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In this paper we present a polynomial-time algorithm to solve the following 
problem: given a non-zero polynomial f e  Q[X] in one variable with rational 
coefficients, find the decomposition of f into irreducible factors in Q[X]. It is well 
known that this is equivalent to factoring primitive polynomials feZ[X] into 
irreducible factors in Z[X]. Here we call f ~  Z[X] primitive if the greatest common 
divisor of its coefficients (the content of f )  is 1. 

Our algorithm performs well in practice, cf. [8]. Its running time, measured in 
bit operations, is O(nl2+n9(log[fD3). Here f~Tl[X] is the polynomial to be 
factored, n = deg(f) is the degree of f, and 

for a polynomial ~ a ~  i with real coefficients a i. 
i 

An outline of the algorithm is as follows. First we find, for a suitable small 
prime number p, a p-adic irreducible factor h of f, to a certain precision. This is 
done with Berlekamp's algorithm for factoring polynomials over small finite fields, 
combined with Hensel's lemma. Next we look for the irreducible factor h o of f in 
Z[X] that is divisible by h. The condition that h o is divisible by h means that h o 
belongs to a certain lattice, and the condition that h o divides f implies that the 
coefficients of h o are relatively small. It follows that we must look for a "small" 
element in that lattice, and this is done by means of a basis reduction algorithm. It 
turns out that this enables us to determine h 0. The algorithm is repeated until all 
irreducible factors of f have been found. 

The basis reduction algorithm that we employ is new, and it is described and 
analysed in Sect. 1. It improves the algorithm given in a preliminary version of [9, 
Sect. 3]. At the end of Sect. 1 we briefly mention two applications of the new 
algorithm to diophantine approximation. 

The connection between factors of f and reduced bases of a lattice is treated in 
detail in Sect. 2. The theory presented here extends a result appearing in [8, 
Theorem 2]. It should be remarked that the latter result, which is simpler to prove, 
would in principle have sufficed for our purpose. 
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Section 3, finally, contains the description and the analysis of our algorithm for 
factoring polynomials. 

It may be expected that other irreducibility tests and factoring methods that 
depend on diophantine approximation (Cantor [3], Ferguson and Forcade [5], 
Brentjes [2, Sect. 4A], and Zassenhaus [16]) can also be made into polynomial- 
time algorithms with the help of the basis reduction algorithm presented in Sect. 1. 

Splitting an arbitrary non-zero polynomial f e Z [ X ]  into its content and its 
primitive part, we deduce from our main result that the problem of factoring such a 
polynomial is polynomial-time reducible to the problem of factoring positive 
integers. The same fact was proved by Adleman and Odlyzko [1] under the 
assumption of several deep and unproved hypotheses from number theory. 

The generalization of our result to algebraic number fields and to polynomials 
in several variables is the subject of future publications. 

1. Reduced Bases for Lattices 

Let n be a positive integer. A subset L of the n-dimensional real vector space IR" is 
called a lattice if there exists a basis b 1, b 2 ..... b, of ~," such that 

n 

t 
In this situation we say that bl, b 2 .. . . .  b n form a basis for L, or that they span L. We 
call n the rank of L. The determinant d(L) of L is defined by 

(1.1) d(L) = tdet(b 1, b 2 . . . .  , b,)l, 

the b i being written as column vectors. This is a positive real number that does not 
depend on the choice of the basis [4, Sect. 1.2]. 

Let b~,b 2 .. . . .  b, elR" be linearly independent. We recall the Gram-Schmidt 
orthogonalization process. The vectors b* (1 _-__iN n) and the real numbers #ij (1 __<j 
< i N  n) are inductively defined by 

i - -1  

(1.2) b * = b i -  • I~,ib*, 
j = l  

(1.3) -" * * * # i i -  (bi, b1 )/(bi, bj ), 

where (,)  denotes the ordinary inner product on Ill". Notice that b* is the 
i - 1  i - 1  

projection of b~ on the orthogonal complement of }-" lRbj, and that ~, IRb i 
i-1 1=I 1=I 

= ~ lRb*, for 1 <_i<n. It follows that b*, b* . . . .  ,b* is an orthogonal basis of IR". 
j = l  

In this paper, we call a basis bl, b2, ...,b n for a lattice L reduced if 

(1.4) I/~,i1<1/2 for l<=j<i<n 

and 

b* 2 > z m ,  12 for l< i__n ,  (1.5) [b*+#i~-i  i-1 = 4 v i - 1  - 
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where I I denotes the ordinary Euclidean length. Notice that the vectors b* 
+#i  i-1 b*- 1 and b*_ 1 appearing in (1.5) are the projections of b t and b i_ 1 on the 

i - 2  

orthogonal complement of ~. ~,b r The constant �88 in (1.5) is arbitrarily chosen, 
j = l  

and may be replaced by any fixed real number y with �88 < y < 1. 

(1.6) Proposition. Let b 1, b 2 . . . .  , b, be a reduced basis for a lattice L in g~", and let 
b~, b 2 ... . .  b, be defined as above. Then we have 

(1.7) [bjl2<2i-l.lb*l 2 for l < j < i - < n ,  

(1.8) d(L) < f i  Ibil < 2 "("- 1)/,,. d(L), 
i = 1  

(1.9) ibll < 2(, - 1)/4. d(t) l / , .  

Remark. If �88 in (1.5) is replaced by y, with �88 < y < 1, then the powers of 2 appearing 
in (1.7), (1.8) and (1.9) must be replaced by the same powers of 4 / (4y-  1). 

Remark. From (1.8) we see that a reduced basis is also reduced in the sense of [9, 
(7)-I. 

Proof of  (1.6). From (1.5) and (1.4) we see that 

b. 2>t_3 ,2 ~- b* l l 2 > � 8 9  2 
i - . ~ - ~ , 4 - - ~ i i - - l !  i -  

for 1 < i < n, so by induction 

Ib*lE<2'-J.lb*[2 for l < j < i < n .  

From (1.2) and (1.4) we now obtain 
i - 1  

Ibi[ 2-- [b*l 2 + ~/~,jlbj 1 2 , 2  
j = l  

i - 1  

<lb*l 2 + E �88 
j = l  

=(1 -t-�88 2)). Ib*l 2 

=< 2 i- 1.1b.12 

It follows that 

[bj[2__<2 ~- 1.1b.i 2 N2 i- 1.1b.i 2 

for 1 -< j< i<n .  This proves (1.7). 
From (1.1), (1.2) it follows that 

d(L) = Idet(b*, b* .. . . .  b*)l 

and therefore, since the b* are pairwise orthogonal 

d(L)= f i  Ib*l. 
i = l  

From Ib*[ ~ Ibil and Ibtl < 2 (i- 1)/2. Ib*l we now obtain (1.8). Putting j = 1 in (1.7) and 
taking the product over i=  1, 2 ... . .  n we find (1.9). This proves (1.6). 
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Remark. Notice that  the proof  of the inequality 

(1.10) d ( t ) <  fi Ibfl 
i=1 

did not require the basis to be reduced. This is Hadamard's inequality. 

(1.11) Proposition. Let L CF," be a lattice with reduced basis b 1, b 2 ..... b,. Then 

Ibll 2 < 2"- 1. ixl 2 

for every x e L ,  x~eO. 

Proof. Write x =  ~ ribi= ~, r;b* with r, eT/, r;elR (1 <i<n).  I f / i s  the largest 
i=1 i=1 

index with r i . 0 then r' i = ri, so 

Ixl 2 _>_ r'i 2 .  Ib*l  2 >__ Ib*l 2 . 

By (1.7), we have Ib 1 [z < 2 i- 1. jb.12 < 2"- 1. ib.12. This proves (1.11). 

(1.12) Proposition. Let L CN" be a lattice with reduced basis b 1, b2,..., b,. Let x 1, 
x 2 .....  x~eL be linearly independent. Then we have 

Ibjl 2 < 2"- 1 .max{Lxl[ 2, Ix2[ 2 . . . . .  Ixt[ 2 } 

for j = l , 2  ....  ,t. 

Proof. Write x j= ~ rljb ~ with rlj~Z ( l < i < n )  for l < j < t .  For  fixed j, let i(j) 
i=1 

denote the largest i for which r i j . 0 .  Then we have, by the proof of (1.i1) 

(1.13) Ix j[ 2 ~ Ibm(j)[ 2 

for 1 =<j =< t. Renumber  the xj such that  i(1)_-< i(2)=<... _<_ i(t). We claim that  j____ i(j) 
for 1 =< j-_< t. If not, then x 1, x2, ..., xj would all belong to P,b i + Rb2 +. . .  + IRbj_ 1, a 
contradiction with the linear independence of x 1, x2 . . . . .  x r From j__< i(j) and (1.7) 
we obtain, using (1.13): 

[bjl2<~2i(J) -1.  h* 2 < 2 " - 1  ~'03 - "Ib~(J) 12 -<- 2 " -  1.  ixjl2 

for j = 1, 2 . . . .  , t. This proves (1.12). 

Remark. Let ,tl, 2 2 . . . . .  2. denote the successive minima of 112 on L, see I-4, Chap. 
VIII],  and let b, ,b 2 . . . .  ,b.  be a reduced basis for L. Then (1.7) and (1.12) easily 
imply that  

21 -%<lb i12<2" - l ; q  for l<_i<n, 

so [b~l 2 is a reasonable approximation of 2 v 

(1.14) Remark. Notice that  the number  2 "-1 may in (1.11) be replaced by 
max{[bll2/lb*12: l < iNn}  and in (1.12) by max{[bjl2/lb*12: l <j<__i<n}. 

(1.15) We shall now describe an algori thm that  transforms a given basis 
b , b  2 . . . .  ,b, for a lattice L into a reduced one. The algorithm improves the 
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algorithm given in a preliminary version of [9, Sect. 3]. Our description 
incorporates an additional improvement due to J. J. M. Cuppen, reducing our 
running time estimates by a factor n. 

To initialize the algorithm we compute b* (1 < i <  n) and #i~ (1 < j  <i_<_ n) using 
(1.2) and (1.3). In the course of the algorithm the vectors bl, b 2 . . . . .  b, will be 
changed several times, but always in such a way that they form a basis for L. After 
every change of the b~ we shall update the b* and #ij in such a way that (1.2) and 
(1.3) remain valid. 

At each step of the algorithm we shall have a current subscript 
k~{1,2 .. . . .  n+  1}. We begin with k=2.  

We shall now iterate a sequence of steps that starts from, and returns to, a 
situation in which the following conditions are satisfied: 

(1.16) I~jl__<�89 for l < j < i < k ,  

(1.17) [b*+/~ i h* 2>_alh. 2 for l < i < k .  i - l ~ i - - 1  = 4  Vi- l !  

These conditions are trivially satisfied if k = 2. 
In the above situation one proceeds as follows. If k-- n + 1 then the basis is 

reduced, and the algorithm terminates. Suppose now that k__<n. Then we first 
achieve that 

(1.18) [#kk_l[<�89 if k > l .  

If this does not hold, let r be the integer nearest to #k k-~, and replace b k by b k 
- r b k - 1 .  The numbers #kj with j <  k - 1  are then replaced by #ki--rPk-1 j, and 
#k k- 1 by #k k- 1 -- r. The other Po and all b* are unchanged. After this change (1.18) 
holds. 

Next we distinguish two cases. 

Case 1. Suppose that k > 2 and 

2<3_ h* 2 (1.19) Ib'~ + ~ k k - l b * - i  4 ~k-1 �9 

Then we interchange b k_ 1 and b k, and we leave the other b i unchanged. The 
vectors b*_ t and b~' and the numbers/~kk- 1, #k- l j, #ki' Pik- 1, #ik, for j < k -  1 and 
for i > k, have now to be replaced. This is done by formulae that we give below. The 
most important one of these changes is that b~'_ 1 is replaced by b* + #k k- lbk - 1 ; SO 
the new value of tb~'_ 1[ 2 is less than ] times the old one. These changes being made, 
we replace k by k -  1. Then we are in the situation described by (1.16) and (1.17), 
and we proceed with the algorithm from there. 

Case 2. Suppose that k = 1 or 

(1.20) [b~+lakk_lb~ - 2 3 * 2 11 >~lbk- l l  . 

In this case we first achieve that 

(1.21) I~k~l<�89 for l < - j ~ k - 1 .  

[For  j = k -  1 this is already true, by (1.18).] If (1.21) does not hold, let l be the 
largest index < k with I~1 >�89 let r be the integer nearest to #kZ, and replace b k by 
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b k - rb~. The numbers #kj with j < l are then replaced by #k j - -  rib j, and gkl by #kt-  r ; 
the other Po and all b* are unchanged. This is repeated until (1.21) holds. 

Next we replace k by k + 1. Then we are in the situation described by (1.16) and 
(1.17), and we proceed with the algorithm from there. 

Notice that in the case k = 1 we have done no more than replacing k by 2. 
This finishes the description of the algorithm. Below we shall prove that the 

algorithm terminates. 

(1.22) For the sake of completeness we now give the formulae that are needed in 
case 1. Let bl, b 2 . . . .  , b, be the current basis and b*, #ij as in (1.2) and (1.3). Let k be 
the current subscript for which (1.16), (1.17), (1.18), and (1.19) hold. By % c*, and v~j 
we denote the vectors and numbers that will replace bi, b*, and #q, respectively. 
The new basis c 1, c 2 . . . .  , c, is given by 

Ck_l=bk, ck=bk_l, c i = b  i for i ~ - k - l , k .  
k - 2  

Since c*_ 1 is the projection of b k on the orthogonal complement of ~ lRbj we 
j = l  

have, as announced: 

c*_ 1 = b *  + # k k _ l b ~ _ l  

[cf. the remark after (1.5)]. To obtain c* we must project b*_ 1 on the orthogonal 
complement of lRc~'_ r That leads to 

W ( C *  C *  V R R - I = ( b ~ - I , C * - I , , ,  k - l ,  k - l )  

- b* 2 * 2 - - ~ k k - x l  k - l l  / I c k - l l  , 

c * - b *  - * - -  k - - 1  P k k - l C k - 1  " 

For i # k -  1, k we have c * = b * .  Let now i > k .  To find V~k_ ~ and Vik we substitute 

b * _ -  * +c* 1 - - V k k - l C k - 1  

b* =(1 - - # k k -  Irk k-  1)Ck - 1 -- # k k -  Z Ck 

- b* 2 * 2 * , -(I ~1/Ic~-~l ) ' c ~ _ l - ~ _ ~ c ~  

i - 1  

in b~ = b* + ~. &~b*. That yields 
j = l  

v i ~ - ~ = ~i k -  l v k k - 1 + /al~lb *12 / I c L  1t ~ 

Finally, we have 

Vlk = #i k-  1 -- lhk#k k-  1" 

Vk - 1 j -~- ~'lkj ' Pk j  -~- ~'Lk - 1 j 

for l < j < k -  1, and v~j=~j if 1 <-_j<i<=n, { i , j } • ( k -  1, k )  = ~ .  

We remark that after the initialization stage of the algorithm it is not necessary 
to keep track of the vectors b*. It suffices to keep track of the numbers Ib*l 2, in 

C* 2 _  b*  2 , 2  , 2 addition to/~ij and the vectors b i. Notice that I kl --I k-ll "lbkl /]CR-11 in the 
above, and that the left hand side of (1.19), (1.20) equals [ktb* 2 +l lkk_ l lbk_ l l .2  * 2 

The entire algorithm is represented in Fig. 1, in which B l = Ib~l 2. 
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(1) 

(2) 

(,) 

b * : = b l ;  

#ij (b,, b*)/Bi 
;~ for j = l , 2  . . . . .  i - l ;  

be . - b e  /~ljbi ) 

B, : = (b*, b*) 

k : = 2 ;  

per form (.)  for I = k -  1 ; 

if Bk<(�88 go to (2); 

pe r form (.)  for l = k -  2, k -  3 . . . . .  1 ; 

if k = n, t e rmina te ;  

k : = k + l ;  

go to (1); 

# : = P k k - 1  ; B:=Bk +#ZBk-~ ; Igkk-l :=#Bk-1/B; 

Bk:=Bk_aBk/B; Bk_ 1 : = B ;  

#~k / 1 ] \ 1  - - # / \  #~k / 

if k > 2 ,  then  k : = k - 1 ;  

go to (1). 
If I~1>~, then :  

r:  = integer neares t  to #kt ; bk: = bk-- rbt ; 

#~  : = / ~ j - -  r/~lj for j = 1, 2 . . . . .  l -  1 ; 

/zta: = ~tkS -- r.  

Fig. 1. The  reduct ion  a lgor i thm 

for i =  1 ,2 , . . . , n ;  

i = k + l ,  k + 2 , . . . , n ;  

(1.23) To prove that the algorithm terminates we introduce the quantities 

(1.24) di = det((bi, bz)) 1 _< j, l__< 

for 0 < i < n. It is easily checked that 
i 

(1.25) d ,= I-I [b*l 2 
j = l  

for 0 <  i < n. Hence the d i are positive real numbers. Notice that d o = 1 and d, 
=d(L) 2. Put  

n- -1  

D =  1-I di. 
i=1  

By (1.25), the number D only changes if some b* is changed, which only occurs in 
case 1. In case 1, the number d k_ 1 is reduced by a factor <�88 by (1.25), whereas the 
other d~ are unchanged, by (1.24); hence D is reduced by a factor <�88 Below we 
prove that there is a positive lower bound for d t that only depends on L. It follows 
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that there is also a positive lower bound for D, and hence an upper bound for the 
number of times that we pass through case 1. 

In case 1, the value of k is decreased by 1, and in case 2 it is increased by 1. 
Initially we have k=2,  and k < n +  1 throughout the algorithm. Therefore the 
number of times that we pass through case 2 is at most n -  1 more than the number 
of times that we pass through case 1, and consequently it is bounded. This implies 
that the algorithm terminates. 

To prove that d i has a lower bound we put 

m(L) = min{Ix[ 2 :xE L, x ~: 0}. 

This is a positive real number. For i > 0, we can interpret d i as the square of the 
determinant of the lattice of rank i spanned by b 1, b 2 ..... bi in the vector space 

P, bj. By I-4, Chap. I, Lemma 4 and Chap. II, Theorem I], this lattice contains a 
./=1 
non-zero vector x with Ixl 2<(4/3) ti- l)/2d~/i. Therefore di>(3/4) i"-l)/2m(L)~, as 
required. 

We shall now analyse the running time of the algorithm under the added 
hypothesis that b~eZ n for l < i < n .  By an arithmetic operation we mean an 
addition, subtraction, multiplication or division of two integers. Let the binary 
length of an integer a be the number of binary digits of lal. 

(1.26) Proposition. Let LC7Z ~ be a lattice with basis bl,b 2 ..... b,, and let Beff(, 
B > 2, be such that [bil2 <= B for 1 < i < n. Then the number of arithmetic operations 
needed by the basis reduction algorithm described in (1.15) is O(n41ogB), and the 
integers on which these operations are performed each have binary length O(n log B). 

Remark. Using the classical algorithms for the arithmetic operations we find that 
the number of bit operations needed by the basis reduction algorithm is 
O(nr(logB)3). This can be reduced to O(n 5 + ~(logB) 2 + ~), for every e > 0, if we employ 
fast multiplication techniques. 

Proof of (1.26). We first estimate the number of times that we pass through cases 1 
and 2. In the beginning of the algorithm we have d i < B i, by (1.25), so D ~ B ~t"- 1)/2 
Throughout the algorithm we have D ~ 1, since die 7Z by (1.24) and d i > 0 by (1.25). 
So by the argument in (1.23) the number of times that we pass through case 1 is 
O(n 2 logB), and the same applies to  case 2. 

The initialization of the algorithm takes O(n 3) arithmetic operations with 
rational numbers; below we shall see how they can be replaced by operations with 
integers. 

For (1.18) we need O(n) arithmetic operations, and this is also true for case 1. In 
case 2 we have to deal with O(n) values of l, that each require O(n) arithmetic 
operations. Since we pass through these cases O(n 2 logB) times we arrive at a total 
of O(n 4 logB) arithmetic operations. 

In order to represent all numbers that appear in the course of the algorithm by 
means of integers we also keep track of the numbers d~ defined by (1.24). In the 
initialization stage these can be calculated by (1.25). After that, they are only 
changed in case 1. In that case, dk_ 1 is replaced by d k_ 1.lc~_ll2/Ib*_ll2=dk_2 
'lc*_ t[ 2 [in the notation of (1.22)] whereas the other d i are unchanged. By (1.24), 
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the d~ are integers, and we shall now see that they can be used as denominators for 
all numbers that appear: 

(1.27) [b*12=dJd~_l ( l < i < n ) ,  

(1.28) d~_ ib*eLC7Z," (1 <i<n) ,  

(1.29) djldij~7Z (1 < j < i < n ) .  

i - 1  

The first of these follows from (1.25). For the second, we write b* = b i -  )-" ;t~rb j 
r = l  with 2~jel~ Solving 2i~ ... . .  2ii_ ~ from the system 

i - 1  

(b~,bz)= ~ 2,j(br, b~) ( 1 < / < i - 1 )  
j = l  

and using (1.24) we find that d~_12ireZ, whence (1.28). Notice that the same 
argument yields 

di-1 bk-- #kjb eZ" for i < k ;  
J 

this is useful for the calculation of b~ at the beginning of the algorithm. To prove 
(1.29) we use (1.3), (1.27), and (1.28): 

dj~ii = d flb~, b*)/(b*, b*) = d r_ ~(b~, b*) = (b~, d r_ ~b*)e 7z. 

To finish the proof of (1.26) we estimate all integers that appear. Since no d~ is 
ever increased we have d~<B ~ throughout the algorithm. This estimates the 
denominators. To estimate the numerators it suffices to find upper bounds for 
Ib~'l 2, Ib,I 2, and [/~l. 

At the beginning we have Ib*12<lb~12<B, and max{Ib*12:l<i<n} is non- 
increasing; to see this, use that * 2 3 , c * 2 < b *  2 ICk-ll <~lb~-l l  2 and k = k-1 in (1.22), the 

�9 is a projection of b~'_ r Hence we have tb*t2<B latter inequality because c k 
throughout the algorithm. 

To deal with [b~l 2 and /~j we first prove that every time we arrive at the 
situation described by (1.16) and (1.17) the following inequalities are satisfied: 

(1.30) Ib~12<=nB for i ~ k ,  

(1.31) Ibkl 2 < n2(4B)" if k 4: n + 1, 

(1.32) I~irl<�89 for l<=j<i, i<k ,  

(1.33) [I, tij[ < (nBJ) 1/2 for 1 < j  < i, i > k, 

(1.34) I#krl<2"-k(nB"-l) 1/2 for l ~ j < k ,  if k # : n + l .  

Here (1.30), for i < k, is trivial from (1.32), and (1.31) follows from (1.34). Using that 

(1.35) #~ < Ib,I 2/1b*12 = dj_ 11b,I 2td~ < n r- 11b,12 

we see that (1.33) follows from (1.30), and (1.32) is the same as (t.16). It remains to 
prove (1.30) for i>  k and to prove (1.34). At the beginning of the algorithm we even 
have Ib~12 < B and #2~Br, by (1.35), so it suffices to consider the situation at the 
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end of cases 1 and 2. Taking into account that k changes in these cases, we see that 
in case 1 the set of vectors {b i : i ~  k} is unchanged, and that in case 2 the set 
{bi:i>k } is replaced by a subset. Hence the inequalities (1.30) are preserved. At 
the end of case 2, the new values for #kj (if k + n + 1) are the old values of #k § 1 ~, SO 
here (1.34) follows from the inequality (1.33) at the previous stage. To prove (1.34) 
at the end of case 1 we assume that it is valid at the previous stage, and we follow 
what happens to gkj" To achieve (1.18) it is, for j < k -  1, replaced by #kS--r#k-1 j, 

<2-1 with Ir[<2[#kk_ll and I/~k-1 jl=2, so 

(1.36) I/~k~-- r /~_ 1 jl----< I~h~l + I ~  ~- 11 
<2"-k+l(nB"-l) 1/2 by (1.34). 

In the notation of (1.22) we therefore have 

]Vk_lj[<2"-tk-l)(nB"-l) 1/2 for j < k - 1  

and since k - 1  is the new value for k this is exactly the inequality (1.34) to be 
proved. 

Finally, we have to estimate Ibi[ 2 and #~j at the other points in the algorithm. 
For  this it suffices to remark that the maximum of I~kll, I~kzl . . . . .  I~k k- 11 is at most 
doubled when (1.18) is achieved, by (1.36), and that the same thing happens in 
case 2 for at most k - 2  values of I. Combining this with (1.34) and (1.33) we 
conclude that throughout the course of the algorithm we have 

I#i~l<2"-l(nB"-l) 1/2 for l <j<i<n 
and therefore 

Ib~l 2 < n2(4B)" for 1 < i < n. 

This finishes the proof of (1.26). 

(1.37) Remark. Let 1 < n' < n. If k, in the situation described by (1.16) and (1.17), is 
for the first time equal to n' + 1, then the first n' vectors b~, b2,..., b,, form a reduced 
basis for the lattice of rank n' spanned by the first n' vectors of the initially given 
basis. This will be useful in Sect. 3. 

(1.38) Remark. It is easily verified that, apart from some minor changes, the 
analysis of our algorithm remains valid if the condition L C 77" is replaced by the 
condition that (x, y)e 77 for all x, y ~ L;  or, equivalently, that (b i, b j)e 77 for 1 < i, j ~ n. 
The weaker condition that (b~,bj)~ll~, for 1 <i, j<n, is also sufficient, but in this 
case we should clear denominators before applying (1.26). 

We close this section with two applications of our reduction algorithm. The 
first is to simultaneous diophantine approximation. Let n be a positive integer, 
cq, at 2 .. . . .  ~, real numbers, and eEIR, 0 < e < 1. It is a classical theorem [4, Sect.V. 10] 
that there exist integers Pl, P2 .. . . .  p,, q satisfying 

IPl-q~l  <e  for l < i ~ n ,  

l <=q<e-". 

We show that there exists a polynomial-time algorithm to find integers that satisfy 
a slightly weaker condition. 
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(1.39) Proposition. There exists a polynomial-time algorithm that, given a positive 
integer n and rational numbers cq, ~t 2 . . . .  , ~,, ~ satisfying 0 < e <  1, finds integers Pl, 
P2 .. . . .  p,, q for which 

[Pi-q~i] <e for l < i < n ,  

1 < q < 2  "("+ 1)/4e-". 

Proof. Let L be the lattice 
(n + 1) x (n + 1)-matrix 

1 0 

0 1 

0 0 

0 0 

of  rank  n + l  spanned  by 

... 0 - ~ 1  \ 

... 0 - a ~  

" . .  

. . .  1 - -  0~. 

. . .  0 2-n(n+ l)/4~ n+ l 

the columns of the 

The  inner p roduc t  of  any two columns is rat ional,  so by (1.38) there is a 
po lynomia l - t ime a lgor i thm to find a reduced basis bl,  b 2 . . . . .  b,+ 1 for L. By (1.9) 
we then have 

ibll <2. /4  .d(L)l/(,+ 1)=a. 

Since b~eL, we can write 

b x = (P 1 - qct 1, P2 - qCta . . . .  , p , -  qct,, q.  2 -  "t" + 1)/4~, + 1)m 

with Pl, P2 . . . .  ,p., qe7L It  follows that  

[Pi-  qcql < e for 1 --% i < n, 

Iql < 2"~"+ 1)/%-., 

F r o m  e < 1 and  b 1 # 0 we see that  q ~= 0. Replacing b 1 by - b 1, if necessary, we can 
achieve tha t  q > 0. 

This proves  (1.39). 
Another  appl icat ion of our  reduct ion a lgor i thm is to the p rob lem of finding 

Q-l inear  relat ions a m o n g  given real numbers  al ,  a2 . . . .  ,0t,. Fo r  this we take the 
lattice L to be 77", embedded  in IR "+ 1 by 

( ( m l ,  m2,. . . ,mn)P--~ m l , m 2 , . . . , m n ,  C m i~  i , 
i = 1  

here c is a large cons tant  and  g', is a good  ra t ional  app rox ima t ion  to cq. The first 
basis vector  of  a reduced basis of  L will give rise to integers ml, m 2 . . . . .  m. tha t  are 

not  too large such that  s mi~ i is very small. 
P I  

i = 1  

Applying this to gi = ~d- x we see tha t  our  a lgor i thm can be used to test a given 
real n u m b e r  0t for algebraicity, and  to determine its irreducible polynomial .  Tak ing  
for a a zero of a po lynomia l  f e Z [ X ] ,  f~eO, and generalizing the a lgor i thm to 
complex ct, one finds in this way an irreducible factor  of  f in 7Z[X]. I t  is likely tha t  
this yields actually a po lynomia l - t ime a lgor i thm to factor  f in Q[X] ,  an a lgor i thm 
tha t  is different f rom the p-adic me thod  described in Sect. 3. 

In a similar way we can test given real numbers  a, fl, ~ . . . .  for algebraic 
dependence,  taking the ~ti to be the monomia l s  in g, fl, V . . . .  up to a given degree. 
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2. Factors and Lattices 

In this section we denote by p a prime number and by k a positive irrteger. 
We write Z/pkTZ for the ring of integers modulo pk, and IFp for the field 
7//pTZ. For g=~aiXiET~[X] we denote by (gmodp k) the polynomial 

i 
~. (ai modpk)Xie (2Upk7Z)[X]. 

i 

We fix a polynomial f ~  Z[X] of degree n, with n > 0, and a polynomial he Z[X] 
that has the following properties: 

(2.1) h has leading coefficient 1, 

(2.2) (hmodp k) divides ( f  modp  k) in (7Z/pk?Z)[X], 

(2.3) (h modp) is irreducible in lFp[X], 

(2.4) (hmodp) 2 does not divide ( fmodp)  in IFp[X]. 

We put l-- deg(h) ; so 0 < l < n. 

(2.5) Proposition. The polynomial f has an irreducible factor h o in 7ZIX] for which 
(hmodp) divides (homodp) , and this factor is uniquely determined up to sign. 
Further, if  g divides f in 7Z[X], then the following three assertions are equivalent: 

(i) (h modp) divides (g modp) in IFp[X], 
(ii) (h modp k) divides (g modp k) in (7l/pk2~)[X], 

(iii) h o divides g in 7ZI-X-I. 
In particular (h modp k) divides (h o modp k) in (77/pk7Z)[X]. 

Proof. The existence of h o follows from (2.2) and (2.3), and the uniqueness, up to 
_+1, from (2.4). The implications (ii)=~ (i) and (iii)=~ (i) are obvious. Now 
assume (i); we prove (iii) and (ii). From (i) and (2.4) it follows that (h modp) does 
not divide (fig modp) in Fp[X]. Therefore h o does not divide f ig  in 7ZI-X], so it 
must divide g. This proves (iii). By (2.3) the polynomials (h modp) and (fig modp) 
are relatively prime in IFp[X], so in IFp[X] we have 

(21 modp).  (h modp) + (#1 modp).  (fig modp) = 1 

for certain 2a,/alETZ[X ]. Therefore 2 1 h + l ~ l f / g = l - p v l  for some v l~Z[X  ]. 
Multiplying this by 1 +pv 1 +p2v2 + ... +pk- lv]-1  and by O we obtain 

22h + #2 f =  g modpkZ[x]  

for certain 22, #2EZ[X]. Since the left hand side, when taken modulo pk, is divisible 
by (h modpk), the same is true for the right hand side. This proves (ii). 

The final assertion of (2.5) follows if we take g = h o. This proves (2.5). 

(2.6) In the remainder of this section we fix an integer m with m ~ l, and we let L be 
the collection of all polynomials in ~.[X] of degree =m that, when taken modulo pk, 
are divisible by (h modp k) in (TZ/pkTZ)[X]. This is a subset of the (m + 1)-dimensional 
real vector space IR + R . X  + . . .  + R .X m. This vector space is identified with IR m + 1 

by identifying a~f i with (ao, a 1 . . . . .  a,,,). Notice that the length a~X i of a 
i = O  t 
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polynomial, as defined in the introduction, is equal to the ordinary Euclidean 
length of (a 0, a 1 . . . . .  am). It is easy to see that L is a lattice in Rm+ 1 and, using (2.1), 
that a basis of L is given by 

{pkX~ :O<<_i <l}w{hXJ : O < j < m - l } .  

From (1.1) it follows that d(L)=p kt. 
In the following proposition h o is as in (2.5). 

(2.7) Proposition. Let b~ L satisfy 

(2.8) pkt > lflm.lb{". 

Then b is divisible by h o in 7Z[X], and in particular gcd( f  b )#  1. 

Remark. A weaker version of (2.7), which could also be used to obtain a 
polynomial-time factoring algorithm for polynomials, asserts that gcd (f, b) 4: l 
under the same conditions. The proof of this version is less complicated than the 
proof given below, see [8, Theorem 2]. 

Proof of (2.7). We may assume that b#:0. Let g=gcd(f ,b) .  By (2.5) it suffices to 
show that (h modp) divides (g modp). Suppose that this is not the case. Then by 
(2.3) we have 

(2.9) ~-3 h + #3g = 1 - pv 3 

for certain 2 3, #3, v3E 7/IX]. We shall derive a contradiction from this. 
Put  e = deg(9) and m' = deg(b). Clearly 0 < e < m' < m. We define 

M = {).f + #b : 2, #~ 7/IX], deg(2) < m' - e, deg(#) < n -  e} 

C Z + 7 / ' X  + . . .  +7/ .X "+" ' -  ~- 1. 

Let M' be the projection of M on 

2g .X~+ 7/.X e+ 1 + . . .  + Z .X "+" ' - e -  1. 

Suppose that 2 f  + #b projects to 0 in M', with ;t, # as in the definition of M. Then 
deg(2f+#b)<e,  but O divides 2f+l~b, so 2 f + # b = 0 .  From 2 . ( f / 9 ) = - # ' ( b / o )  
and gcd(f/9, b/9)= 1 it follows that f /o  divides #. But deg(#)< n - e  = deg(f/9), so 
# = 0, and therefore also ;t = 0. 

This proves that the projections of 

{x i f  : O < i < m ' - e } ~ { X J b  :O<=j<n-e} 

on M' are linearly independent. Since these projections spanM', it follows that M' 
is a lattice of rank n + m ' - 2 e .  From Hadamard's inequality (1.10) and (2.8) we 
obtain 

(2.10) d(M') < Ifl m'- ~ . I bl "-e < Ifl"" Ibl" < pk, . 

Below we deduce from (2.9) that 

(2.11) {v~M : deg (v )<e+  l} cpkTZ[X]. 
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Hence, if we choose a basis b,,,be+ 1 . . . .  ,b,+m,-e-1 of M' with deg(bj)=j, see [4, 
Chap. I, Theorem I.A], then the leading coefficients of be, be+l, ...,b~+z_ 1 are 
divisible by pk. [Notice that e + l - l < n + m ' - e - 1  because g divides b and 
(h modp) divides (fig modp).] Since d(M') equals the absolute value of the product 
of the leading coefficients of be, be+ 1, ...,b,,+,n,e_ 1 we find that d(M')>p kl. 
Combined with (2.10) this is the desired contradiction. 

To prove (2.11), let v~M, deg(v)< e + I. Then g divides v. Multiplying (2.9) by 
v/g and by 1 + pv 3 + p272 q- _k- 1. k- 1 ... +p  v 3 we obtain 

(2.12) 24h + #4 v - v/g mod pkT][X] 

with 24,/~4~Z[X]. From v e M  and be_L it follows that (vmodp k) is divisible by 
(hmodpk). So by (2.12) also (v/gmodp k) is divisible by (hmodpk). But (hmodp k) is 
of degree l with leading coefficient 1, while (v/gmodp k) has degree < e +  l - e =  I. 
Therefore v/9 - 0 modpkZ[X], so also v -- 0 modpkT/[X]. This proves (2.11). 

This concludes the proof of (2.7). 

(2.13) Proposition. Let p, k, f, n, h, l be as at the beginning of this section, h o as in 
(2.5), and m, L as in (2.6). Suppose that bx, b 2 . . . . .  br,+ l is a reduced basis for L (see 
(1.4) and (t.5)), and that 

(2.14) pkZ> 2,,.,,,/2 (2mm )"/2lflr,,+,. 

Then we have deg(ho)<m/f  and only if 

(2.15) Ibll <(pkZ/lflm) 1/" . 

Proof The "if'-part is immediate from (2.7), since deg(bl)~ m. To prove the "only 

if'-part, assume that deg(ho)<m. Then hoeL by (2.5), and Ihol< "lfl by a 

result of Mignotte [10; cf. 7, Exercise 4.6.2.20]. Applying (1.11) to x =h  o we find 

that Ib11<2"/2.1hol<__2"/2. "lfl. By (2.14) this implies (2.15). This proves 

(2.13). 

(2.16) Proposition. Let the notation and the hypotheses be the same as in (2.13), and 
assume in addition that there exists an index je  {1, 2 . . . .  , m + 1} for which 

(2.17) [b j] < (pkZ/lfl")1/,. 

Let t be the largest such j. Then we have 

deg(ho) = m + 1 - t, 

h o = gcd(b x, b 2 . . . .  , bt), 

and (2.17) holds for all j with 1 ~ j < t .  

Proof Let J={ je{1 ,2  ... . .  m + l } :  (2.17) holds}. From (2.7) we know that h o 
divides bj for every j~J.  Hence if we put 

hi = gcd({bj :j~ J}) 
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then h o divides h t. Each bj, j~ J, is divisible by h 1 and has degree < m, so belongs to 

2~-h~ + Z .h lX  + ... + Z . h l X  m-a'*th~ . 

Since the bj are linearly independent this implies that 

(2.18) ~ J < m + 1 - deg(hl). 

By the result of Mignotte used in the proof of (2.13) we have IhoXil=}hol 

< "If[ for all i>0.  For  i=0 ,1  . . . . .  m-deg(ho)  we have hoXieL, so from 

(1.12) we obtain 

Ib~l < 2 m/2" "Ifl 

for 1 < j < m +  1 -deg(ho).  By (2.14), this implies that 

(2.19) { 1, 2 .. . . .  m + 1 - deg(ho) } C J .  

From (2.18), (2.19) and the fact that h o divides h 1 we now see that equality must 
hold in (2.18) and (2.19), and that 

deg(ho)=deg(hx )=m+l- t ,  J = { 1 , 2  .. . . .  t}. 

It remains to prove that h o is equal to hx, up to sign, and for this it suffices to check 
that hi is primitive. Choose j eJ ,  and let dj be the content of bj. Then bj/dj is 
divisible by h o, and howL, so b /d i lL .  But bj belongs to a basis for L, so dr= 1 and 
b 2 is primitive, and the same is true for the factor h i of bj. This finishes the proof of 
(2.16). 

Remark. If t =  1 then we see from (2.16) that b~ is an irreducible factor of f, and 
that no god computation is necessary. 

Remark. From the proofs of (2.13) and (2.16) we see that (2.14) may be replaced by 

pkZ > fl"7"lflm , 

where fl = max {Ibjl/Ib*,l : 1 < j  < i ~ m + 1 } [cf. (1.14)] and where 7 is such that 101 < y 
for every factor # of f in Z[X] with deg(g)<m. 

3. Description of the Algorithm 

Denote by f a primitive polynomial in Z[X] of degree n, with n > 0. In this section 
we describe an algorithm that factors f into irreducible factors in Z[X]. We begin 
with two auxiliary algorithms. 

(3.1) Suppose that, in addition to f and n, a prime number p, a positive integer k 
and a polynomial heT/[X] are given satisfying (2.1), (2.2), (2.3), and (2.4). Assume 
that the coefficients of h are reduced modulo pk, SO 

[hi 2 ~< 1 + l p  2k , 
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where l=  deg(h). Let further an integer m > l  be given, and assume that inequality 
(2.14) is satisfied: 

pk, > 2r,,/2 . (2mm)"/2 . ,flm+, . 

We describe an algorithm that decides whether deg(ho)<m, with h o as in (2.5), and 
determines h o if indeed deg(ho) < m. 

Let L be the lattice defined in (2.6), with basis 

{pkXi :0 < i <  l}u{hX j : O < j < m - l } .  

Applying algorithm (1.15) we find a reduced basis bl,b 2 .... ,b,,+l for L. If Ibll 
>(pkZ/Iflm)l/" then by (2.13) we have deg(ho)>m, and the algorithm stops. If tbll 
< (pkl/lflr')l/" then by (2.13) and (2.16) we have deg(ho)< m and 

h o = gcd(bl, b2 ... . .  bt) 

with t as in (2.16). This gcd can be calculated by repeated application of the 
subresultant algorithm described in [7, Sect. 4.6.1]. This finishes the description of 
algorithm (3.1). 

(3.2) Proposition. The number of arithmetic operations needed by algorithm (3.1) is 
O(m4k logp), and the integers on which these operations are performed each have 
binary length O(mk logp). 

Proof. We apply (1.26) with m + 1 in the role of n and with B = 1 + Ip 2k. From 1 < n 
and (2.14) we see that m = O(k logp), so log /<  l < m implies that log B = O(k logp). 
This leads to the estimates in (3.2). It is straightforward to verify that the gcd 
computation at the end satisfies the same estimates. This proves (3.2). 

(3.3) Next suppose that, in addition to f and n, a prime number p and a 
polynomial heZ[X]  are given such that (2.1), (2.2), (2.3), and (2.4) are satisfied with 
k replaced by 1. Assume that the coefficients of h are reduced modulo p. We 
describe an algorithm that determines h o, the irreducible factor of f for which 
(h modp) divides (h 0 modp), cf. (2.5). 

Write/=deg(h).  If l=  n then h o =f ,  and the algorithm stops. Let now l<  n. We 
first calculate the least positive integer k for which (2.14) holds with m replaced by 
n - l :  

1),/2 ( 2 ( n -  1)/"/2 . ifl2,_ 1 
pU>2(,- "\ n - 1  ] 

Next we modify h, without changing (h modp), in such a way that (2.2) holds for 
the value of k just calculated, in addition to (2.1), (2.3), and (2.4). This can be 
accomplished by the use of Hensers lemma, see I'7, Exercise 4.6.2.22; 14; 15; 13]. 
We may assume that the coefficients of h are reduced modulo pk. 

Let u be the greatest integer for which l~  ( n -  1)/2 u. We perform algorithm (3.1) 
for each of the values m = 1'(n- 1)/2"1 [ ( n -  1)/2 ~- 1] . . . . .  I-(n- 1)/2], n -  1 in 
succession, with 1-x] denoting the greatest integer < x ; but we stop as soon as for 
one of these values of m algorithm (3.1) succeeds in determining h o. If this does not 
occur for any m in the sequence then deg(ho)> n - 1 ,  so h o = f  and we stop. This 
finishes the description of algorithm (3.3). 
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(3.4) Proposition. Denote by m o =deg(ho) the degree of the irreducible factor h o of 
f that is found by algorithm (3.3). Then the number of arithmetic operations 
needed by algorithm (3.3) is O(mo(nS +n41oglfl+nalogp)), and the integers on 
which these operations are performed each have binary length O(n3 +n21oglfl 
+ n logp). 

Proof From 

it follows that 

(2(n- 1)] "/2 [f12,_ 1 Pk-l<P<k-1)t<2t"-l)"/2\ n--1 ] 

k logp = ( k -  1) logp + logp = O(n 2 q- n loglfl + logp). 

Let m I be the largest value of m for which algorithm (3.1) is performed. From the 
choice of values for m it follows that ml <2rag, and that every other value for m 
that is tried is of the form [ml/2i], with i_>_1. Therefore we have ~'m4=O(m~). 
Using (3.2) we conclude that the total number of arithmetic operations needed by 
the applications of algorithm (3.1) is O(m4k logp), which is 

O(m4(n 2 + n loglfl + logp)), 

and that the integers involved each have binary length O(mlklogp), which is 

O(mo(n 2 + n log Ifl + logp)). 

With some care it can be shown that the same estimates are valid for a suitable 
version of Hensel's lemma. But it is simpler, and sufficient for our purpose, to 
replace the above estimates by the estimates stated in (3.4), using that m o < n; then 
a very crude estimate for Hensel's lemma will do. The straightforward verification 
is left to the reader. This proves (3.4). 

(3.5) We now describe an algorithm that factors a given primitive polynomial 
f ~  Z[X] of degree n > 0  into irreducible factors in 7Z[X]. 

The first step is to calculate the resultant R(f, f ') of f and its derivative f ' ,  using 
the subresultant algorithm [7, Sect. 4.6.1]. If R(f,f ')=O then f and f '  have a 
greatest common divisor g in 7/IX] of positive degree, and g is also calculated by 
the subresultant algorithm. This case will be discussed at the end of the algorithm. 
Assume now that R(f  f') +- O. 

In the second step we determine the smallest prime number p not dividing 
R(f, f'), and we decompose ( f  modp) into irreducible factors in IFp[X] by means of 
Berlekamp's algorithm [7, Sect. 4.6.2]. Notice that R(f, f') is, up to sign, equal to 
the product of the leading coefficient of f and the discriminant of f So 
R( f f ' ) ~Omodp  implies that ( fmo d p )  still has degree n, and that it has no 
multiple factors in IFp[X]. Therefore (2.4) is valid for every irreducible factor 
(hmodp) of ( f m o d p ) i n  •p[X]. 

In the third step we assume that we know a decomposition f = f l f 2  in Z[X] 
such that the complete factorizations of f l  in ~.[X] and (f2 modp) in IF~[X] are 
known. At the start we can take fa = 1, f2 = f  In this situation we proceed as 
follows. If f2 = + 1 then f = + f l  is completely factored in Z[X], and the algorithm 
stops. Suppose now that f2 has positive degree, and choose an irreducible factor 
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(h modp) of (f2 modp) in IFp[X]. We may assume that the coefficients of h are 
reduced modulo p and that h has leading coefficient 1. Then we are in the situation 
described at the start of algorithm (3.3), with f2 in the role of f, and we use that 
algorithm to find the irreducible factor ho of fz in Z[X] for which (h modp) divides 
(h o modp). We now replace f l  and fz by flho and fz/ho, respectively, and from the 
list of irreducible factors of (f2 modp) we delete those that divide (h o modp). After 
this we return to the beginning of the third step. 

This finishes the description of the algorithm in the case that R(f, f ' )~0.  
Suppose now that R(f, f ' )  = 0, let g be the gcd of f and f '  in Z[X], and put fo = fig. 
Then f0 has no multiple factors in 7Z[X], so R(fo, f~) 4: O, and we can factor fo using 
the main part of the algorithm. Since each irreducible factor of g in 2~[X] divides fo 
we can now complete the factorization of f = fog by a few trial divisions. This 
finishes the description of algorithm (3.5). 

(3.6) Theorem. The above algorithm factors any primitive polynomial f~  TZ[X] of 
positive degree n into irreducible factors in 7/IX[. The number of arithmetic 
operations needed by the algorithm is O(n 6-F n 5 log[fl), and the integers on which 
these operations are performed each have binary length O(n a + n 2 log[f[). Here If1 is 
as defined in the introduction. 

Using the classical algorithms for the arithmetic operations we now arrive at 
the bound O(n12 + n9(log[f[) 3) for the number of bit operations that was announ- 
ced in the introduction. This can be reduced to O(n9+~+ n 7 + ~(log[f[) 2+ ~), for every 
e > 0, if we employ fast multiplication techniques. 

Proof of (3.6). The correctness of the algorithm is clear from its description. To 
prove the estimates we first assume that R(f, f ' )  ~ 0. We begin by deriving an upper 
bound for p. Since p is the least prime not dividing R(f, f ' )  we have 

(3.7) I-I q < [R(f f')[. 
q < p, q prime 

It is not difficult to prove that there is a positive constant A such that 

(3.8) I-I q >eAp 
q< p, qprimc 

for all p>2 ,  see [6, Sect. 22.2]; by [12] we can take A=0.84 for p>101. From 
Hadamard's inequality (1.10) we easily obtain 

[R(f, f')[ < nnlf[ 2n-1 . 

Combining this with (3.7) and (3.8) we conclude that 

(3.9) p < (n log n + (2n-  1) log Ifl)/A 

or p = 2. Therefore the terms involving logp in proposition (3.4) are absorbed by 
the other terms. 

The call of algorithm (3.3) in the third step requires O(mo.(n 5 +n41oglf2[)) 
arithmetic operations, by (3.4), where m 0 is the degree of  the factor h 0 that is found. 
Since f2 divides f, Mignotte's theorem [10; cf. 7, Exercise 4.6.2.20] that was used in 
the proof of (2.13) implies that loglf21 = O(n + loglfl). Further the sum ~mo of the 
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degrees of the irreducible factors of f is clearly equal to n. We conclude that the 
total number of arithmetic operations needed by the applications of (3.3) is O(n 6 

+ n 5 loglf[). By (3.4), the integers involved in (3.3) each have binary length O(n 3 
+ n 2 loglfl). 

We must now show that the other parts of the algorithm satisfy the same 
estimates. For the subresultant algorithm in the first step and the remainder of the 
third step this is entirely straightforward and left to the reader. We consider the 
second step. 

Write P for the right hand side of (3.9). Then p can be found with O(P) 
arithmetic operations on integers of binary length O(P); here one can apply [11] 
to generate a table of prime numbers < P, or alternatively use a table ofsquarefree 
numbers, which is easier to generate. From p < P it also follows that Berlekamp's 
algorithm satisfies the estimates stated in the theorem, see [7, Sect. 4.6.2]. 

Finally, let R(f, f') = 0, and fo = f/gcd(f,  f ' )  as in the algorithm. Since fo divides 
f, Mignotte's theorem again implies that loglfol = O(n+ loglfl). The theorem now 
follows easily by applying the preceding case to fo. 

This finishes the proof of (3.6). 

(3.10) For the algorithms described in this section the precise choice of the basis 
reduction algorithm is irrelevant, as long as it satisfies the estimates of proposition 
(1.26). A few simplifications are possible if the algorithm explained in Sect. 1 is 
used. Specifically, the gcd computation at the end of algorithm (3.1) can be 
avoided. To see this, assume that m o =deg(ho) is indeed <m. We claim that h o 
occurs as b 1 in the course of the basis reduction algorithm. Namely, by (1.37) it will 
happen at a certain moment that bl, b 2 . . . . .  bmo+l form a reduced basis for the 
lattice of rank m o + l  spanned by {p~Xi:O<i<l}u{hXJ:O<j<mo-l}. At that 
moment, we have ho=bl, by (2.13) and (2.16), applied with m o in the role ofm. A 
similar argument shows that in algorithm (3.3) one can simply try the values m = l, 
l+  1, . . . , n - 1  in succession, until hois found. 

Acknowledgements are due to J. J. M. Cuppen for permission to include his improvement of our basis 
reduction algorithm in Sect. 1. 
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