If T is euclid-
ean then 7T has unique factorisation into primes.

Our present knowledge suggests that in the case of
number rings we are not dealing with a more general con-
cept than our earlier one:

(2) every known euclidean number ring 7 is euclidean
with respect to the norm Ny defined in section 2,

(14).

But (2) is more probably a sign of our ignorance than it is
a reflection of reality: there are infinitely many number
rings with unique factorisation that are not euclidean with
respect to Np. But as we shall see, there is reason to
believe that these T, with four exceptions, are euclidean
with respect to some other function.

This supposition rests on analysis that arises from an
idea of Motzkin, see [5], [6]. As above, let T be a com-
mutative ring with 1, 1 # 0, and without divisors of zero.
We try to construct a function ¢ on T that is a division
algorithm on 7. For which f in T, 8 # 0, can we set
Y(B) = 0? For such @, the alternative in (1) that

* Translated by Alf van der Poorten.
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Y(p) < Y(B) is excluded. So we must have p=0and a=«f,
and every « must be divisible by 8. This is to say that 8
is a unit. If we now fix

Y(B) = 0 if B is a unit,

then indeed we can satisfy (1) for these §, by taking

p =0 and k = af L. Next we ask for which 8 may we take
Y(B) = 1. For these 8 we may have p = 0 or J/(p) = O in
(1); so p =0 or p is a unit. In other words: every e in T
that is not divisible by § must be congruent modulo
to a unit. If we set

Y(B) = 1 if every residue class modulo 8 contains
either O or a unit

then we can satisfy (1) forall @, § in 7 with y(8) < 1. In
general we can use induction on » to define
T_, = {0}
T, = {B: every residue class modulo 8 contains
an element of 7,,_; }
for n 2 0, and we can take
(3)  Y(B)=nif § belongs to T, but not to 7,,_4,n =0.

It is now easy to prove the following proposition:

(4) If there is an element of T that does not belong to
any T}, then T is not euclidean. If conversely each
element of T belongs to some 7, then T is euclid-
ean with respect to the function y defined by (3).
Moreover { is then the smallest division algorithm
on T in the sense that

W) <x(B)

for all 8 of T distinct from zero and all division
algorithms x on 7.

If we take T to be the ring of (ordinary rational) integers
then the above construction yields

Y@ =0 for
Y@ =1 for

i

B=21
B=12, 43
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and generally

(5) (B =[log|Bl/log2], B#0,
where [x] denotes the greatest integer <x.

If T is the ring of polynomials in one variable over a
field then one easily sees that

Y(B) = degree (B)

for all non-zero fin T.

To understand what Motzkin’s general procedure looks
like in the case at hand, that of number rings, we must
first have some information about the units of such rings.
From Dirichlet’s unit theorem we see that the example of
the ring of integers we gave above is not at all typical: in
most cases a number ring has infinitely many units. If we
confine ourselves to number rings with unique factorisa-
tion — for only these rings can be euclidean — then there
are in fact only ten cases which have a finite number of
units: if y is one of the nine numbers
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(7 3 +V=19), 3(1 +v=43), §(1 +V/=67),
1(1++/~163)

then the set of numbers a + by, with @ and b integers, is
such a ring, and the tenth case is the ring of integers itself.
Four of these ten rings, the cases (7), are not euclidean.
The remaining six cases are euclidean and in the cases (6)
Y can be approximated as follows. Set

4 11
3’9

for the respective five values (6) of 7y and define
X(a + by) = [log N(a + by)/log c]

for @ and b integers, not both zero; compare (5). Then x

is a division algorithm and the difference between x and

y is bounded. These results can be found in [7], [6], [3].

For an exact description of { in the cases

y= 312—(1 +4/=3) and v =+/—1, see [3] and figures 3 and 4.
In the rest of this section we take 7 to be a number

ring with infinitely many units and we assume 7 to have

unique factorisation. Our aim is to determine the function

. We already know that y(B) = 1 if and only if § has the

following property:

(8) eachain T either is divisible by § or is congruent to
a unit modulo §.

Figure 3. The smallest division algorithm on the ring Z[p] = {a+ bp:
a and b are integers }, where p = (—1 + «/=3)/2 is a primitive cube
root of unity. The ring is a triangular lattice in the complex plane,
and the points of the lattice are the centers of a regular hexagonal
tiling of the plane. The black hexagons in the picture correspond
to the elements o of Z[p] for whicha =0 or y(a)=1,3 or 5.

Figure 4. The limit case of figure 3. The centre of the picture is 0,
the six dots nearest to 0 are the elements 1, *p, +p2 of the ring.
For a in Zp], @ # 0, we have y(e) < n if and only if a(1 — p)™"
is inside the dodecagonal figure, but not equal to one of the dots.

_ The intersection of the closure of the set and the boundary of its

convex hull consists of twelve copies of the Cantor discontinuum.

In particular, if « is not divisible by f then it has no fac-
tors in common with § if Y(8) = 1; so § must be a prime;
this also follows from (9). If we denote by P the set of
primes with the property (8) then we plainly have

Y(n) = 2 for every prime 1 of T that does not
belong to P.




Here we set, for convenience, Y(n) = = in the event that n
does not belong to any 7,. If we now apply the general
inequality

©) Wara) > p(ay) + Yos) (o - o #0)

(cf. [6, prop. 12]) then we find the following result. If
is an arbitrary non-zero element of 7" with a factorisation

a=eByBy ... BNy ... Ny

where € is a unit, f, . . ., B, are primes belongihg to P and
N1, - - -, Ny are primes not belonging to P then

(10) W()=v+2w.

It is now true that:

(11) Let T be a number ring with infinitely many units
and with unique factorisation, and assume a number
of generalised Riemann-hypotheses. Then T is
euclidean and the equality sign in (10) holds for all
non-zero ain T.

This result, which extends a theorem of Weinberger [9]
and Queen [8], is proved in [4].

The proof of (11) depends on the fact that, under the
assumption of the Riemann-hypotheses, which we shall
denote by GRH, the collection P is sufficiently large. Sup-
pose for example that the following were true:

(12) for each pair of relatively prime elements a and f§ of
T, with § # 0, there is an element of P that is con-
gruent to & modulo f.

Then (11) can be proved as follows. Let x be the function
defined by the right hand side of (10):

x(e)=v+2w fora,v,wasabove.
Clearly it suffices to show that x is a division algorithm on
T. Thus, given @ and § in 7, with 8 # 0, we have to find a
e, with p = 0 or x(p) < x(B), which is congruent to «
modulo S.

Without loss of generality we may suppose « and 8 to
be relatively prime: for if not we could divide « and 8 by
their greatest common divisor without changing the prob-
lem.

If x(8) = 0 then § is a unit and we can take p = 0. If we
have x(8) = 1 then § belongs to P, and from the definition
of P we can find a unit p that is congruent to a modulo f.
Then indeed

x(p) =0<1=x(B).
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Finally, if x(8) > 2 then, applying (12), we choose an ele-
ment p of P that is congruent to & modulo §, and for this
p we have

x(p)=1<2<x(B),

as required. It remains only to study (12).

We consider an example. Let T be the set of those
rational numbers whose denominator is a power of 2.
This is a number ring with unique factorisation. The units
of T are exactly the numbers +2/ with integral, so there
are infinitely many of them. It is not difficult to decide
that in this case the set P is, up to multiplication by units,
the same as the set of odd prime numbers p with the fol-
lowing property:

(13) each integera, 1 <a <p — 1, is congruent, modulo
p, to a number of the shape £2/, withj an integer,
j=0.

Of the fourteen odd primes < 50 only 17, 31, 41 and 43
miss out on having this property. But however much one
might guess that (13) is true for more than half of all the
primes — to be exact, for 56.0933720. . .% — it has not

- even been shown that there are infinitely many such

primes; let alone that any property such as (12) has been
proved to hold.

If we drop the *-sign in (13) then one can describe
(13) as saying that 2 is a primitive root modulo p. This
calls to mind a conjecture of Artin of 1927 which asserts
that for each integer ¢, | #| > 1, the limit

(14)
lim number of primes <x which have ¢ as a primitive root
X—roo ‘ number of primes <x

exists. Moreover the conjecture gives a formula for the
value of the limit. One can think of the limit as the frac-
tion of primes that have ¢ as a primitive root. Plainly the
number of such primes is infinite if this fraction is positive.

Artin’s conjecture was proved in 1967 by Hooley under
the assumption of a series of generalised Riemann-hypo-
theses, see [2]. If we are prepared to work subject to simi-
lar assumptions then there are three questions to be dis-
‘posed of in order to prove (12). Firstly, can Artin’s con-
jecture and Hooley’s proof be generalised so as to deal
with the set P? Secondly, can one, in so doing, take into
account the condition that the primes must also be con-
gruent to a modulo 7 Thirdly, can it not happen that the
formula for the fraction of primes yields the value zero?

In this case the relevant set could even be empty.

We will not pause for long over the first question. Artin’s
conjecture does indeed admit a straightforward generalisa-
tion that makes a prediction of the fraction of primes that
belong to P, and this generalisation can be proved, modulo
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GRH, by Hooley’s methods. For this see [1]. Here we do
not go into the precise meaning of fraction in the case of
general number rings 7.

Concerning the second question: if « and (8 are relative-
ly prime elements of T, with § # 0, then the condition

(15) p=amodf

is indeed satisfied by a positive fraction of all prime ele-
ments p. This is a theorem that goes back to Dirichlet.
But, for primes p, the condition (15) is not independent
of the condition :

(16) p belong to P,

as we see below from an example. But it is possible to take
(15) into account in a new generalisation of Artin’s con-
jecture, which on closer inspection turns out to be equi-
valent to the previous version.

The third question is still with us: is it possible that,
under assumption of GRH, we find that asymptotically
0% of all primes satisfy both of (15) and (16)? In the case
of the original conjecture the predicted value of the limit
(14) is 0 only if ¢ is a square. For P this phenomenon does

not arise: the proportion of primes that belongs to P is pos-

itive if the Riemann-hypotheses are true. But it is unpleas-
ant to discover that the condition (15) can conflict with
(16). It is easy to find such an example for Artin’s original
conjecture: the two requirements

p=1mod8

2 is a primitive root mod p

cannot be reconciled for prime integers p. Fromp =1
mod 8 one can deduce that 2 is a square modulo p and so
cannot be a primitive root. With somewhat more difficulty
one can also construct an example in the situation that
interests us here:

(17) let T consist of the numbers
ag +ay§ +a?tagtd,
ag,ay,a,,as integers,

with {° = 1, ¢ # 1; then P contains no elements that
are 1 modulo 4.

The proof is quite similar: if p is prime, o = 1 mod 4, then
it follows that every unit of 7"is a square mod p and one
can conclude that p cannot belong to P.

We see from (17) that (12) is not valid in general. Luckily,
the full force of (12) is not needed to prove (11). In fact,
suppose X (B) = 3. Then, according to the theorem men-
tioned at (15), we can choose a prime p with o = a mod 8
and then

x(p) <2<3<x(B).

So it would be enough to know (12) for the case x(f) = 2.
Sadly, the example above shows that even then (12) need
not be true. This almost means that (11) is not true —
almost, because to reach x(p) < x(B) = 2 we may also take
p to be a unit. So, to show (11), it is sufficient to prove
the following weakened version of (12):

(18) for every pair of relatively prime elements «, § of 7,

with x(B8) = 2, there is a p in T with

p =amod B,

so that p is an element of P or a unit of T.
Moreover, this is as far as we can go: the validity of (18),
modulo GRH, is not only sufficient but also necessary for
(11). It is therefore a matter of good fortune that the ob-
jections against (12) do not hold against (18), and that
(18) in fact is a consequence of the above mentioned gen-
eralisation of Artin’s conjecture.

We conclude this section with a short discussion of the
role played by the Riemann-hypotheses in the proof of

(18).
If p is a prime of T then the residue classes modulo

p that do not contain O constitute a multiplicative group,
say G,. Those classes that contain units of T form a sub-
group H,, of G,. Plainly p belongs to P if and only if
G, = H,. So if we set

k, = index (G, : Hy)
then

P={p:k,=1}
If we now write

P,, = {p : k, has no prime factors <m},

form=1,2,3,..., then we have

P= NP, P OP,DP....

m=1

Now let o, § be as in (18) and suppose that « is not con-
gruent to a unit modulo . We are interested in the set

V={p:p=amodp,and p belongs to P}
which we can of course write as .
a9 v= 0 V,, VioV,DV3...
m=1

where V,,, consists of all primes p =& mod f§ that belong




to P,,,. Without any unproved assumptions it can then be
shown that for each m some positive fraction, 6, say, of
all primes belongs to V,,,, where

and that

(20) &= lim 8, >0.

m—>0

It seems plausible to conclude from (19) and (20) that
some positive fraction, namely &, of all the prime ele-
ments belongs to ¥, and this would imply (18). It is ex-
actly in reaching this conclusion that one uses the Rie-
mann-hypotheses. That this is what one might need can
be readily understood: generalised Riemann-hypotheses
yield the remainder term in the generalised prime number
theorem for algebraic number fields and, by way of the
mechanism whereby one analyses V,,,, also yield the re-
mainder term in the asymptotic assertion above that some
positive fraction 8, of all the prime elements belong to
Vin-

The author is indebted to A. K. Lenstra for preparing the
drawings.
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