PRIMALITY TESTING WITH ARTIN SYMBOLS

H.W. Lenstra, Jr.

It is a recent discovery that many primality testing algorithms

are based on the following trivial theorem.

Theorem. Let n be an integer, n>1. Then n <s prime if and

only if every divisor of n is a power of n.

This applies to the tests described by Brillhart, Lehmer and
Selfridge [2], to the generalizations thereof mentioned by Williams [8,
Sections 15 and 16], and to the recent algorithm of Adleman, Pomerance
and Rumely [1;5].

In the actual primality tests one does not check that any r
dividing n is a power of n, but that this is true for the images of
r and n in certain groups. For the tests described in [2;8] these
groups are of the form (Z/sZ)*, for certain auxiliary numbers s.
Below we consider, more generally, Galois groups of abelian extensions
of Q. The group (Z/sZ)* arises in this context as the Galois group

of Q(CS) over Q, where Cs denotes a primitive s-th root of unity.

We can usually distinguish three stages in primality testing algo-
rithms that are based on the above theorem. The first stage consists
in the selection of a suitable auxiliary group G. It is supposed that
there is a natural map o from the set of divisors of n to G with
the property that o(rr')=0o(r)o(r') if rr' divides n. For example,
if G=(Z/sZ)* for some integer s with gcd(s,n)=1, we can take

o(r)=(r mod s).

In the second stage of the algorithm one attempts to show that
o(r) is a power of o(n) for every r dividing n; it clearly
suffices to consider only prime divisors r of n. The second stage
generally consists in subjecting n to a collection of 'pseudoprimality'

tests with the following properties: (i) if n is prime, it is known
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to pass the tests; and conversely, (ii) if n passes the tests, then
it follows that o(r) is in the subgroup of G generated by o(n)
for every divisor r of n. Below we shall see how such tests can be
designed. More examples are found in [5]. Usually, most composite
numbers n fail to pass one of the tests. |If this occurs, we know
that n is composite without explicitly knowing a non-trivial factor

of n.

If the second stage has been completed successfully, we know that
o(r) is a power of o(n) for every r dividing n. In the third
stage of the algorithm this information is used to complete the primal-
ity test. This is usually only possible when certain conditions are
satisfied, which must be taken into account when the group G is
selected. In all examples that | know of, these conditions imply that
the subgroup generated by o(n) is '"fairly small'; see below for more

details.

In the tests that we shall describe the group G will always be
the Galois group Gal(K/Q) of a finite abelian extension K of @
with the property that gcd(AK,n)= 1; here AK denotes the discriminant
of K over Q. In such a field, all prime divisors of n are unrami-
fied, and therefore it is meaningful to define o(r)€G to be the
Artin symbol of r for the extension QcK, for r dividing n; see
[4, ch.1 85, Ch.X §1]. In our case, we can describe o(r) explicitly
as follows. By the Kronecker-Weber theorem, there is an embedding

Kc:Q(gS) for some integer s with gcd(s,n)=1. Now o(r) 1is the
restriction to K of the automorphism of Q(gs) sending Cy to gg.
Notice that o(rr')=0o(r)o(r') for rr' dividing n.

Ko(r)= {x€K:0(r)(x)=x} for r dividing n, and by A
a(n)

We put
we denote the ring of integers of the field K In the tests that
we shall describe, the second stage consists in looking for a ring
homomorphism A-+Z/nZ (mapping 1 to 1). To prove that this fits in
our general pattern we must show that (i) if n is prime, then such
a ring homomorphism can be found, and (ii) if such a ring homomorphism
is found, then o(r) belongs to the subgroup of G generated by o(n),
for every (prime) divisor r of n.

To prove (i), assume that n is prime. Then o(n) generates the

KO(n)

decomposition group of n for the extension QcK, so is the

largest subfield of K in which n splits completely. Therefore A



has a prime ideal n for which A/n=~Z/nZ. This proves the existence
of the required ring homomorphism A-Z/nZ. For the purposes of the
algorithm we should also show that it can be found within a reasonable
amount of time. For this we suppose that we know an element o€ A

such that the index of Z[a] in A is finite and relatively prime to
n, and we denote by f the irreducible polynomial of o over Z.

Then finding a ring homomorphism A-+Z/nZ is equivalent to finding a
zero of (fmodn) in Z/nZ. |f the degree of (fmodn) is not too
large there are efficient algorithms to find such a zero, see [3,
§4.6.2, p.430]. If the degree of f s larger there may be a special
technique, or it may be better to use a different description of the
ring A; see the examples below. It should be remarked that all these
methods to find a ring homomorphism A-Z/nZ depend heavily on n
being prime. If n is composite it usually happens that we discover
this in the course of the procedure, e.g. by finding an integer a for
which a" Zamodn. However, there is no guarantee of this sort, and if
the homomorphism A-+Z/nZ has been found we cannot be certain that n

is prime. All we do know is formulated in (ii).

To prove (ii), assume that we have a ring homomorphism A-Z/nZ,
and let r be a prime divisor of n. Composing the map A-+Z/nZ with
the natural map Z/nZ+Z/rZ we see that there is a ring homomorphism
A>Z/rZ, so A/r=~I/rZ for some prime ideal r of A. It follows
from this that r splits completely in KO(n), and therefore Ko(n)
is contained in the decomposition field Ko(r) of r in QcK. This
means precisely that o(r) belongs to the subgroup of G generated by

og(n), as required.

In the third stage of the algorithm this information must be used
to finish the primality test. Below we shall see how to do this in the
case that K= Q(QS) for an integer s satisfying certain conditions.
It would be of interest to find methods that work for more general
fields K.

We consider a special case of the test outlined above. Let s be
the largest divisor of n-1 that one is able to factorize completely,
and let K==Q(C5). The group G is then isomorphic to (Z/sZ)*, with
o(r) €G corresponding to (rmods) €(Z/SZ)%. From nZ1mods we see
that o(n) is the identity on K, so Ko(n)= K and A==Z[CS]. The
irreducible polynomial of ¢y over Z is the s-th cyclotomic poly-

nomial ®g. If a€Z satisfies
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a® = I modn,
s/q _ . R
gcd(a -1,n) =1 for every prime q dividing s,
then (amodn) is a zero of (Cbsmodn) in Z/nZ. If n is actually

prime, then it is usually not difficult to find such an a, by taking

a suitable multiplicative combination of elements of the form
(b(n-])/S modn). Conversely, if an a as above has been found, then
by (ii) we know that o(r) is a power of o(n) for every r dividing

n. This means that r=1mods for every r dividing n. |If

n]/2 then it follows immediately that n is prime. If the weaker

1/3

inequality s>n is satisfied we can also easily finish the prim-

S >

ality test [2, Theorem 5]. Namely, if n is not prime then
n=(xs+1)(ys+1), x>0, y>0, xy<s

for certain integers x,y. From (x-1)(y-1)>0 we obtain 0<x+y<s,
and since x+y = (n-1)/smods this means that we know the value of
x+y. We also know that n=(xs+1)(ys+1), so x and y can be
solved from a quadratic equation. The result tells us immediately
whether n is prime or not. | do not know if there is such a tech-
nique for significantly smaller values of s.

The test just described is a classical one due to Pocklington [71,
and its correctness can easily be proved without the use of Artin
symbols. There are several refinements and extensions that we do not

go into here; see [2].

We now come to the main application of our general test. Let s

be a positive integer that is coprime to n. We assume that the com-

plete prime factorization of s is known. Instead of assuming that s
divides n-1 we now require that the order t of (nmods) in the
group (Z/sZ)* is relatively small. For K we choose the field
Q(CS). As before, G s isomorphic to (Z/sZ)*. The degree of K
over Ko(n) equals t, and the irreducible polynomial of ¢  over
Ko(n) is given by ’

t-1 A
g = 1 (X‘C )
i=0 s

From the fact that Z[(;S] is the ring of integers of K it is easy to

derive that the ring of integers A of Ko(n) is, as a ring, generated
by the coefficients of g. Hence, to find a ring homomorphism A=Z/nZ

it suffices to find an extension ring R of Z/nZ and a ring
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homomorphism Z[CS]—>R mapping the coefficients of g inside Z/nZ.
The first question to answer is which ring R should be tried. If n
is actually prime, then we can take R=Z[CS]/Q for a prime ideal n
lying over n, and this is the finite field of nt elements. So for
R we should take a ring of order nt containing Z/nZ with the
property that R is a field if n is prime. An example of such a
ring is R=(Z/nZ)[T]1/(h) where h€ (Z/nZ)[T] is a monic polynomial of
degree t that is irreducible if n is prime. To find such an h, we
can try random monic polynomials h€ (Z/nZ)[T] of degree t wuntil we
find one that passes an irreducibility test as described in [3, §4.6.2,
pp. 429-430].

Suppose now that R has been constructed. To find the required
ring homomorphism Z[CS]+R it suffices to find an element a€R (the

image of ¢_) satisfying the following conditions:

s
a® = 1,

s/q . .

a -1 €R* for each prime q dividing s;
t-1 ;

m (X-an') has coefficients in Z/nZ.

i=0

If n is actually prime then it is usually easy to find such an a, by
taking a suitable multiplicative combination of elements of the form
b(nt-l)/s’ b€eR. Conversely, if an a as above has been found then it
follows that there exists a ring homomorphism A->Z/nZ, so by (ii)
every divisor r of n s congruent to a power of nmodulos.

To finish the test using this information we must again assume
1/2

that s is sufficiently large. |If s>n then it suffices to try
the remainders of l,n,nz,...,nt_] modulo s as possible divisors of n.
The weaker condition 5>nl/3 is also sufficient to finish the test,
by the following result, applied to dE],n,nz,...,nt_I mod s: if
d,s,n are integers satisfying

s>n‘/3>0 , gcd(d,s) =1,
then n has at most 11 divisors that are congruent to dmodulos, and

there is an efficient algorithm that determines all these divisors.

This is proved in [6]. | do not know whether a similar result holds

for s>n]/l*.



346

The expected running time of this primality test is strongly
affected by the size of t. To find an upper bound for t we invoke
a result of Pomerance and Odlyzko [1, Section 6]. They proved that for

each n>e® there exists a positive integer t with
.c logloglogn
t < (logn) ,

where ¢ is an absolute effectively computable constant, such that the

number
= gprime,q-1divides t 4
1/2 , . .
exceeds n . If ged(s,n) =1 then Fermat's theorem implies that
ntE Imods, so s is a completely factored divisor of nt -1. Using

this value for s we can conclude that the expected running time of

1
the algorithm is less than (log n)C logloglogn for some absolute
effectively computable constant c'.
Notice that the above value for s can be used for all n of the

same order of magnitude. Given n, one can often make better choices
of s by employing known prime factors of n' -1 for various small
values of 1. To illustrate this, we show that the well-known Lucas-

Lehmer test for Mersenne numbers [8, Section 13] is a special case of

our test.
let n=2"-1, with m>2. Put e =k, e =e’-2. Then it is
asserted that n is prime if and only if e =0modn.

n+
We derive this from our theory with s=2" ] and t=2. The case

that m is even is easy and uninteresting, by looking modulo 3. So

let m be odd, and define
R = (Z/nZ) [T/ (T2-v2 T-1)

where V2= (Z(mﬂ)/zmod n) €Z/nZ. Denote the image of T in R by

a, and let b=/f-a=—a_] be '"the'' other zero of XZ- /2 X-1 in R.
Then one proves by induction on i that a2' +b2'= (ei modn), for
iZ1. If n is prime then it is easy to check that R is a field in

which a and b are conjugate, so a"=b by the theory of finite
. . . -1
fields. Hultiplying by a one gets a2" = -1, so (em_] mod n) = a2

+ bzm-] = azm_] +a'2m_I =0. Conversely, assume that (e mod n) = 0.

m=1
Then a2m=-l, and therefore



- azm+l _ ’
a2 = gers
and from A ) .
a = a = -a = b
‘we find that
(X-a) (x-a") = (X-a) (x-b) = XZ-vi.x-1,

a polynomial with coefficients in Z/nZ. So we checked the conditions
which guarantee the existence of a ring homomorphism A+Z/nZ, in the
notation used earlier. From our theory it now follows that every
divisor of n is congruent to | or nmodulos. But s> n, so this

clearly implies that n is prime.

I expect that the primality test described in this paper, as well
as the more flexible version formulated in [5, Theorem (8.4)], will
mainly be of practical value when used in combination with the test of
Adleman et al. [1;5], which can also be interpreted in terms of Artin

symbols.
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