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Integer programming with a fixed number of variables.

H.W. Lenstra, Jr.

The integer linear programming problem is formulated as follows. Let n
and m be positive integers, A an m X n-matrix with integral coeffi-
cients, and b cz™. The question is to decide whether there exists a
vector x ¢ z" satisfying the system of m inequalities Ax < b. No
algorithm for the solution of this problem is known which has a running
time that is bounded by a polynomial function of the length of the data;
This length may, for our purposes, be defined to be nemelog(a+2) , where
a denotes the maximum of the absolute values of the coefficients of A
and b . Indeed, no such polynomial algorithm is likely to exist, since
the problem in question is NP-complete [3;12].

In this paper we consider the integer linear programming problem
with a fixed value of n. In the case n=1 it is trivial to design a
polynomi;l algorithm for the solution of the problem. For n= 2,
Hirschberg and Wong [5] and Kannan [6] have given polynomial algorithms
in special cases. A complete treatment of the case n=2 was given by
Scarf [10]. 1In this paper we show that for any fixed value of n there
exists a polynomial algorithm for the solution of the integer linear
programming problem. The degree of the polynomial by which we bound the
running time depends in a very serious way on n.

Our algorithm is described in section 1. Using tools from geometry
of numbers [1] we show that the problem can be transformed into an equi-
valent one having the following additional property: either the existence

of a vector xe Z" satisfying Ax<b is obvious; or it is known that



the last coordinate of any such x belongs to an interval whose length is
bounded by a constant only depending on n . In the latter case, the problem
is reduced to a bounded number of lower dimensional problems.

If in the original problem each coordinate of x is regquired to be
in {0, 1}, no transformation of the problem is needed to achieve that the
condition just stated is satisfied. This suggesfs that in this case our
algorithm is equivalent to complete enumeration. We remark that the
{0, 1} linear programming problem is NP-complete.

In the general case we need two auxiliary algorithmé for the con-
struction of the required transformation. The first of these, which
"remodels" the convex set {xc¢ R Ax <b}, is given in section 2.

L. Lovdsz observed that my original algorithm for this could be made
polynomial even for varying n, by employing the polynomial solvability
of the linear programming problem [8; 4]. I am indebted to Lovédsz for
permission to describe the improved algorithm in section 2.

The second auxiliary algorithm is a reduction process for n-dimen-
sional lattices. It is described in section 3. It is not eas§ to bound
the running time of this algorithm in a satisfactory way. We give an
argument which shows that it is polynomially bounded, for fixed n.

But the degree of this polynomial is an exponential function of n,
and we feel that there is still room for improvement.

In section 4 we prove, following a suggestion of P. van Emde Boas,
that the integer linear programming problem with a fixed value of m
is also polynomially solvable. This is an immediate consequence of our
main result.

Section 5 is devoted to the mixed integer iinear programming problem.

Combining our methods with Khachiyan's results [8; 4] we show that this



problem is polynomially solvable for any fixed value of the number of
integer variables. This generalizes both our main result and
Khachiyan's theorem.

The algorithms presented in this paper were designed for theoretical
purposes only, and there are severzl modifications that might improve
their practical performance. It is to be expected that the practical
value of our algorithms is restricted to small values of n.

It is a pleasure to acknowledge my indebtedness to P. van Emde Boas,
not only for permission to include section 4, but also for suggesting
the problem solved in this paper and for several inspiring and stimulat-

ing discussions.

§1. Description of the algorithm.

Let K denote the closed convex set
n
K={xe R : Ax < Db}.

The question to be decided is whether Krmzp==¢. In the description of
the algorithm that follows, we make the following two simplifying assump-

tions about K:

(1) K 1is bounded;

(2) K has positive volume.

The first assumption is justified by the following result, which is
obtained by combining a theorem of Von zur Gathen and Sieveking [12]
with Hadamard's determinant inequality (cf. (6) below): the set
knz" is non-empty if and only if Kn z" contains a vector whose
. n/2.n
coefficients are bounded by (n+1)n a in absolute value, where a

is as in the introduction. Adding these inequalities to the system

makes K bounded.



For the justification of condition (2) we refer to section 2. In
that section we shall also construct a non-singular endomorphism 1t of
the vector space r" » such that 1K has a "spherical" appearance. More

precisely, let | | denote the Euclidean length in R", and put
n n
B(p,z) = {xeR" : |x-p| < z) for peRrR, z e]R>O '
the closed ball with center P and radius 2z . With these notations, we
require that
B(p,r) € 1K c B(p,R)
for some petk, with r ang R satisfying

(4)

R |

<c ,

1
where c1 is a constant only depending on n.

Let such a 1 be fixed, and put L = z" . This is a lattice in

JRn » 1.e. there exists a basis b1 , b2 t oeeey bn of IRn such that
n n .
(5) L=ZX _.Zb, ={I . mb :mexz (1<is<n)}.
i=1 i i=1"1"1 i
We can take, for example, bi = 'r(ei) + With e, denoting the i-th
standard basis vector of an . We call bl' b2, ceey bn a basis for L
if (5) holds. 1If bi" by ..., br'1 is another basis for L, then
n
v - : = ] :
bi = Xj=1 mijbj for some nxn-matrix M (mij)lsi,an with integral

coefficients and det(M) = #1 . It follows that the positive real number

!det(bl, b2, ce bn)l (the bi being written as column vectors) only

depends on L, and not on the choice of the basis; it is called the
determinant of L, notation: d(L). We can interpret d(L) as the
volume of the parallelepiped Z?_l [0, 1) b, where [0,1) = {z € R:

0<z<1}. This interpretation leads to the inequality of Hadamard

(6) dL) s _ Ib, I
It is a classical theorem that I has a basis bl' b2, ooy bn such

that the following opposite inequality holds:




(7 M _, I, | < cyed(n)

where c, is a constant only depending on n, cf. [1, ch. VIII; 11].

2
In section 3 we shall describe a reduction process, i.e. an algorithm

that changes a given basis for 1 into one satisfying (7).

Let bl'b2’ ey bn be any basis for L. We prove

(8) Vx eR" : 3y e L : lx-ylzS‘:(Ib1|2+...+lbnl2).

The proof is by induction on n, the case n=1 (or n=0) being

obvious. Let L' = }:::i Zbi; this is a lattice in the (n-1)-dimension-

al hyperplane H = z:-_—i :lei . Denote by h the distance of bn to H.
Clearly we have
<
(9) h < lbnl .
Now, to prove (8), let x e R . We wish to change x by an element of

L such that its length becomes small. First subtract an integral mul-

tiple of bn from x such that its distance to H becomes < &h.

Write x = X, +x2 ; With X, € H and X, perpendicular to H. Then
!le < %h < lzlbnl . By the induction hypothesis, we can change X, by
an element of L' and achieve that le |12 < ‘:(Ibl 24 ...+ lbn_llz) .
Since X, and X, are perpendicular this yields le2 <

< 2 2 2 = : .

< %(Ibll +...4 Ibn_ll + Ibnl ) for x X, +%, . This proves (8)

Notice that the proof of (8) gives an effective construction of the
element ye L that is asserted to exist.
If we number the b, such that lbnl = max{!bil :1<i<n}, then

(8) implies
(10) Vx € R : Iy e L : |x-y| < ’:\/n_lbnl .

Now assume that bl' b ’ bn is a reduced basis for L in the

2' P

sense that (7) holds, and let L' and h have the same meaning as in



the proof of (8). It is easily seen that
(11) d(L) = h-d(L") .
From (7), (11) and (6), applied to L', we get

~1
< . = eh e 1 < elye
1Ibil € c,td(L) = cythed(L') € cyeh ﬂ’i’=1lbi!

1=

and therefore, with (9):
(12) e lb | <h < |b|.
2 n n

After these preparations we describe the procedure by which we

decide whether K nz" = @ or, equivalently, TKNnL = @. We assume
that bl' b2, eey bn is a basis for L for which (7) holds, numbered
such that lbnl =max{lbil : 1<ic<n}.

Applying (10) with x=p we find a vector yelL with
lp-yl < l;;\/Hlbn] . If yeTK then 1KnL # @, and we are done.
Suppose therefore that y¢tK. Then y¢ B(p,r), by (3), so

I[p-yl>r , and this implies that
r < %V;lbn! .

Let now H, L', h have the same significance as in the proof of (8).

We have

L=L'+Zb cH+Zb = U (H+kb ).
n n k ez n

Hence L is contained in the union of countably many parallel hyper-
planes, which have successive distances h from each other. We are
only interested in those hyperplanes that have a non-empty intersection
with 1K ; these have, by (3), also a non-empty intersection with

B(p,R) . Suppose that precisely t of the hyperplanes I-1+kbn inter-

sect B(p, R) . Then we have clearly



By (4) and (12) we have

2R < 2rc, < c ,Valb |,
1 1 n

SO

t-1 < clczvg.

Hence the number of values for k that have to be considered is bounded
by a constant only depending on n. Which values of k need be consid-
ered can easily be deduced from a representation of p as a linear

combination of b b2, ...,bn

1'
If we fix the value of k then we restrict attention to those
X = z:—iyibi for which yn=l<; and this leads to an integer programming

problem with n-1 wvariables YyrYor eeer ¥ It is straightforward

n-1"
to show that the length of the data of this new problem is bounded by a
polynomial function of the length of the original data, if the directions
of section 2 have been followed for the construction of 1.

Each of the lower dimensional problems is treated recursively. The
case of dimension n=1 (or even n=0) may serve as a basis for the
recursion. This finishes our description of the algorithm.

We observe that in the case that Kthp is non-empty, our algorithm

n
actually produces an element x € KnZ .

§2. The convex set K.

Let K = {x e R":Ax<b}, and assume that K is bounded. In this
section we describe an algorithm that can be used to verify that K

satisfies condition (2) of section 1; to reduce the number of variables



if that condition is found not to be satisfied; and to find the map T
used in section L. The algorithm is better than what is strictly needea
in section 1, in the sense that it is polynomial even for varying n.
I am indebted to L. Lov&sz for pointing out to me how this can be
achieved.

In the first stage of the algorithm one attempts to construct
vertices VO'VI' ...,vn of K whose convex hull is an n-simplex of
positive volume. By maximizing an arbitrary linear function on X,
employing Khachiyan's algorithm [8; 4], one finds a vertex Yo of K,
unless KX is empty. Suppose, inductively, that vertices vO'Vl""'
v of K have been found for which v.-v er V=V are linearly

d 1 70" " d 0

independent, with d<n. Then we can construct n-d linearly indepen-

dept linear functions fl' ""fn-d on Zmn such that the d-dimension-
al subspace
vV = Z;‘:l ]R(vj—vo)
is given by
Ved{x eR' : £ (x)=...=¢ (x) =0} .
1 n-d

Again employing Khachiyan's algorithm, we maximize each of the linear

~-f on K, until a vertex

£yrfpr -t n-d' ““n-d

SRS R Ll T
vd+1 of K is found for which fj(vd+1) # fj(vo) for some

functions f . £

jed{l,2,...,n-d}. If this occurs, then ViV ...,vd—vo,vd+fvo

are linearly independent, and the inductive step of the construction

is completed. 1If, on the other hand, no such vd+1 is found after
each of the 2(n-d) functions fl,—fl, "'fn—d' -fn_d has been max-
imized, then we must have fj(x) = fj(vo) for all xeK and all
j=1,2,...,n-d, and therefore

Kcv +V,.

0
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In this case we reduce the problem to an integer programming problem
with only 4d variébles, as follows.

Choocse, for j=1,2,...,4d , @ non-zero scalar multiple wj of
vj Vo such that wj ez” + and denote by W the (nxd)-matrix whose
columns are the w:j - Notice that W has rank d. Employing the Hermite

normal form algorithm of Kannan and Bachem [7] we can find, in polynomial

time, an integral nx n-matrix U with det(U) = #1 such that
- 1y
uw = (kij)1s15n, 1<j<d
with
k.. =0 if i>j
1]
(13)

k.. #0 for 1<ic<a.
ii

) -1
Denote by u,,u., ..., u the columns of the integral matrix U = . These

1" 72

form a basis of ]Rn , and also of the lattice zn:

-1
The subspace V of R is generated by the columns of W = U °(k. ) '

so (13) implies that

(19  v=12 Ru,.
=173
Define r ,r., ..., r €XR byv=Irl r.u,; so (r)n = Uv, .
1772 "“n 0 j=17"373 " j/i=1 0

]

Now suppose that x € K nzn . Then x with yj € Z,

n
z. .U,
j=1 YJ J

€ V. By (14) this means that yj=rj for

is not an integer, then

and x € K implies that x-vO

. < .
d<j<n. So if at least one of rd+1, ceer I

K nzn = f . Suppose, therefore, that rd+1, cees rn are all integral.

4 n
Substitutin x =X, u, + X r.u., in our original system Ax<b
s 3=1 Y33 T H52a41 T3Y s o
we then see that the problem is equivalent to an integer programming

problem with d wvariables yl, y2, ey yd , as required. The vertices
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vo,vl, oo Vg

. a .
convex set in IR belonging to the new problem, and v('), vi, e vé span

of K give rise to d+l vertices v('), vi, ...,vé of the

a d-dimensional simplex of positive volume. This means that for the new,
d-dimensional problem the first stage of the algorithm that we are describ-
ing can be bypassed.

To conclude the first stage of the algorithm, we may now suppose that
for each 4 =0,1, ..., n-1 the construction of Vast is successful.
Then after n steps we have n+1 vertices vo, Vl' ...,vr1 Of; K 'for
which ViTVgrseer V=V, are linearly independent. The volume of the

n-simplex spanned by VorVys eeen vy is equal to
|det M|/ n!

where M is the matrix with column vectors V= Vgreeen Vo= Vo and it
is positive. This clearly implies that condition (2) of section 1 is
satisfied.

In the second stage of the algorithm we construct the coordinate
transformation 1 needed in section 1. Denote by vol (vo, Vi oo vn)
the volume of the n-simplex spanned by VorVyr eeen Voo We first attempt
to increase this volume by an iterative application of the following
procedure.

Construct n+1 linear functions Ior 9qr =e-v 9, ]Rn-> R such

that
(15) g; is constant on {vj: 0<j<n, j#i},
Do .
g; (v)) #gi(vj) for 0<j<n, j#i,

for i=0,1,...,n . Maximizing the functions 9or “Fgr Fgr "9y +--
+++1 9 1 -9, on K by Khachiyan's algorithm we can decide whether there

exist i e {0,1,...,n} and a vertex x of K such that

3
Igi(x—vj)l > 2Igi(vi-vj)!
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for j # i (the choice of 3j is immaterial, by (15)).

Suppose that such a pair i, x is found. Then we replacg vi by
x . This replacement enlarges vol(vo,vl, ...,vn) by a factor
Igi(x-vj) |/ lgi (vi-vj)l (for 3j#1i), which is more than 3/2. We now
return to the beginning of the procedure ("Construct n+1 linear
functions ...").

In every iteration step vol(v ..,vn) increases by a factor

o' Vyr -
. On the other hand, this volume is bounded by the volume of K.

N w

>
Hence after a polynomially bounded number of iterations we reach a

situation in which the above procedure discovers that
(16) lg. (x=-v.)]| Sim (v, =v.)|
i 3 2711 3j

for all xeK and all i,j €{0,1, ..., n} with i#3j. In that case

we let ¢ be a non-singular endomorphism of Ifl with the property that

. . _ 1 n
T(VO), T(Vl), ooy T(Vn) span a regular n-simplex. With p = 5:3-zj=0 T(vj)

we now claim that
B(p,xr) ¢ 1K © B(p, R)
for certain positive real numbers r, R satisfying

2n3/27

A

R |

i.e., that conditions (3) and (4) of section 1 are satisfied, with

3/2

c,=2n This finishes the description of our algorithm.

1
To prove our claim, we write zj = T(Vj) , for 0<j<n; we write
S for the regular n-simplex spanned by Zor Zyr eeer 2 and we define,

for c2>21:

n
Tc = {x eR : vol(zo,...,zi-l,x,z .,zn) < c-vol(zo,...,zn)

i+1’°°

for all i e {0,1,...,n}} .

Condition (16) (for all x € K and all i#3j) means precisely that TK<:T3/?.
Further, it is clear that Sc1K. Our claim now follows from the following

lemma.
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Lemma. With the above notations we have for ¢ 2 1
B(p,x) ¢ S c TC c B(p, R)
for two positive real numbers r, R satisfying
czn3 + (c2+1)n:Z if n 1is even,

B -1,

c’n” + (202-2c+1)n2 + (c2-2c)n if n 1is odd.

n :
Proof. Using a similarity transformation we can identify IR with the

n+1 n n+1
hyperplane {(r.)" _ ¢ R L, r.=1} in R such that
yPerP 3" 3=0 3=0"3
zo, 21’ ey zn is the standard basis of IRn+1 . Then we have
1 n 1 1 1
Pmd =0%y T w2
n n+l ) n
T = {(r.). R : | <c for 0<j<n, andf’ . r.=1}.
c (J)]=0 € |rjl J ' j=0 j

By a straightforward analysis one proves that Tc is the convex hull of

the set of points obtained by permuting the coordinates of the point

n .
ZO_C2?=1Zj+CZj=m+12j if n= 2m,
(1-¢c)z -c:Zn.1 z.-f\c):r.l z, if n = 2m+1.

J j=1 3 j=m+1 7j

It follows that 'I‘C c B(p, R) , where R 1is the distance of p to the

above point:

nc2 + ;2—1 if n 4is even,
2
R =
2 n .
(n+1)c” - 2¢c + — if n is odd.

n+1

Further, B(p,r) ¢ S, where r is the distance of p to

1 1 1
(Or ;' 'Hl « ey ;)3
21
o n(n+1)

This proves the lemma.
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Remarks. (a) To the construction of 1 in the above algorithm one might
raise the objection that 1T need not be given by a matrix with rational

coefficients. This objection can be answered in several ways. One might
replace the regular simplex by a rational approximation of it, or indeed

by any fixed n-simplex with rational vertices and positive volume, at

the cost of getting a larger value for ¢ Alternatively, one might

1
embed R" in ]Rn+1 + @as was done in the proof of the lemma. Finally,
it can be argued that it is not necessary that the matrix MT defining
T be rational, but only the symmetric matrix MT[MT defining the quadrat-
ic form (1x, 7x) ; and this can easily be achieved in the above construc;
tion of 1T ,

(b) The proof that the algorithm described in this section is poly-
nomial, even for varying n, is straightforward, and left to the reader.
3/2 in (4) is

(c) We discuss to which extent the value 2n for c

1

best possible. Replacing the coefficient %- in (16) by other constants
¢>1 we find, using the lemma, that for any fixed ¢ >0 we can take

L

(* +e)(n3-+2n2) if n is even,

(1+s)(n3+n2-—n);§ if n is odd.

If one is satisfied with an algorithm that is only polynomial for fixed

n one can also take e=0 in this formula. To achieve this, one uses

a list of all vertices of K to find the simplex of maximal volume
inside K, and transforms this simplex into a regular one. The follow-
ing result shows that there is still room for improvement: if K cr®"
is any closed convex set satisfying (1) and (2) then there exists a non-
singular endomorphism T of ZRn such that (3) and (4) hold with c1=11.

To prove this, one chooses an ellipsoid E inside K with maximal
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volume, and one chooses 1 such that TE is a sphere. The case that
K 1is a simplex shows that the value c,=n is best possible. For fixed
n and €>0 there is a polynomial algorithm that achieves c, = (1+e)n.
I do not know how well the best possible value c:1 =n can be approximated
by an algorithm that is polynomial for varying n.

(d) The algorithm described in this section applies equally well to
any class K of compact convex bodies in R" for which there exists a
polynomial algorithm that maximizes linear functions on members K of
K . This remark will play an important role in section 5. 1In particular,
we can take for K a "solvable" class of convex bodies, in the termino-

logy of [4, sections ! and 3]. The same remark can be made for the

algorithm presented in section 1.

§3. The reduction process.

Let n, N Dbe positive integers with N=>n, and let b1, b2, ooy bn €

]RN be n linearly independent vectors. Put L = Zl?

Zb, ; this is
i=1 i

a lattice in the linear subspace 22_1 ]Rbi , and

2
amw” = det((bi,bj)) 1<i,3<n

, N
where ( , ) denotes the usual inner product on R .

Let ¢ be a real number with c¢ > —;}- In this section we describe

an algorithm that transforms the basis bl' b2, ooy bn for L into one
satisfying (7) with

c, = cn(n—l)/4 )

If n=1 then 4(L)= Ibll , and we are done. Suppose that n>1,
Renumber the bi such that Ibll = min{lbil : 1<i<n}, and let V

be the hyperplane {x ¢ r (%, bl) =0} . Denote by Si' T the projections
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(bi' bl)
(17) b =b1 (b,b)bl (2<4i<n),
1 1
L=3"_zb, .
i=2 i

Then L is a lattice in the (n-1)-dimensional vector space 22_2 ]Rgi '
and

= _ 4w
(18) 4@ = b.T"

Recursively, we can change the basis b, ot Bn for L into a basis

ot v

1'1 for L satisfying

ol

bl, ...,

19y m_, B!l < c3-a(@

where c! = C(n—l)(n—2)/4 .  We can write b' = ol m,.b, with

2 i j=2 i35

n
= *1. ' = R .b. <i<n.

mij €z, det(mij)25i,j$n 1 Put bi ZJ=2miij , for 2<isn
Then bi'bé' cees bI'1 is a basis for L, and gi is the projection of
b! on Vv:
i

_ (bi. bl)

[ Vo e i <

bi bi (bllbl)bl (2<i<n).

Let n; be the integer nearest to (bi', b1 )/(bi' bl) , and put

[T [ <i<
bi bi nib1 (2<i<n).
Then bl' bé’, ey bl[; is a basis for L, and
b" =b'+r. b for some r, e IR, lrls-}-
i i i1 i i 2

(2<i<n) . Since (b_i',b )= 0 this implies that

1
w12 o mg2 L 1, 2
(200 Ipy1% = By I% + b, 12
1

Put c' = %—(c— 1)"°; so O<c' <-2—. We distinguish two cases.

Case 1. c'+|b < lgilz for i=2,...,n. In this case, we have

1
by (20)
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w2 -2 1 ,-1, =02
|bil < p/1"(+ge" ) =c b
and (18), (19) now yield
. " (n-l)/z. . P
Iy 1+, Ibyl < c by 1+ _, 1B} |
< c(n-l)/z-cé- b, l-a(@) = FED/4 4y .

Hence, the basis bl’ b, ..., b;’l for L satisfies the required inequal-

2

ity, and the algorithm terminates.

Case 2. c'-Ibll2 > I—Eilz for some i € {2, ...,n}. Then for this i
we have, by (20):

" 2 [] _1_ . 2 U .];
(21) |bi| < (e'+) Ibll where c'+% < 1.

Hence, the shortest vector in the basis bl' g, eeey bx‘; for L |is
substantially shorter than the shortest vector in the basis

bl' b .y bn . We now return to the beginning of the algorithm, with

2" "

b1 ’ b2, ceey bn replacedby b,,b", ..., bx'; . This finishes the description

1" 72
of the algorithm.

To analyse the running time we now suppose that the initial basis
vectors for L have rational coefficients. We denote these initial
vectors by biO , 1<i<n, in order to avoid confusion with the changing
meaning of bi during the several passes of the algorithm. We sketch
a proof that for fixed n,N and c the running time is bounded by a
polynomial function of the length loga, where a denotes the maximum
absolute value of the numerators and denominators of the coefficients

of b(l), bg, ceoy bg . The proof proceeds by induction on n, the case

n=1 being obvious.
First we bound the number of times that we loop through the algo-

rithm. Put m(L) = min{lxl2: xeL, x#0} . From (21) it is clear that
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we pass case 2 at most

log ( Ib(l) |2/m(L))

1
LISl
IlOg(C ) I

times. For m(L) we can use the lower bound m(L) 2 den(L)-2 where

den(L) , the denominator of L, denotes the least positive integer k
with L c (%JZ)N; it is the least common multiple of the denominators
of the coefficients of the bg . We conclude that the number of times
that we loop through the algorithm is polynomially bounded.

We next have to show that the numbers involved do not grow too
large. We shall say that a quantity appearing in our description of the
algorithm has a good bound, if in any pass of the algorithm it can be
written as -2— with p,qe Z, g>0, and log(lpl+qg) bounded by a
polynomial function of loga . This polynomial should only depend on
n,N and c, and not, in particular, on how often we already looped
through the algorithm. Further, we say that a vector has a good bound
if its coefficients have one.

0
I

In any stage of the algorithm we have Ib1I < Ib1 . Since also

(bl’bl) has denominator < den(L)2 it follows that we have a good bound
2
—2 4w
1), for b1 , for 4d(L) = (bl'b1),
From (19) it then follows that there is a good bound for B}, ...,5;,

for (b, b and, by (17), for den(L) .

and from (20) that there is one for b" ...,b; . This implies a good

2!
bound for the vectors bl’ b2, ...,bn , sSince these are, up to permutation,
either the vectors bl' bg, ...,b; from the preceding pass of the algo-
rithm, or the vectors b?,bg, ...,bg from which we started. By (17)

there is now a good bound for Sé,...

is only applied to (n-1)-dimensional problems whose lengths are poly-

,S; . That means, that the recursion
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nomially bounded in terms of the length of the original problem. Hence,

by the induction hypothesis, the time needed to find the S} from the

EA is polynomially bounded. A good bound for b!, ...,_; and

. m,.b. .
j=2 7137 3.

o

g . . (] .—' =
o ...,bn implies one for the integers mij with bi

This leads to a good bound for bi and ni, 2<i<n. This terminates
the proof.

If all inequalities in the above proof are made explicit one finds
that the degree of the polynomial bounding the running time is an expo-
nential function of n. It is a question of interest to find a better

estimate for the running time of the algorithm.

Remarks. (a) The problem to find a reduced basis for a given lattice L
is closely related to finding the shortest non-zero vector x eL. To see

this, let b b2, ...,bn be a basis for L satisfying (7), and let

1I
X €L . Then we can write x = Z?_q mibi , and it is not difficult to

prove that
< . <3i<
’m.l = 02 |X]/lb.], for 1<i<n.

If x 1is the shortest non-zero vector in L then |[x] S!bil for all

, n
< 1 3 . S
i, so lmil < c So by searching the set {Zi=1 mibi Pm € z, lmil c,

9"
for 1<i<n} we can find the shortest non-zero vector in L in poly-

nomial time, for fixed n. For variable n this problem is likely

to be NP-hard.
Conversely, if we can find the shortest non-zero vector in L we

can find a reduced basis, as follows. Let b1 be the shortest non-zero

vector of L, and let V and L be as in the text. Recursively, let

f have a reduced basis Bé,fg, ...,S; . Choose bie L such that bi

projects to Ei and is nearest possible to V. Then b1'b2' ...,bn

satisfies (7), with c, = (4/3)n(n-1)/4-
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Combining this observation with the algorithms of Dieter [2] and
Knuth [9, 3.3.4.p] for finding the shortest non-zero vector, we obtain an
alternative algorithm for finding a reduced basis. However,

this algorithm is not guaranteed to he polynomial for fixed n.

(b) We discuss to which extent our value for c, is best possible.

Cn(n-l)/4 for any c¢>4/3, and using the

In the text we obtained c2 =
algorithms described in (a) we can also achieve c¢=4/3. We indicate
an algorithm that leads to a much better result.
In (a) we showed how to find the shortest non-zero vector in L

by a search procedure. By an analogous but somewhat more complicated
search procedure we can determine the successive minima Ibi |, Ibél P oo

o Ibr'xl of L (see [1, Chapter VIII] for the definition). Here
bl' , bé, cees br’1 € L are linearly independent, and by [1, Chapter VIII,
theorem I (p.205) and Chapter IV, theorem VII (p.120) ] they satisfy

My oyl sy e

where Y, denotes Hermite's constant [1, section IX.7 (p.247) ], for which

it is known that

1 1
-2—"-g+o(1)5yn/ns;;+o(1) for n > =,

Using a slight improvement of [1, Chapter Vv, lemma 8 (p.135)] we can

4 ' ' : ; " " " : :
change bl’ b2, ceey bn into a basis bl’ b2, cees bn for L satisfying
Ib"] < max{l,lv'i}'lbfl (1si<n)
i 2 i
so
-n+2_ 2 . 1/2 n/2
" o (— ° . f 2 3 .
M., Ibyl<2 GnH %y aq) (for n 2 3)

We conclude that, for fixed n, the basis bl' b2, ooy bn produced by the
algorithm described in this section can be used to find, in polynomial time,

a new basis satisfying (7), but now with
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c2 = (c~n)n.

Here c denotes some absolute positive constant.
On the other hand, the definition of Y implies that there exists

an n-dimensional lattice L such tlhat |x| 2 yi/z-d(L)l/n for all

xeL, x#0, cf. [1, Chapter I, lemma 4 (p.21)]. Any basis bl'bZ’ -eer b
for such a lattice clearly satisfies

n/2
b, | = Yy,

i=1 i a(w .

Therefore the best possible value for c2 satisfies

c2 > (c"n)n/2

for some absolute positive constant c' .

§4. A fixed number of constraints.

In this section we show that the integer linear programming problem with
a fixed value of m is polynomially solvable. It was noted by P. van
Emde Boas that this is an immediate consequence of our main result.

Let n,m, A,b be as in the introduction. We have to decide whether
there exists xe Z" for which Ax<b. Applying the algorithms of Kannan
and Bachem [7] we can find an (nxn)-matrix U with integral coefficients

and determinant *! such that the matrix

AU = (aj'.j)lsiSm, 1<j<n

satisfies
(22) aij =0 for j>i.

Putting y = U_lx we see that the existence of xe Z° with Ax<b is

equivalent to the existence of ye z" with

(AU)Y < b.
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If n>m, then the coordinates Yperr o0 ¥y of y do not occur in
these inequalities, since (22) implies that a:!Lj =0 for j>m. We
conclude that the original problem can be reduced to a problem with only
min{n, m} variables. The latter problem is, for fixed m, polynomially

solvable, by the main result of this paper.

§5. Mixed integer linear programming.

The mixed integer linear programming problem is formulated as follows.
Let k and m be positive integers, and n an integer satisfying
O<n<k. Let further A be an mxk-matrix with integral coefficients,

and b ¢z". The question is to decide whether there exists a vector

X = (xl,xz,...,:-(k)T
with
xiez for 1<i<n,

xie IR for n+l<ic<k

satisfying the system of m inequalities Ax<b.

In this section we indicate an algorithm for the solution_ of this
problem that is polynomial for any fixed value of n, the number of
integer variables. This generalizes both the result of section 1
(n=%k) and the result of Khachiyan [8; 4] (n=0) .

Let

XK' {x e]Rk: Ax < b},

n
K {(xl,xz, ...,xn) € IR : there exist LINPTRTRTE R

]

such that (xl,xz, ""’Sc) € K'}.

The question is whether K n z" = g.

Making use of the arguments of Von zur Gathen and Sieveking [12]
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we may again assume that K', and hence K, is bounded. Next we apply
the algorithm of section 2 to the compact convex set K c®r". To see
that this can be done it suffices to show that we can maximize linear
functions on K, see section 2, remark (d). But maximizing linear
functions on K is equivalent to maximizing, on K', linear functions
that depend only on the first n coordinates xl,xz, ...,xn ; and this
can be done by Khachiyan's algorithm.

The rest of the algorithm proceeds as before. At a certain point
in the algorithm we have to decide whether a given vector y e R"
belongs to 1K. This can be done by solving a linear programming problem
with k-n variables. This finishes the description of the algorithm.

As in section 4 it can be proved that the mixed integer linear
programming problem is also polynomially solvable if the number of in-
equalities that involve one or more integer variables is fixed; or,
more generally, if the rank of the matrix formed by the first n

columns of A is bounded.
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