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Primality testing and Jacobi sums.

H. Cohen and H.W. Lenstra, Jr.

1. Introduction.

Most modern methods to determine whether a given number n is prime are

based on Fermat's theorem and its generalizations. This theorem asserts that

(1.1) if n is prime then

anEamodn for all a € Z.

Thus, to prove that a number is composite, it suffices to find a single
integer a for which an # a mod n; here an mod n can be efficiently
calculated by repeated squarings and multiplications modulo n.

To prove that n is prime, however, we need a converse to (1.1). Two
problems present themselves in this connection. |

The first problem is that the direct converse of (1.1) is false: the

composite numbers
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and probably infinitely many others also have the property that an = a mod n
for all a € Z.

The second problem is that even if the converse of (1.1) were true it
would not help us much, since checking all integers a (mod n) 1is not compu-
tationally feasible, even for moderately sized n.

To solve the first problem we replace (1.1) by a stronger assertion. We
discuss two ways to do this.

The first depends on the Jacobi symbol [%), which is defined for a, n
€ Z, n positive, gcd(2a, n) =1, see [5, section 9]. It can be calculated

efficiently by means of the quadratic reciprocity law. From the definition of



Ga it follows that

(1.2) if n 1is an odd prime then
a0 1)/2 (EJ = +1 mod n
n

for all a € Z with gcd(a, n) = 1.

The converse of (1.2) is also true [14; 23]. More precisely, if n |is odd
and composite, n > 1, then the congruence in (1.2) is valid for at most
half of all a (mod n) with gcd(a, n) = 1.

Another strengthening of Fermat's theorem that admits a converse reads

as follows:

(1.3) if n is prime then for any commutative ring R we have

(a +b)® = a” + b" mod nR for all a, b € R.

Here nR denotes the ideal {x + x + ... + X (n terms): X € R} of R. To
prove (1.3) one just observes that the binomial coefficients (z), 0<i<n,
are divisible by n if n is prime. For R = Z, we obtain (1.1) from
(1.3) by putting b =1 and using induction on a.

It can be shown that the converse of (1.3) is also true: if n > 1,
and the congruence in (1.3) is valid for all commutative rings R and all
a, b€ R, then n is prime. It suffices, in fact, to take R = z[X], a-=
X, b=1. |

The primality test that we shall describe in this paper combines (1.2)
and (1.3): we shall work in extension rings of Z, and the congruences on
which our test is based generalize (1.2).

We are still faced with the second problem: it is not computationally
feasible to check the congruence in (1.2) for all a (mod n) with gcd(a, n)
= 1, nor to check the congruence in (1.3) for all R, a, b.

Several methods have been proposed to get around this problem. The first

is to sacrifice certainty: if n passes the test in (1.2) for 100 randomly



chosen values a € {1, 2, ..., n-1}, then it is overwhelmingly likely that
n is prime. For an even better test of this nature, due to Miller and Rabin,
we refer to [19; 21; 8, page 379].

The second method relies on future developments in analytic number
theory: if the generalized Riemann hypothesis is true, and n is an odd
integer > 1 that passes the test in (1.2) for all primes a not dividing
n with a < 70¢(log n)2, then n is a prime number (cf. [19; 24]). But
even if the generalized Riemann hypothesis were proved the practical value
of this method would be questionable. For a typical 100-digit number this
method is approximately 500 times as slow as the algorithm described in this
paper, although asymptotically it is faster.

The final method is presently the only one that leads to rigorous pri-
mality proofs. It consists of subjecting n to a series of tests, similar
to those in (1.2) and (1.3), with the following two properties. First, if n
is prime then it passes the tests. Secondly, if n passes the tests, then
information is obtained about the possible divisors of n. This information
should eventually lead to the conclusion that 1 and n are the only di-
visors of n, so that n 1is prime.

To describe the type of information that is obtained, we let H be a
group, and Yy a map from the set of divisors of n to H with the property
that ¢(xr') = P(x)Y(r') if rr' divides n. If n passes the tests then

it follows that for suitable choices of H and Yy we have
(1.4) Y(r) is a power of Y(n), for every divisor r of n.

Thus it appears that one is trying to prove n prime by means of the follow-

ing trivial primality criterion:

(1.5) an integer n > 1 is prime if and only if all divisors of n

are powers of n.



The above general description applies in particular to the tests of
Lucas and Lehmer, improved by Brillhart, Lehmer and Selfridge [2] and gen-
eralized by Williams (see [26] for references). In these tests one takes
H = (Z/sZ)*, the group of units of #%/sZ, where s is an integer that
is built up from known prime divisors of nt -1 for t=1, 2, 3, 4, 6,
and one puts Y(r) = (r mod s) for r dividing n. If (1.4) is true for
this choice of H and V¢, and s is sufficiently large, e.g. s > n%,
then it is easy to find all divisors of n and in particular to decide
whether n is prime. In [16, section 8] it is shown how larger values of
t can be used. For a discussion of these tests from the point of view of
algebraic number theory we refer to [17]; here H arises as the Galois
group of a suitable extension of the field of rational numbers, and VY
is the Artin symbol.

In this paper we present a different primality testing algorithm to
which the above description applies. We shall encounter assertion (1.4) for
several choices of H and V. In the first place, we shall consider H =
¢*, the multiplicative group of non-zero complex numbers, and Y equal to
a character, as defined in section 6. Secondly, for several small primes p
we shall take H =:E;, the group of p-adic units, discussed in section 5;
in this case P is defined by Y(r) = rp_l. Finally, the most important
choice is H = (Z/sz)*, VY(r) = (r mod s), for a suitable auxiliary numbexr
s that is coprime to n.

The algorithm described in this paper is a simplified version of the
primality test invented by Adleman and Rumely {1, section 4]. Their test also
fits the above description, although this may not be clear from the way it is
formulated in [1]. The higher reciprocity laws from algebraic number theory
that form the basis of the test in [1] have in the present version been re-
placed by elementary properties of Gauss sums.

W.G. Dubuque programmed the original test of Adleman and Rumely in



MACLISP for a DEC KL-10 computer at the Massachusetts Institute of Technol-
ogy. He used it to prove the primality of a 62-digit number in 6 hours. This
does not compare favorably with the older tests discussed in [26], although
these are asymptotically slower. It should also be taken into account that
Dubuque's implementation uses the standard multiprecision routines provided
in MACLISP, which is certainly not the most efficient means possible.

Our algorithm has been programmed in PASCAL, with multiprecision rou-
tines in COMPASS, for the CDC Cyber 170-750 computer system at the SARA com-
puter centre in Amsterdam. It is the first primality test in existence that
can routinely handle numbers of up to 100 decimal digits, and it does éo
within approximately 45 seconds.

The algorithm in this paper has been designed for optimal efficiency
in practice. It is, however, difficult to establish a rigorous upper bound
for the running time. The running time of the algorithm in [1, section 4]
has been analyzed by Pomerance and Odlyzko [1, theorem 1]. They proved that,

c logloglog n

for each n > ee, the algorithm terminates within O(k(log n) )

steps with probability at least 1 - 2_k, for every k 2 1; here c¢ 1is an
absolute effectively computable constant. The same upper bound can be shown to
hold for a suitable version of our algorithm, cf. (11.6) (b). For anothexr
version an O((log n)clogloglogn) upper bound can be rigorously established
if the truth of the generalized Riemann hypothesis is assumed. We do not go
into the details of this analysis since there exists a different algorithm
for which this upper bound can be proved without any unproved assumption.
This algorithm, also due to Adleman and Rumely, is described in [1, section 51,
and a simplified version in [16, section 5]. It is, however, not of practical
importance.

The present paper draws upon a number of techniques from algebra and

number theory that have not traditionally been used in primality testing. We

have therefore attempted to keep the exposition as self-contained as possible.



The contents of the paper are as follows.

A brief outline of our algorithm, in three stages, is given in section 2.
Section 3 is devoted to the last stage, and section 4 to the first. The
central stage occupies sections 5 to 11. In sections 5 and 6 we collect the
properties of p-adic numbers and characters that we need. In section 7 we
show how Gauss sums can be used to generalize the test in (1.2). The Gauss
sums are replaced by Jacobi sums in sections 8 and 9. This is important for
the practical performance of the algorithm. In section 10lwe shall see how
algorithms related to finite fields lead to additional improvements, under
certain conditions. Section 11, finally, describes the central stage of the
primality testing algorithm. A detailed description of the entire algorithm,
from a computational point of view, is contained in section 12. Details on the
actual implementation are given in section 13.

By Z, Zp, @, ¢ we denote the ring of integers, the ring of p-adic
integers (see section 5), the field of rational numbers, and the field of com-
plex numbers, respectively. The number of times that a prime number p
appears in m is denoted by vp(m), for me Z, m# 0 (cf. section 5).

By r|m we mean that r is a divisor of m, i.e. a positive integer divid-
ing m. Rings are supposed to be commutative with 1, and subrings have the
same 1. The group of units of a ring R is denoted by R¥. For ¢, U,

m m

ox, G, see section 7.



2. Outline of the algorithm.

We give a brief description of our primality testing algorithm in three
stages. Let n be the integer to be tested for primality, and assume that

n>1.

Stage 1. Select two positive integers t and s with the following prop-

erties:

(2.1) t is "small" (see section 4),

(2.2) s > nl/2 (or s > n1/3, see section 3),

(2.3) at =1 mod s for all a ¢ Z with gcd(a, s) =1,

(2.4) the complete prime factorizations of t and s are known.

See section 4 for more details concerning the selection of t and s.
Continuing stage 1, check that gcd(st, n) = 1 using the Euclidean
algorithm; if gcd(st, n) # 1 then a prime factor of n is found, by (2.4),

and the algorithm halts.

Stage 2. Subject n to a series of tests similar to the test in (1.2). If
it fails to pass any of these tests, then n is composite and the algorithm
halts. Otherwise, attempt to prove the following assertion, using the infor-

mation obtained from the tests:

(2.5) for every divisor r of n there exists i € {0, 1, ..., t-1}

such that r = nl mod s.

The theoretical possibility exists that this attempt is unsuccessful within
a reasonable time limit. In this case one may tell the algorithm to halt

with the message that it has not been able to decide whether n is prime

or not.



A more detailed description of stage 2 is found in section 11.

Stage 3. If (2.5) has been proved, use (2.5) and (2.2) to factor n com-
pletely, and hence to decide whether n is prime or not. In section 3 we

shall see how this can be done.

Remark. From the description of stage 3 one should not get the impression
that the algorithm is helpful in factoring n if n 1is composite, since

practically all composite numbers will be eliminated in stage 1 or stage 2.



3. The final stage of the algorithm.

Suppose that (2.5) has been proved and that s > nl/z. To factor n com-

pletely it suffices to find all divisors r < nl/2 of n. Such a divisor
satisfies r < s and is, by (2.5), congruent to ni mod s for some 1 €
{0, 1, ..., t-1}. Hence if we determine r, by r, = ni mod s and
0<r, <s, for 0 <1i< t, and check which of the ri divide n, then
we obtain the complete prime factorization of n.

Next suppose that, besides (2.5), one knows only the weaker version
s > n1/3 of (2.2). Then the prime factorization of n is found by applying

the following result to d = ri, for i=0,1, ..., t-1; notice that

gcd(ri, s) = 1 since in stage 1 we checked that gcd(st, n) = 1.

(3.1) Theorem. Let d, s, n be positive integers satisfying gcd(d, s) =1

and s > n1/3. Then there exist at most 11 divisors of n that are congru-
ent to d modulc s, and there is an efficient algorithm determining all

these divisors.

We refer to [15] for a proof of this theorem and for a description of the
algorithm. The running time of this algorithm, measured in bit operations,

is O((log n)3), if d < s < n. Its practical value remains to be tested.
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4. Selection of auxiliary numbers.

For a positive integer t we define

i

e(t) 2 if t is odd,

(t)+1

e(t) if t is even

v
11 q
2 q prime, g-1]t k.

with vq(t) as defined in the introduction. We recall the condition (2.3)

to be satisfied by the auxiliary numbers t and s:

(2.3) at = 1 mod s for all a € Z with gcd(a, s) = 1.

(4.1) Proposition. Let t and s be positive integers. Then condition (2.3)

holds if and only if s divides e(t).

Proof. For odd t this is proved by taking a = -1 in (2.3). Let now t

be even. We may clearly assume that s is a prime power: s = qm, with g
prime and m 2= 1. In this case the proposition easily follows from the follow-
ing well-known result [5, section 5]. If q is odd or m < 2, then (Z/qmz)*
is a cyclic group of order (gq- 1)qm~1; and if m 2 3 then (Z/ZmZ)* is the
direct sum of a group of order two and a cyclic group of order 2m—2. This

proves (4.1).

(4.2) We now describe the selection of t and s in stage 1.

1/2
First one chooses a positive integer t for which e(t) > n / or e(t)

> n1/3, depending on which algorithm is used in stage 3. In theory this can be
done by trying t =1, 2, 3, ... in succession. In practice it is more con-
venient to use a table which is computed once and for all, and which gives the
values of e(t) for some well-chosen integers t. An example is provided by
table 1; the values of e(t) are rounded off downwards in this table. From

table 1 we see that for n < 10100 we can take t = 5040 if the naive algorithm

in stage 3 is used, while t = 1680 suffices if we employ the algorithm from

(3.1).
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t e(t)
2 24
12 = 2%.3 65520
60 = 22+3.5 6.814+10°
180 = 22.3%.5 2.601°10°
840 = 233457 8.644+10%
1260 = 22+3%45.7 1.147+10°
1680 = 2%:3:5.7 2.697+10°3
2520 = 23.3%.5.7 4.866+10%°
5040 = 2%:3%.5.7 1.532:10°2
15120 = 2%.3%.5.7 2.254+10"°
55440 = 2%.3%.5.7.11 4.920+10'0®
110880 = 2°+3%:5:7+11 2.109+10%%7
720720 = 2%+3%¢507.11.13 2.599-10%37
1441440 = 2°+3%05:7+11+13 1.669-10°0*
4324320 = 2°+33+50711+13 7.928+10%453
24504480 = 2°+32¢5¢7¢11¢13¢17 4.795+10%°®
73513440 = 2°+3%+57¢11¢13+17 7.082+10°6°
367567200 = 2°+33¢5247411+13+17 6.208-10'°01
1396755360 = 2°+33¢5¢7¢11+13¢17+19 4.016+101%13
6983776800 = 2°033+52.7.11+13+17+19  7.471+10°010

Table 1. Values of e(t).

For the value of t that is chosen we write down the complete prime
factorization of e(t). This is done by listing all primes g for which
q - 1 divides t, together with the exponent m(q) of q in e(t); this
exponent can be read from the definition of e(t). It is also convenient to
write down the prime factorizations of the numbers q - 1, since these are

needed in stage 2. For t = 5040 = 24-32'5-7 all this has been done in
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qm(q) q-1 qm(q) q -1 qm(q) q -1

2® 1 31 2:3+5 181 22.3%.5
33 2 37 22.32 211 2034507
52 22 a1 235 241 2435

72 2.3 43 20347 281 23.5.7

11 25 61 22.3.5 337 2%.3.7

13 22.3 71 20547 421 22.3.5.7
17 2* 73 23.32 631 2:3%.5.7
19 2.32 113 247 1009 2%.3%.7
29 22.7 127 2.32.7 2521 23.3%.5.7

Table 2. The prime factorization of e(5040), 5040 = 2%.3%.5.7.

table 2. This table is, of course, a byproduct of the computations leading to
table 1.

Next we have to choose s. One way to do this is as follows. First put

(q) m(q)

s = e(t). If s has a prime power factor qm for which s/q is still

172 (ox n1/3, depending on stage 3), then we choose such a

larger than n
qm(q) with g largest possible, and we replace s by s/qm(q). This is
repeated until it is no longer possible.

m(q)

We describe a better way of choosing s. Write e(t) = ﬂqu q We

restrict to divisors s of e(t) of the form s = nqes qm(q) with S < E.
As we shall see in section 11, each q € S gives rise to a certain amount of
work in stage 2 of the algorithm. The running time needed by this amount of
work is proportional to a number w(qg) depending on ¢. The numbers w(q)
depend on the implementation of stage 2, and they are best determined empiri-

cally. For a certain naive implementation a good approximation to w(q) is

given by

vy (g-1), 2
p
zp prime, plg-1 olp )
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where ¢ denotes Euler's function [4, section 5.5]. In order to minimize the

running time we should now choose § such that zqes w(g) 1is smallest poss-

1/2 or n1/3

ible, subject to the condition that s > n . Putting S' =E - S

w(g) subject to the condition that

we see that we have to maximize qus,

Zqés, log(qm(q)) < log(e(t)) - (%—or %ﬂlog n. This is an instance of the

knapsack problem. A well known approximate solution method for this problem

leads to the following way of selecting s. First put s = e(t). If s has

a prime power factor qm(q) for which s/qm(q) is still larger than nl/2
or n1/3, then we choose such a qm(q) with w(q)/log(qm(q)) largest poss-
ible, and we replace s by s/qm(q). This is repeated until it is no longer

possible. For more subtle methods to solve the knapsack problem we refer to
[181].

The final value for s is a divisor of e(t), so by (4.1) condition
(2.3) is satisfied. Conditions (2.2) and (2.4) are also satisfied, and below
we shall see to which extent (2.1) holds. This finishes the description of

algorithm (4.2).

1
We now discuss how small t can be chosen such that we have e(t) > n /2 or

n1/3. From

e(t) < 2t°ndlt d+ 1)

and elementary estimates for the divisor function [4, theorem 317] we obtain

the following lower bound:

t > (log n) (1 - €) (logloglogn)/log 2

for all € > 0 and all n exceeding a bound depending on €. The following
theorem shows that this result is best possible, apart from the value of the

constant in the exponent.

(4.3) Theorem. There exists an effectively computable positive constant ¢
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such that for all n > e® there is a positive integer t satisfying

t < (log n)c logloglogn

and

e(t) > nl/z.

This is a sharpening of a result of Prachar [20] that is due to Odlyzko. For
the proof we refer to [1, section 6]. Pomerance, who noted the relevance of
Prachar's result in the present context, proved that t can even be chosen
squarefree; this was necessary for the original version of the Adleman-Rumely

algorithm.
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5. p-adic numbers.

Let p be a prime number. In this section we recall, without proofs, a few
basic properties of p-adic numbers. For a fuller treatment we refer to [22,
chapitre II] and [6].

(=]

A p-adic integer is a sequence (ai mod pl)l_1

, with (ai mod pl) €

Z/plz, such that a, =a, mod pi for all i 21 The set of p-adic

i+1
integers forms a ring, denoted by Zp, under coordinatewise addition and
multiplication. We view Z as a subring of Zp, by identifying a € Z
ith (a mod ph)~ ez
wi amodp), , € o’
m i o
Let me Z, m=21. The map Zp - Z/p Z that sends (ai mod p )i‘l
to (am mod pm) is a surjective ring homomorphism with kernel equal to
pmzp. This shows that Zap/pmzp o2 Z/pmz, so p-adic integers, when taken
modulo pm, yield ordinary integers modulo pm.
Let E be a finite abelian group of p-power order. For € E and
= ie T
a = (ai mod p )i—l € Zp the element ¢ of E does not depend on m,

for m sufficiently large, and we denote it by t;a. This operation of Zp

on E satisfies the familiar rules

m® = %n?, 2P = %P,

b
2P = (3>, i =1

for ¢, ne€ E, a, b€ Zp, so it makes E into a module over Zp, see
[10, chapter III, section 1].

A p-adic integer a 1is a unit of Zp if and only if a # 0 mod p,
so Z* =2 - pzp. Every non-zero p-adic integer a can be written in a
unique way as a = pmu with me Z, m =20 and u € Z;; we write in this
case vp(a) = m, and we put VP(O) = o, This extends the function vp
that was defined on Z - {0} in the introduction.

The set 1 + pzp = {a ¢ Zp: a = 1 mod p} is a subgroup of Z;. Let

has p-power order in (Z/plz)*, s0o

(o]
a= (ai)i=1 € 1 + pzp. Then each ai
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X

for x € Z_  we can define a® = (a,)°.° . This makes 1 + pZ
P i'i=1 jo)

zp-module. Writing a?p = {a*: x ¢ Zp} we have

(5.1) a%p =1+ mep for m=v (a-1)

provided that m 2 1, and m 2 2 in the case p = 2.

There are group isomorphisms

(5.2) z; ~ (Z/(p=-1)Z) * (1 + pzzp)
~ (zZz/(p-1)Z) X zp if p 2 3,
* — o -
(5.3) z} 1+ 2z, {1, -1} x (1 + 422)

~ (z/2z) % Zy

see [22, section II.3; 6, chapter 15, section 71].

into a
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6. Characters.

Let g be a prime number. A character ¥ modulo g is a group homomor-
phism from (Z/qZ)* to ¢*. We extend such a character to a map Z/qZ
- ¢ by x(0modq) =0, and we put x(a) = x(a mod q) for a € Z. The
set of all characters modulo g forms a group under multiplication. We
denote this group by Xq'

It is well known that (Z/qZ)* is cyclic of order gq - 1. Let a

generator g be chosen. Mapping X to Xx(g) we obtain an isomorphism be-

tween Xq and the group of (g - 1)-st roots of unity. This implies easily:

(6.1) if x, vy € (Z/qz)* are such that x(x) = x(y) for all ¥ € xq,

then x = y.

Let g-1=1T pk(P) be the prime factorization of gq - 1, with

P prime

k(p) vp(q - 1), For each prime p with k(p) 2 1 we choose a character

X € X of order pk(p); such a character is obtained by putting X (g)
P9 q P.q

= Cpk(p)' a primitive pk(p)—th root of unity. We write

6.2 Yy = { : ri -11}.
(6.2) q Xp,q" P Prime plq

It is easy to see that Yq generates the group xq.

(6.3) Theorem. Let t and s be positive integers satisfying (2.3), and let

n be an integer satisfying n > 1 and gcd(n, st) = 1. Write

Y =U . Y
s qls, g prime “q

with Y as in (6.2). Assume that every prime plt satisfies the following

condition :

(6.4) for every prime divisor r of n there exists lp(r) € Z?
such that
L1 (np—l)lp(r) in the group 1 + pZ_.

p
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Assume moreover that every X € Ys satisfies the following condition:

(6.5) for every prime divisor r of n we have

x(x) = x(m®F

with lp(r) as in (6.4), where p 1is such that the order of ¥
is a power of p.
Then (2.5) is satisfied, i.e. for every divisor r of n there exists

ie {0, 1, ..., t=-1} such that r = n" mod s.

Remark. Notice that lp(r) in (6.4) is uniquely determined if it exists, by
(5.2), (5.3). In fact, we have Rp(r) = logpr/logpn, where logP denotes
the p-adic logarithm [25, section 5.1]. In (6.5) it is meaningful to speak

about lp(r), since if yx = Xp q then p divides t, by (4.1).

4

Proof. We have nt = 1 mod s, by (2.3), so it suffices to consider prime

divisors r of n. Fix such an r, and define an integer &(r) modulo t by

(t)

2(x) = zp(r) mod pVP for every plt.

By (6.5) we then have for every xp €Y :
14

lp(r) nSL(r)

( ).

'q(r) B XPrq(n)

Xp p.q ~ "p.a

Let now gls be a fixed prime. Then the characters Xp q generate Xq, so
4

it follows that x(r) = x(nl(r)) for all x € Xq. By (6.1) this implies
that r = nl(r) mod g. Put m(qg) = Vq(s). We claim that
(6.6) r=n*") poa 9.

If m(g) = 1 this has just been proved. Suppose therefore that m(q) = 2.
Then, q divides t, by (4.1) and the definition of e(t), so (6.4) holds

for p = gq. This yields

rq—l - (nq—l)lq(r)
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= (nq—l)l(r) mod qm(q),
- k
since (nq 1)q = 1 mod qm(q) for k = vq(t), by (2.3). We now know that
L -2 (x) A
the g-adic integer a = re°n satisfies
a =1 mod q, aq_1 = 1 mod qm(q).

The latter congruence implies that the multiplicative order of a modulo

qm(q) divides q - 1, the former that it is a power of gq. It follows

that this order equals 1, so a = 1 mod qm(q). This proves (6.6).

Since (6.6) holds for any prime g dividing s, we may conclude that
- nJl(r)

mod s, where &(r) is only defined modulo t. This proves (6.3).

(6.7) Remark. If (6.4) holds, then clearly for every divisor r of n there

exists ILp(r) € Zp with rpn1 = (np-—l)lp(r), and we have

Qp(rlrz) = Qp(rl) + lp(rz) for rlr2 dividing n,

Qp(n) = 1.
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7. Gauss sums.

For any positive integer m we denote by Um the group of m-th roots of
unity in ¢, and by Cm a primitive m-th root of unity; so Cm gener-—
ates Um.

In this section we fix a prime number g, a prime number p, and a
positive integer k such that pk divides gq - 1. Further n is an in-
teger with n > 1 and gcd(n, pg) = 1.

We put A = Zigpk, Cq], the ring generated by Cpk and Cq, and
K = Q(Cpk, Cq), the field of fractions of A. We let B be the subring

al1/q] of K. Every element of K has a unique representation

j

i
Ckaq

ZOSj_<(p-1)pk'1, 0<j<qg-1 2ij
with aij € @, cf. [10, chapter VIII, section 3]. To multiply two such

expressions one uses the rules

k-1 . k-1
(p-p - _yp2 . ip
q-l = _zq—z ]
*q j=0 *q°

Restricting the coefficients aij to Z one obtains the ring A. An el-
ement of K belongs to B if and only if the denominators of all of its
coefficients aij are powers of q; and it belongs to the principal ideal
nB of B if and only if, in addition, the numerators of these coefficients

are divisible by n.

For x € Z, x # 0 mod p, let cx be the field automorphism of K
X
i = = . I i 3].
for which ox(gpk) Cpk and dx(cq) Cq' cf. [10, chapter VIII, section 3]

Let
k
G = {ox: 1 <x<p, x#0mod pl}.

k
This is the Galois group of K over Q(Cq) . It is isomorphic to (Z/p Z)¥*,



- 21 -

under an isomorphism mapping o to (x mod pk). Denote by #[G] the group
algebra of G over %, see [10, chapter V, section 1]. For u € B¥ and

o
— : %
o = Z €G n o e Z[G] we define u € B by

o n
= o
u ”oeG g(u) 9,

This operation of %[G] on B*¥* satisfies the rules

o o 0 a+R o
(uv)  =uv, u =1 °u ,

uaB - (ua)B’ 1

for wu, v € B¥, o, B e mlG], 1= g, € z[G]; so it makes B*¥ into a mod-

ule over =l[Gc].

Let ¥ Dbe a character modulo g of order pk. The Gauss sum T (Y)

associated to x 1is the element of A defined by

_ a-1 X
(7.1) T(x) = ZX=1 x(x)l;q-
We have
-1
(7.2) T(x)t(x ") = x(~1)-q,

see [25, lemma 6.1(b); 7, chapitre 5, proposition 7], so T(X)-l =
X(-l)T(X_l)/q € B. This implies that 1T(X) € B¥, so the expression

T(X)n-on in the following lemma makes sense.
(7.3) Lemma. If n is prime then

r(x)n'-dn = x(n) " mod nB.
Proof. From (1.3) we obtain

vt = 5971

n_nx
=1 ¥ (nx) Cq mod nB

= Zg;; x(y)ngé (with y = nx mod q)
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ag
= 1(X) nl

and the lemma follows upon division by the unit x(n)nT(x)cn. This proves

(7.3).

(7.4) This lemma will lead to the tests that were mentioned in section 2,
stage 2. To see the connection with (1.2), we consider the case that ¥ is
guadratic, i.e. has order pk = 2, Then ¢q is an odd prime, and ¥ is the
Legendre symbol: x(x) = EJ. From (7.2) we see that 'r(x)2 = a, where

q

a= (Efa'q. The automorphism cn is the identity, so the congruence of
the lemma is equivalent to a(n_l)/2 = (3) mod n. This is the same as (1.2),

since (g) = (EJ by the quadratic reciprocity law, which can, in fact, be

n

proved in this way.

We return to the general situation. We shall investigate what can, con-
versely, be said about n if the congruence in (7.3) is known to hold. For
practical purposes it is important to build in some extra degrees of freedom,

as expressed in the following corollary.

(7.5) Corollary. If n is prime then

nf

T = x(n) = mod n

-0
for any B € Z[G] and any ideal n of B with n € n.

Proof. Raise the congruence in (7.3) to the power B; this is allowed be-

cause o[nB] = nB for all o0 € G. Next use that nB < n. This proves

(7.5).
We shall make the following assumptions on £ and n:
(7.6) CS #£1,

(7.7) nnz=nz, on[nJ = n.
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The reader may think of B =1, 1 =nB. If B = Zx n o € z[G] then

(7.6) is equivalent to

Zx n_x # 0 mod p.
The map sending [ to CB is an automorphism of the group Upkr if (7.6)

holds. Condition (7.7) will be investigated in section 10.

(7.8) Theorem. Let X be a character modulo q of order pk, and assume

that

(7.9) () P~ n)B

= 7 mod M
for some [ € Upk' some B € m[G] satisfying (7.6) and some

ideal n of B satisfying (7.7).

Assume further that condition (6.4) is satisfied. Then Y satisfies (6.5),

i.e.

x(x) = x(n)p®

for every divisor r of n, with lp(r) as in (6.4) and (6.7).

Remark. For given B and #n, the congruence (7.9) is true for at most one

r € Upk; this follows from (7.17).

Proof. By (7.6) and gcd(n, p) = 1 we can write [ = n_nB for some n €

Upk' et i€ Z, i =2 0. We raise both sides of the congruence

(7.10) 1 P78 o B gy
i-1 _i-1-3 3 L _ .
to the power zj—O n o this is allowed because on[n] = N. Using that

(n -0 )'}Zl._1 nl_l_JOJ =n - o
n j=0 n n
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and writing

u = 1(x)
we find that
n -ci —iniB
(7.11) u n=qp mod n
for every i e Z, i =z 0. With i = (p-—l)pk it follows that

k
JpDp

(7.12) u = 1 mod n.

Let now r be a prime divisor of n. Then we know from (7.5) that

(7.10), with n, n, n replaced by r, x(r), rB, is true, so the same holds

for (7.11). Taking i p - 1 we obtain

p-1_,p-1 ~(p-1)rP g

r - Or x (x) mod rB.

(7.13) u
We shall combine (7.11) and (7.13) modulo the ideal
n=1rB + n,

which contains both B and n.

By (6.4), we have . (np—l)lp(r) for some lp(r) € EZP. Choose

me Z, m=20, such that

k
(7.14) m = kp(r) mod p .
From

L1 (p-lm ((np—l)lp(r) B gy, PmDm

it then follows that
k

(7.15) vp(rp"1 - pPlimy vp((np'l)p - 1)

and in particular, since the right hand side exceeds k:
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p-1 = n(p--l)m k p-1 - 0(p—1)m.

(7.16) r mod p . oL o

We apply (7.11) to i = (p-1)m, and divide it by (7.13); this is allowed,
since both sides of (7.13) are units in B. Using (7.16) we then find that
pP-m_ p-1 p-1g

r -m (p-1)xr

u = (x(x)n ) mod .

- k
Let a be the largest divisor of n(p De® _ 1 that is not divisible by
p. If we raise the congruence to the power a, then by (7.15) the exponent

1ok
on the left becomes divisible by n® 1P" _ 1, o by (7.12) we obtain

~m(p—1hp_1ﬁa

1= (x(x)n ) mod .

Assume, for the moment, the following lemma.

it
.
.

(7.17) Lemma. If T € Upk satisfies 7 = 1 mod X, then (

Then we find

p-1
(x(r)n ™) (BT TBa

From (p-—l)rp—la # O mod p and (7.6) it now follows that x(r) = nm, S0

X(x) = nzp(r)

by (7.14). This we proved for prime divisors r of n. By multiplicativity
(cf. (6.7)) it holds for any divisor r of n. In particular, since kp(n)
p (x)

= 1 we obtain x(n) =n, so x(r) = x(n) for all r dividing n.

This proves (7.8).

Proof of (7.17). We have an equality of polynomials

k k__1
M, -2 =& -10/x-1) =% _¢

i
X",
C#1

the product ranging over all [ € Upk' L # 1. Substituting 1 for X we

find that
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k

n (1 -17) =p.

T#1

k
Therefore, if the lemma is wrong, we have pk €N =rB+HN, so p =rx+y
for certain x € B, y € n. Upon multiplication by n/r this would give
pkn/r € h, so pkn/r € nZ by (7.7). But r is a prime dividing n, and

p is a prime not dividing n, so this is impossible. This proves (7.17).

We shall now develop several methods that can be used to prove that condition
(6.4), which occurs both in (6.3) and in (7.8), is satisfied. A different way
to do this can be found in section 10, see (10.7). Our first two methods re-

quire that p 2 3.

(7.18) Proposition. If p =2 3 and np.1 # 1 mod p2 then condition (6.4) is

satisfied.

Proof. By (5.1), the hypotheses imply that (np_l)zp =1+ pzp. Since rp—1

e 1 + sz) for all divisors r of n it follows that (6.4) is satisfied.

This proves (7.18).

(7.19) Theorem. Let X be a character modulo q of order pk, and assume

that p 2 3. Suppose that (7.9) is satisfied with a primitive pk-th root of

unity . Then p satisfies condition (6.4).

Proof. As in the proof of (7.8) we write [ = n—nB with n € Upk. Since ¢

is a primitive pk—th root of unity, the same is true for n. Let u = T(X)B.
Applying (7.11) to i = (p - 1)pk_1 we find that
-1

k
(p-D)p  _ k-1
(7.20) " Lo P B oa .

Let r be a prime dividing n. Replacing n, n, ® by 1, x(r), rB, as in

the proof of (7.8), we obtain

r(p-l)pknl_ 1 k-—lB
(7.21) u = x(r)? mod rB.
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We combine (7.20) and (7.21) modulo 4 = rB + n. Let w denote the order

of (umod 4) in the group (B/A)*. Since n is a primitive pk-th root
k-1

of unity it follows from (7.6) and (7.17) that np B # 1 mod &. Therefore
k-1
(7.20) implies that w does not divide n(p—l)p -1, but that it does
(p-1)p*"
divide p(n p=2)p -1). Consequently we have
k-1
v (w) =1+ v (n(p—l)p -1).
p p
(p-1)p~ "

From (7.21) we see that w divides p(r p p -1), so

1

k-
(P"l)P __1)‘

v (w) <1 + v (r
p P

It follows that

k-1 k-1
(7.22) vp(r“?”“p —1)zvp(n‘P'“P ~1).

k-1
Notice that the equality sign holds if and only if x(r)p # 1.
From (7.22), (5.1) and the fact that p 2 3 we obtain

k-1
(n(p—l)p )l

k-1
r (p-1)p

for some £ ¢ Zp. Since z; contains no elements of order p, by (5.2),

this immediately implies that rp—1 = (np—l)ﬂ. This proves (7.19).

In the rest of this section we take p = 2 and, consequently, n odd. In
this case an important role is played by gquadratic characters. For such char-

acters it is convenient to replace condition (7.9), with ¢ a primitive 2-nd

root of unity (so with ¢ = -1), by a condition of the form a(nnl)/2 =
-1 mod n, cf. (7.4).
(n-1)/2 _
(7.23) Lemma. Let a € %, and suppose that a = -1 mod n. Then for

every divisor r of n we have v2(r-—1) 2 v2(n-1), the equality sign

holding if and only if Ga = -1. In particular GB = -1.
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Proof. It is not difficult to see that it suffices to consider prime div-

isors r of n. So let r be a prime dividing n, and let w be the

order of (a mod r) in the group (Z/rz)*. From a(n_ /2 = -1 mod r

it follows that vz(w) = v2(n— 1), and since w divides r -1 this implies
that v2(r— 1) 2 v2(n- 1). The inequality is strict if and only if w di-
(r-1)/2

vides (r-1)/2, so if and only if a = 1 mod r, and this is equiv-

alent to (%) = 1. This proves (7.23).

(7.24) Proposition. Suppose that n = 1 mod 4, and that there exists a € Z

for which a(n— 1/2 = -1 mod n. Then condition (6.4) is satisfied for p = 2.

Proof. Let r|n be prime. By (7.23) we have vz(r-l) = vz(n—l), and
vz(n— 1) 2 2 by hypothesis. From (5.1) it now follows that r € nzz, as

required. This proves (7.24).

(7.25) Proposition. Suppose that n = 3 mod 8 and that 2(n— /2 Z -1 mod n.

Then condition (6.4) is satisfied for p = 2.

Proof. Let r|n be prime. By (7.23) we have either r = 1 mod 4 and (—E—) =
2 . 2
1, or r =3 mod 4 and (—r-) = ~-1. Since (-;) =1 for r = *1 mod 8 and

(-ff) =-1 for r = *3 mod 8 it follows that we have either r = 1 mod 8 or

r =3 =nmod 8. Therefore one of v2(r-1) and v2(rn"1 - 1) 1is =2 3.

But 3 = v2(n2 - 1), so (5.1) now implies that r or rn‘l belongs to

2,22 2zy | 1422y _ 73

) . Hence r belongs to n as required. This

(

proves (7.25).

Remark. If n = 3 mod 8 and 2(n— /2 # -1 mod n then n is clearly not

prime, by (1.2).

The case n = 7 mod 8, which is not covered by (7.24) or (7.25), is
most conveniently dealt with by means of proposition (10.8). Alternatively
one can use the following theorem, which is the analogue of (7.19). We use

the notation introduced at the beginning of this section.
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(7.26) Theorem. Let Y be a character modulo q of order pk, with p = 2

and k 2 2. Suppose that (7.9) is satisfied with a primitive 2k—th root of
, (n~1)/2 _ L .
unity [. Suppose also that ¢ = -1 mod n. Then condition (6.4) Is

satisfied for p = 2.

Remark. Suppose that n is prime, and that (7.9) holds with a primitive

2k—th root of unity {. We claim that the extra condition q(n--l)/2 = -1
mod n is then satisfied. To prove this, we first note that ¢ = x(n)~n8 by
(7.5), so x(n) is a primitive 2k—th root of unity, and ¥(n) o = -1,
Let Y Dbe the quadratic character ¥ k-l. Then ¢(n) = -1 and Y(-1) =
x(-nzk—1 =1, soby (7.2) and (7.3) we have q @~ /2 o 1™ = ym) =

-1 mod n, as required.
It follows that n 1is composite if it does not pass the extra test

q(n-—l)/2 = -1 mod n.

Proof of (7.26). 1In the case that n = 1 mod 4 the theorem immediately

3 mod 4. As in the remark

1]

follows from (7.24). Assume therefore that n
k-1
above, let ¢ = x2 . Let r be a prime divisor of n. Arguing as in the

proof of (7.19) we find that

2k-—l 2k—1
(7.27) v2(r - 1) = v2(n - 1)
(cf. (7.22)), the equality sign holding if and only if ¢ (r) = -1. We have
k-1
v2(n2 ~-1) 23 since k 2 2, so by (5.1) we have
2k—l 2k-1£
r =n

for some & € 22. By (5.3), the only roots of unity in zz are *1, so

2
r = *n .

The remark about the equality sign in (7.27) implies that & is odd if and

2
only if {(r) = -1. This can also be formulated as P(r) = (-1) .
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Notice that VY (r) = GB, by applying (7.4) with ¥, r in the role of

X, n, and using that Y(-1) = 1. Therefore the extra condition q(nnl)/2

= -1 mod n and lemma (7.23) imply that

v2(r - 1) 2 v2(n - 1), with equality if and only if ¢ (r) = -1.

Since n = 3 mod 4, this can also be formulated as r = Y(r) mod 4. From

L L
(-1) = n2 mod 4 it now follows that the plus sign in r = #n

r = Y(x)
must be valid.

This proves (7.26).

(7.28) Remark. The complications that arise in the case p = 2 disappear if,

for p = 2, we restrict to k =1, i.e. to guadratic characters. In that
case (6.4) can be replaced by the simpler condition V2(r-1) 2 v2(n-1) for
all rln, cf. [16, section 2]. The restriction to quadratic characters im-

plies that the auxiliary number t chosen in stage 1 of the algorithm (see

sections 2 and 4) should satisfy the extra condition t # 0 mod 4.
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8. Jacobi sums for odd p.

We let g, p, k, n, X, B, G, 1(x) Dbe as in the previous section,
and we retain the notations ¢ , U, 0O .
m m X
It is our purpose to reformulate condition (7.9) in such a way that it
only refers to elements of the subring Zicpk] of B.

b
Let a and b be two integers. The Jacobi sum j(xa, X ) associated

to the characters X and xb is the element of Ziapk] defined by

zq“é e (1 -x) .

8.0 303 O = 1L

In B, we have

(8.2) j(Xa, Xb) T(Xa)T(xb)/T(xa+b) if a+ b # 0 mod pk

1]

with the Gauss sums defined as in (7.1). For the proof of (8.2), see [25,
lemma 6.2(d)] or [7, chapitre 5, proposition 9]. If ab(a+b) # 0 mod p then

(8.2) can be written as

(8.3) 563, ¥ = 1% % " Tatb,

Notice that the condition ab(a+b) # 0 mod p forces p to be odd.
In what follows we write [y] for the greatest integer not exceeding vy,

for a real number y. For p 2 3, we put

(8.4) M={xeZ: 1<x£¢g pk, x # 0 mod pl.

(8.5) Theorem. Suppose that p 2 3. Let a, b be integers satisfying

(8.6) (a + b)p # a¥ + b’ moa p2, ab(a + b) # 0 mod p,
and let m be an ideal of Zicpk] for which
(8.7) mnz = nZ, on[m] = m.

Define a € Z[G] by
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o =X

nx| -1
X €M ‘

pkx
If, with this notation, we have
., a b. o
(8.8) j(x » X) = gmodm for some [ € Upk

then (7.9) is satisfied. If (8.8) does not hold then n 1is composite.

(8.9) Remarks. (a) Notice that j(xa, xb)a belongs to Z[cpk], since the

coefficients of 0o are non-negative.

(b) In the proof we shall see that if (8.8) holds, then (7.9) is true
with the same [. This is important for (7.19).

(¢) If 3 < p < 6-109, p ¢ {1093, 3511} then condition (8.6) is satis-
fied for a=b =1, by [13]. From (p~- 1P~ 1 % 5 1 mod p° it follows
that in any case (8.6) holds for some a < p - 2 with b = 1.

(d) An example of an ideal m of Z[Cpk] satisfying (8.7) is given by

m= nﬂicpk]. In section 10 we shall discuss a different way of choosing m.

Proof of (8.5). Let 1 be the ideal of B generated by m. From

q-2 | a .
n={cET%ard)q": a.em (0=3j<qg-2), dc 2z}
3=0 ch) q 3 jsaq '
and gcd(g, n) = 1 it is not difficult to derive that

(8.10) non z[cpk] = M.

From (8.7) it now follows that n satisfies (7.7) .

pefine B € Z[G] by

ean ee=x,, ([S222] - [ - 2]
p p pd/ X
with M as in (8.4). The following lemma will be proved below.

(8.12) Lemma. Let a, b € Z satisfy (8.6), and let o, B € Z[G] be as in

(8.5) and (8.11). Then we have
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(n - On)B = (Ga + Gb - °a+b)°‘

in z[G], and B satisfies condition (7.6):

B
cp#l.

Assuming this lemma, we see from (8.3) that

. b, a 0,4+ 0y -0
j(Xa, X ) = T(X)( a b a+b)°‘

= T(X) (n_on)B'

so by (8.10) the congruence (8.8) is equivalent to

T(X) (n-0q)8 . z mod N for some ¢ € Upk~

Since B and n satisfy (7.6) and (7.7) it is now immediate that (8.8) im-
plies (7.9). The second assertion of the theorem is clear from (7.5). This

proves (8.5).

Proof of (8.12). Define 6 € zZ[G] by

k
with M as in (8.4). Let me Z, m # O mod p. Writing x = my mod p ,

we then see that

-1
cme = ZyeM r(my)oy

k
where r(my) is the element of M that is congruent to my modulo p .

From r(my) = my - [%}pk it now follows that
p

k‘ my -1
p zyeM [pk]cy

(8.13) (m - om)e

Applying this to m n, a, b, a+ b we find that

]

e
-

Q

(n - on)e
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(8.14) (oa+o -0 )6 = ((a+b-<Ja

b~ %a+b ) - (@a-0,) - (b-0))0

+b

= pkB

and therefore

k
p (n - cn)B = (oa + cb - °a+b) (n - on)e

k
P (Oa + cb - °a+b)°"

Dividing by pk we obtain the first assertion of (8.12).
The second assertion is equivalent to
(8.15) erM ([L@_“.’JP}_{L’SJ - [9-]-}:—] - [p—;-])x_l # 0 mod p.
p p p
Here we consider the expression on the left as an element of Zp, to make

X meaningful, and the same applies to similar expressions below. To prove

(8.15) we first show that

1-p, _
(8.16) vp(zXEM X ) =k - 1.

The values assumed by (x1 “P moa pk), for x € M, are precisely the el-
ements of H = {y ¢ (Z/ka)*: vy = 1 mod p}, each taken p - 1 times. This
is because H 1is a subgroup of index p -~ 1 in the cyclic group (Z/pkz)*.

Therefore we have

1-p _ k
erMx = (p 1)Zy€Hy mod p
k-1 1 k, k-1 k
= (p-1D(p +5p (p - 1)) mod p,

and (8.16) follows.

If x, y € Z are congruent modulo pk, then xp = yp mod pk+1, by
the binomial theorem. It follows that there is a ring homomorphism z[G] -
Z/pk+lz mapping O to (xp mod pk+1), for x € M. Applying this ring

homomorphism to (8.14) we obtain a congruence
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(ap + bp - (a + b)p)°Zx xl_p

eM
P (2525 5] [ e
p P P

By (8.6) and (8.16) the exponent of p in the expression on the left is
precisely k. Hence this is also true for the expression on the right, so

(a+b)x ax bx -p
xeM pk pk pk

Since x P = x—1 mod p this is the same as (8.15). This completes the proof

of (8.12).

An alternative proof of (8.15) starts from the congruence

k-1
n@® PP 1)/p* mod p~,

mx| -1
Zx €M [;f]x

which is valid for any m ¢ Z, m # 0 mod p. This congruence is proved by

calculating nxeM mx in two different ways.
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9. Jacobi sums for p = 2.

In this section we do for p = 2 what we did in the previous section for
P 2 3. The notation is unchanged; in particular, our hypothesis gcd(n, pqg)
= 1 implies that n is odd for p = 2. We distinguish the cases k = 1,

2 and k 2 3.

~
I

(9.1) Theorem. Let p =2 and k = 1. If, in this case, we have

q(n'—l)/2 z mod n for some [ € {1, -1}

(9.2)
then (7.9) is satisfied. If (9.2) does not hold then n is composite.

Proof. The first assertion follows from T(x)2 = X(=1)g (see (7.2)), with

B=1 and n =nB in (7.9). The second assertion follows from (7.5). This

proves (9.1).

(9.3) Theorem. Let p =2, k=2 and n=1mod 4. Let m be an ideal of

Z[C4] for which
mn Z = nZ.
If, in this situation, we have

(9.4) (g, y) B D/2, (n-1)/4

= 7 mod m for some [ € U4

then (7.9) is satisfied. If (9.4) does not hold then n is composite.

Proof. Let N be the ideal of B generated by m. As in the proof of (8.5)
we have n n ZI§4] =m. From n = 1 mod 4 it follows that o, is the
identity automorphism, so N satisfies (7.7).

By (8.2) and (7.2) we have
2
Sn 0 = 10716, 1A ? = x2-a = g

and therefore
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T(X)n--dn - T(X)n--l = 5 (x, X)(n-l)/Zq(n-—l)/4.

It follows that (9.4) is the same as (7.9) with B =1 and #n as above.

The second assertion of the theorem again follows from (7.5). This proves (9.3).

(9.5) Theorem. Let p =2, k=2 and n = 3 mod 4. If, in this case, we

have
(9.6) 3 (X, X)(n+-1)/2q(n-3)/4 = [ mod n2I€4] for some [ € U,
then (7.9) is satisfied. If (9.6) does not hold then n is composite.

Remark. There is no need to allow arbitrary ideals m of $Z[C4] satisfying

(8.7) in this theorem, since from (10.5) it follows that the only such m is

nZ[C4].

Proof of (9.5). By (7.2) we have

T(x)T(xul) = y(~1)q, T(x2)2 =q
and therefore
T(x)n~°n = T(x)n+ 1/('c(x)'r(x_l))

(n+ 1) /2 (4 1) /4,4y

Jxe %)

(n+ 1)/2q(n- 3)/4

x(=1)3 (x, x)

It follows that (9.6) is the same as (7.9) with B =1 and »n = nB, and

with ¢ replaced by x(-1)z. This implies (9.5).

In the rest of this section we assume that p = 2 and k 2 3. The triple

Jacobi sum j(x, X, ¥X) is the element of Zic2k] defined by

. . . 2
(9.7) Jr Xe X)) = 3 X)I(Xe X 7)o

To explain the notation we remark that
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J X, Xo X) = 1 X (%) x (y)x(2)

z
X,¥,2 € Z/QZ, x+tytz=

(see [7, chapitre 5, section 4]) but this will not be needed in the sequel.

From (9.7) and (8.2) we see that
(9.8) St e X0 = T /103 = x> T3,
We put

2k, x =1 or 3 mod 8}.

I

(9.9) M={xe Z: 1<x

Notice that M, when taken modulo 2k, is a subgroup of (Z/Zkz)*. The

integer brackets [ ] are as in section 8.

(9.10) Theorem. Let p =2, k23 and n =1 or 3 mod 8. Let M be an

ideal of Z[Czk] for which
mnZ = nz, cn[m] = m.
Define o ¢ z[G] by
*= zxeM {_;Lx]_{_]o;l_
If, with this notation, we have
(9.11) F (X, Xo x)a =z mod m for some [ € Uzk
then (7.9) is satisfied. If (9.11) does not hold then n 1is composite.
Proof. Define B € Z[G] by
(9.12) B=X _, E—i—]o;{l
with M as in (9.9). Below we shall prove that

(9.13) (n - On)B = (3 - 03)u

for n=1or 3 mod 8, and that B satisfies condition (7.6):
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(9.14) (-1)6 # 1.

Assuming this one proves the theorem in exactly the same way as (8.5) was
deduced from (8.12). The only difference is that (8.3) is replaced by (9.8).

To prove (9.13) we define 6 ¢ Z[G] by

0 =X xoul.
X

We have

k xm| -1
(9.15) (m - Om)e = 2 szM [;ﬁ]cx

for me Z, m=1 or 3 mod 8
by the same argument that was used to prove (8.13). Applying this to m =n
and m = 3 we find that

2ka,

]

(n - on)e

k
278,

(9.16) (3 - 03)6
and this implies (9.13). To prove (9.14) we apply to (9.16) the ring homo-
morphism 2Z[G] » Z that maps every O'X € G to 1. This leads to

k 3x
(9.17) ZZXGMX—Z -erM[-:-z-]-(—]

SO
(9.18) = 3ok oy,

XeM 2k
This is odd, and therefore (—1)6 = -1, as required. This completes the proof
of (9.10).

(9.19) Theorem. Let p =2, k 23 and n =5 or 7 mod 8. Let m be an

ideal of zlt k] for which

mnZ = nz, cn[m] = m.
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Define o € z[G] by

- nx 0’1
© TxeM | ,k]x
.2k—3
and put ¢ = ¥ . If, with this notation, we have
. o, 3.2 _
(9.20) JXr Xe X) 3(d, ¢7)7 = ¢ mod m for some [ € Uok

then (7.9) is satisfied. If (9.20) does not hold then n 1is composite.

Proof, Let B be defined by (9.12). Below we shall prove that

(n'— Gn)B

2
(9.21) T(X) = x(-1)3 (X, X X)aj(¢, ¢3) .

From this the theorem follows by the argument used in the proof of (8.5).
Notice that B satisfies condition (7.6), by (9.14).
To prove (9.21) we apply (9.15) to m = -n; this is allowed because

-n =1 or 3 mod 8. We find that

= 2K+ 3 g ).

k -xn| -1
X XEM x

(-n - O—n)e = 2 erM [";‘E‘-

Combination with (9.16) leads to

(n + c_n)B = (3 - 03)(a + )

)
xeM x

= 3- 03)a + 2.zxe M 0x

sO

(n + o_p)B 2Xxem Ox

T(X) = 50 Xe )T (0

By (7.2) and (9.18) we have

(O + O_p) B 8 K2y

T(X) = (x(-1)q)” = x(~1)q .

Upon division we obtain

k-2
- 2 2 -1
0 ® T L xe 0 %0 xeM Tx/q .
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To prove (9.21) it therefore suffices to show that

k-2
T(x) 2TxeM Ox _ o2 = lyg 0 43)2

which is the same as

k-2

- 2
XN =a® "6, o2

il

(9.22) My <x <2k, x=1o0r3 mod 8

This is easily seen to be a consequence of the Hasse-Davenport relations, see

[12, chapter 2, theorem 10.1]. We give a direct argument, by applying induction

on k. For k =3 we have ¥ = ¢, so by (8.2), (7.2) and ¢4(—1) = 1 we

find that

a3 6, 62 = q- (@t N2/t 6H? = e,

k-1
as required. Let now k > 3., Put ¢ = ¢4 = x2 ; this is the quadratic

1

character modulo g. From 8|2k_ it follows that the set {xx: X € M} is

permuted upon multiplication by VY. Therefore we have

X, .2 X X
(ﬂxeMT(x)) -ﬂx (t(x )T W),

eM

Assume for the moment that
-1 2
(9.23) TOOTXY) = x(4) "t(WTt(x).

Applying this to the characters xx we find that

k-2

ontaaw? em o).

X, .2
(M M )= (nx XeM

X € €M

By (9.17), the first factor on the right hand side is 1. Since V¥ 1is quad-
k-3
2

ratic and Y(-1) = 1, we see from (7.2) that the second factor equals g .

Finally, the third factor can be written as

2,x, .2
My cx<ok-1, x=1or3measg T{X) )

k-3
- 3,2 .
and by the induction hypothesis this is equal to q2 1j(¢>, ¢") . This
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completes the induction step.

The identity (9.23) is a special case of the Hasse-Davenport relations,

and it can be proved directly as follows [5, section 20.4]. We have

300 0 = T0 xeax( - %) = 270 x e - x0)

x=0

= zye Z/q% x (y)m(y)

where m(y) is the number of x € Z/gqZ for which y = x - x2; this is

0, 1 or 2 according as the discriminant 1 - 4y of X2 - X +y is a

non-square, zero, Or a non-zero square in Z/qZ, so in all cases m(y) =

1 + (1;3329 =1+ Y(1-4y). Therefore

Jlx, x) = Zyez/qZ X(y) s (1 + Y (1 -4y))

12 x(z2)P(1 - 2)

0+ x(4) z € Z/qZ

x5, .

By (8.2) this is the same as
2 2 -1
T(X) /T () = x(4) "t(x)T) /T (x¥)
and this implies (9.23). This completes the proof of (9.19).

(9.24) Remarks. (a) From the proofs of the theorems in this section we see that

if (9.2), (9.4), (9.6), (9.11) or (9.20) holds for some [ € U2k' then (7.9) is
true with [ replaced by *r. Notice that, for k 2 2, the 2k-th root of
unity *¢ is primitive if and only if ¢ is primitive. This is important for
(7.26) .

(b) The number x(-1) € {1, -1} that appears in many formulae in this
section is equal to -1 if and only if k = v2(q - 1), which is often the

case in the applications.
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10. Choice of the ideal.

In this section p denotes a prime number, k a positive integer, Cpk
a primitive pk—th root of unity in ¢ and n an integer for which n > 1
and n # O mod p. By f we denote the order of (n mod pk) in the group
(Z/pkz)*, and we let o be the automorphism of the ring z[cpk] for
which o, (€ k) = cgk.

In section 11 we shall see that in our primality algorithm we have to
test (8.8), (9.2), (9.4), (9.6), (9.11) and (9.20) for several choices of P,

k, gq. Each time this requires a calculation modulo an ideal m of :Z[Cpk]

satisfying
(10.1) mn zZ = nz, cn[m] = m.

This calculation is easier to do if the ring Zicpk]/m is smaller, so if

m is larger. In this section we shall see how to choose m as large as poss-
ible. The methods that we shall describe are usually successful if n is prime,
even if we do not yet have a proof that n is prime. However, if n is com-
posite then the methods are not likely to work. It is therefore advisable to

use them only if n is probably prime in the sense that it passed several

tests as in (1.2).

(10.2) The first method is taken from [1, section 4, A.5]. We apply Berlekamp's
algorithm [8, section 4.6.2] to find an £-th degree polynomial h ¢ zZ[T]

p-1 ipk~1
with leading coefficient 1 such that (h mod n) divides Zi=0 T in
(Z/nz)[T]. If n is prime then such an h exists, and (h mod n) is irre-
ducible, cf. [25, chapter 2]. We now let m be the ideal of Zicpk] gener-

ated by n and h(r,pk). Then we have M n Z = nZ and Z[gpk]/m may be

identified with the set of all expressions

1 .
oaz;, aiez/nz (0 i < f)
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where [ = (Cpk mod M) is a zero of (h mod n). This ring has nf elements,
and if n is prime it is the field F ¢- The condition on[m] = M can be
shown to be automatically satisfied if h has been obtained by means of
Berlekamp's algorithm; but it can in any case easily be tested by looking if
Zn is a zero of (h mod n). We remark that if n is prime the condition
on[m] =m is satisfied for all ideals m of :z[cpk] containing n. To see
this, one uses (1.3) to show that on(a) = 0" mod m for all o € Zicpk];
then cn[m] < m, and equality holds because cn has finite order.

If £f= (p - 1)pk'—1 then the above method leads to M = nzicpk], and
from (10.5) it follows that this is in fact the only ideal of Zicpk] satis-
fying (10.1). The methods described in this section are therefore only useful
if £ < (p - 1)pk~1. This occurs for example if p = 2 and k 2 3, since in
that case (Z/pkz)* is not cyclic.

If £ < (p - 1)pk-1 then the coefficients of h are usually rather
large. This makes Euclidean division by h into a complicated operation in
practice, and the same thing is therefore true for multiplication in the ring

:Z[Cpk]/m, at least for f#1. The second method to construct m does not

have this disadvantage. It is as follows.

(10.3) First one constructs a ring F with Iﬂf elements that contains Z/nZ
as a subring, such that F is a field if n is prime. For example, one can
take F = (Z/nzZ)[T1/g°(Z/nz)[T], where g is an f~-th degree polynomial

in (Z/nzZ)[T] with leading coefficient 1 that is irreducible if n is
prime; the latter property can be checked by an irreducibility test as de-
scribed in [8, exercise 4.6.2.16]. Writing £ for the image of T in F we
have F = {wa1 aigi: a; € Z/nzZ (0 <i < f)}, with g(§) = 0. To facili-
tate the multiplication in F one should choose g such that its coefficients
are "small", and this can usually be done.

It is important that F be constructed in such a way that we can recog-

nize whether a given element of F belongs to the unit group F*. 1In the
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example given we can do this by calculating the gcd with g in
(Zz/nZ)[T], wusing the Euclidean algorithm; this can only fail if at some
stage a nontrivial common divisor of n and some leading coefficient is
found, in which case n is factored [1, section 5].

Once F has been made one constructs a ring homomorphism p: F = F
such that if n is prime we have p(a) = un for all o € F. For F as

above this is done by checking that g(En) = 0 and putting p(Zf;é aiil)

f-1 i
i=0 aigln; if g(En) # 0 then n is composite.

Next one chooses an element B € F, B # 0, such that B(

= Z
nf-1)/p
Such an element B should not be hard to find, since if n is prime then
a random B € F - {0} has this property with probability (p - 1)/p.

If n is prime then we must have

nfo1 (nf- 1) /p -

(10.4) B =1, B 1 € F*, pP(B) = B

One now checks that B does indeed have these properties, and one calculates

- f_ k _ _ . k-1 k k-1
g = B(n D/P% hen ¢ is a zero of Z§=é x'P =P -0/ -,
so we can define a ring homomorphism A: z[cpk] = F Dby A(Cpk) = 7. We

have p(Z) = Zn, and therefore Aoon = poA.

Finally we let m be the kernel of A. Since Z/nZ < F, we have
mon Z = nZ. We prove that cn[m] =m. For o € M we have )\(On(oc)) =
p(A(a)) = p(0) = 0, so on(a) € m. Hence cn[m] c m, and equality follows
as before. We conclude that m satisfies (10.1). From (10.5) below it follows
that A is surjective, so that Zicpk]/m ~ F.

This finishes the description of the second method to construct m. Some
additional work would be needed to find explicit generators for m, but these
are in fact not needed: to check a congruence modulo m it suffices to apply
A and to check the corresponding equality in F.

If £ =1 then in the second method we can simply take F = Z/nZ and

k
p equal to the identity map. Notice that f =1 if and only if n = 1 mod p .
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This is not a rare event, since in practice p is small.

If one of our two methods successfully constructs an ideal m satisfying
(10.1), then m is indeed largest possible, even if n is not prime. This

is an immediate consequence of the following proposition.

(10.5) Proposition. Let M be an ideal of Z[Cpk] satisfying (10.1). Then

the number of elements of Z[Cpk]/m is at least nf.

Proof. From M n Z = nZ it follows that 2%/nZ c z[cpk]/m. Write T =

(Z;pk mod m). It suffices to show that the map (Zz/nZ)f - Z[Cpk]/m sending

£-1 £-1 _ =i £-1 i
is inj ive. z . = 0.
(ai)i=0 to Zi=0 a;t” is injective. Suppose therefore that i=0 at 0

From crn[m] =M we see that o induces an automorphism of Z[Cpk]/m that

maps T to En. Repeatedly applying this automorphism we find that

(10.6) T o236 =0 for 0 < j < £.

k
From the identity ﬂl}:: (1 - C;k) = pk in the proof of (7.17) and gcd(p, n)

1
=1 it follows that 1 - Zx € (Z[Cpk]/m)* for all x € Z, x # 0 mod pk.
. ]
. —in _
Therefore the Vzimdermc.:nde determinant det (C )O <i,j<f
n -nJ  -n* | . [ o
0<i<j<f (T - ) is a unit in = Cpk]/m, and (10.6) implies that

a, = O for 0 £ i < f. This proves (10.5).

It is an attractive feature of our second method to construct m that it

gives us an easy way to check condition (6.4).

(10.7) Proposition. Let F be a ring with nf elements that contains Z/nZ

as a subring. Suppose that F contains an element B satisfying (10.4) for
some ring homomorphism p: F - F. If p =2 and n = 3 mod 4, suppose that

k 2 2. Then p satisfies condition (6.4).

- £ k - =2
Proof. Put [ = B(n 1)/p . From the proof of (10.5) we see that 1, ¢, ¢,
cooy Ef_l is a basis of F over Z/nZ, and that det(pj(fl)) € F¥,

0<i,j<f
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Hence F is, in the terminology of [16, section 8], a Galois extension of

rank f of Z/nZ with group <p>. We can now apply [16, theorem (8.4)]

with s equal to the largest power of p dividing nf -1, and o =
(nf—l)/s

B . Then we find that for each r|n there exists i € Z such that

r = nl mod s; then rn—l €1 + szp = (nf)zp, by (5.1), and (6.4) follows

immediately. This proves (10.7).

For the final result of this section we assume that n = 3 mod 4. Let u
Z/nZ be chosen such that u2 + 4 ¢ (Z/nzZ)*, and let F be the ring
(Z/nz)[T]/(T2 - uT - 1). Denote by £ the residue class of T, and let
p be the automorphism of F with p(§) = u - §. Notice that p(§) = —Enl.

If n is prime and (u ;'4) = -1 then F 1is a field in which & and

+
p (&) are conjugate, so p(E) = &n by the theory of finite fields, and En 1

= =-1. The following proposition tells us what can, conversely, be said if

n+1

£

-1. The reader interested in Lucas functions [26] should notice that

ntl -1 1is equivalent to £(n+1)/2 + p(E;)(m'l)/2 =

0, since n = 3 mod 4,

]

3

(10.8) Proposition. Suppose that n = 3 mod 4, and that, with the above

, + , , s
notation, we have En ! = -1. Then p=2 satisfies condition (6.4).

Proof. This is an immediate consequence of (10.7), with k = 2, £ = 2 and

B = £. This proves (10.8).

We leave it to the reader to deduce (10.8) directly from properties of the

Lucas function, and to prove that the assumptions of (10.8) also imply that

(u2+4

- ) = -1.
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11. The central stage of the algorithm.

In this section we give a more detailed description of the second stage of

our primality test than was given in section 2.

(11.1) Let n be the integer to be tested for primality, n > 1, and let

t and s be integers satisfying (2.1), (2.2), (2.3), (2.4) and gcd(st, n)
= 1. We describe an algorithm that leads either to a proof that n is com-
posite or to a proof that (2.5) holds.

(a) First one selects, for every prime power pk dividing t, an ideal m =
mp,k of Zicpk] satisfying (10.1). This is done either by taking m =
nzicpk] or by using one of the methods described in section 10.
(b) Next one lets Ys be as in (6.3), and checks that every ¥ = Xp,q € Ys
satisfies (7.9). If p is odd this is done by selecting a, b as in (8.6),
calculating the Jacobi sum j(xa, Xb), and checking that (8.8) is satisfied;
if (8.8) is not satisfied for some pair p, g, then n 1is composite by
(8.5), and the algorithm halts. If p = 2 then one proceeds in a similar way,
replacing (8.8) by (9.2), (9.4), (9.6), (9.11) or (9.20), whichever is appli-
cable.

(c) Finally one checks that every prime p dividing t satisfies condition
(6.4) . The procedure by which this is done is described in (11.2) for odd p
and in (11.5) for p = 2, 1If this has been done then from (7.8) it follows

that every X € YS satisfies (6.5). From theorem (6.3) one can now draw the

desired conclusion that (2.5) holds. This is the end of the second stage.

(11.2) Let n, t, s be as in (11.1), and let p be an odd prime dividing t.
We describe a procedure that leads either to a proof that n is composite or
to a proof that p satisfies condition (6.4). If in (11.1) (a) algorithm
(10.3) has been used to construct m it suffices to apply (10.7). Otherwise
we can proceed as follows.

(a) First one tests whether np—1 # 1 mod p2. If this holds then (6.4) is
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satisfied, by (7.18), and the procedure halts.

(b) Secondly, one checks whether there exists a prime g dividing s, with
g - 1 divisible by p, such that ¥ = Xp,q satisfies (7.9) with a primitive
pk—th root of unity ; here k = vp(q - 1). The calculations that are
needed to check this have already been carried out in stage (b) of algorithm
(11.1), cf. remark (8.9)(b). If such a prime ¢q indeed exists, then (6.4) is
satisfied by (7.19), and one stops.

(c) Suppose now that both (a) and (b) have failed to establish (6.4). Then

one first tests whether n 1is the p-th power of an integer. If this is the
case then clearly n is composite, and the procedure halts.

(d) Next one determines a prime number ¢ (not necessarily dividing s) for

which
(11.3) g =1 mod p, n @ D/P 4y hoa q.

Such a prime ¢q can be found by trying all primes in succession; cf. remark
(11.4) (a) below.

(e) If now g divides s we claim that n is composite (see (11.4) (b)),

and the procedure halts. Suppose finally that g does not divide s. Then one
first checks that g does not divide n. Next one lets X be a character
modulo g of order p, and one tests, using (8.5), whether (7.9) is satis-
fied with T € Up primitive. If this is the case then (6.4) is satisfied, by
(7.19), and if this is not the case then we claim that n is composite (see

(11.4) (b)) . In all cases the procedure halts.

(11.4) Remarks. (a) If n 1is not a p-th power then the density of the set of

primes q satisfying (11.3) is 1/p. To see this, note that for a prime g not
dividing n condition (11.3) is equivalent to the condition that gq splits

1/p); next one can apply the well

completely in Q(cp), but not in Q(cp, n
known theorem that the density of the set of primes splitting completely in a

normal number field of degree d over { equals 1/d, see [11, chapter VIII].
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It follows that a prime g = 1 mod p satisfies (11.3) with probability
(p = 1)/p. Therefore the desired g should not be hard to find. If the truth
of the generalized Riemann hypothesis is assumed then it can be proved that
the least prime q satisfying (11.3) is < c'p2°(log p + log n)2 for some
absolute, effectively computable constant c¢, by [9, corollary 1.3]. Without
unproved hypotheses no satisfactory upper bound for g is known. Consequently
we can give no satisfactory upper bound for the running time of part (d) of
procedure (11.2).

(b) To justify the claims made in (11.2) (e), suppose that n is prime and
that g 1is a prime satisfying (11.3) with g not dividing n. Let X be as
in (11.2)(e) if g does not divide s, and ¥ = Xp,q if g does divide s.
Write order(y) = pk. Then from (11.3) it follows that ¥(n) is a primitive
pk—th root of unity, so (7.5) implies that ¥ satisfies (7.9) with [ € Upk
primitive.

Hence if one finds that (7.9) is not true with ¢ primitive, one can con-
clude that n 1is composite. This applies in particular if q divides s,

since in this case it was discovered in (11.2) (b) that x = does not

XPrq
satisfy (7.9) with ¢ primitive. This proves the claims in (11.2) (e).

(c) Procedure (11.2) is quite efficient in practice, despite the theor-
etical difficulties mentioned in (11.4) (a). In fact, it only rarely happens
that parts (c), (d) and (e) of the procedure are needed. This occurs, for
example, if n is a prime number that is congruent to a p-th power modulo
p2°s. If n 1is very likely to be prime the procedure can be speeded up by

omitting part (c) and by restricting the search in (d) to the primes q not

dividing s.

(11.5) Let n, t, s be as in (11.1), and assume that t is even. We describe
a procedure that either proves that p = 2 satisfies (6.4) or proves that n

is composite.

First suppose that n = 1 mod 4. In this case one determines an integer
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a satisfying (%) = -1, Dby trying all primes 2, 3, 5, ... in succession,

a(1r1~-1)/.2

and one tests whether 2 -1 mod n; if this is the case then p = 2

satisfies (6.4), by (7.24), and otherwise n is composite, by (1.2). If it
is difficult to find an integer a with (%) = -1 one testé whether n is
a square.

Secondly, suppose that n = 3 mod 4. In this case one determines an

(u2+4

o ) = -1, by trying u=1, 2, 3, ...; cf.

integer u satisfying
(11.6) (a). Next, one lets £ = (T mod T2—uT— 1) € (Z/nZ)[T]/(T2 - uT - 1)
be as defined before (10.8), and one tests whether £n+1 = -1; if this is

the case then p = 2 satisfies (6.4), by (10.8), and otherwise n is com-
posite, by the remark preceding (10.8).

This finishes the description of the procedure. Alternatively, one might

make use of (7.25) or (7.26).

(11.6) Remarks. (a) The remarks made in (11.4) (a) about the existence and the

size of g also apply to the number a that appears in the above procedure

for n =1 mod 4.

Suppose that n = 3 mod 4. We prove that there exists u € Z with

2
+
(u a 4) = ~1. Let r be a prime divisor of n with vr(n) odd, and let a
be the least positive integer for which (gﬂ = -1, By the minimality of a
’ +
there exists v with v2 =a - 1 mod r, and then (Y—;—EJ = -1, Let now

u € Z be such that u = 2v mod r, and such that u is divisible by all

. - . +4
other primes that divide n. Then one easily checks that (u o ) = -1, as
required.
If the generalized Riemann hypothesis is true then there is an absolute

effectively computable constant ¢ with the following property: if n 1is a

positive odd integer that is no square, and n has no prime factor

2
u +4
—)

2 .
< ¢ (log n)4, then the least positive integer u with ( = -1 satis-
fies u < c(log n)2. This is proved by combining [9, corollary 1.3] with

[3, lemma 1]. We are indebted to A.M. Odlyzko for this observation.
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(b) The search for g in (11.2)(d), and the search for a and u in
(11.5), are the only points in our primality testing algorithm that prevent
us from proving a worst case running time estimate of the form
(log n) ¢ 1091CIL0TN b (11.4) () and (11.6) (a) it follows that the truth
of the generalized Riemann hypothesis would imply such a bound for the algor-
ithm; we should then choose m = rﬂZ[cpk] in (11.1)(a). If we wish theorem 1
from [1], quoted in section 1, to be valid for our algorithm, we should use
algorithm (10.3) in (11.1) (a), and apply (10.7) to check (6.4). The condition

k 22 in (10.7), for p=2 and n = 3 mod 4, is not a serious restriction,

cf. (7.28).
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12. Detailed description of the algorithm.

(12.1) Let N Dbe some large integer. We describe, from a computational point
of view, an algorithm to determine whether an integer n, 1 <n <N, is

prime.

Step 1. Preparation of tables. These tables depend only on N, and can be made

once and for all.

(a) Select a positive integer t with e(t) > Nl/2 (cf. section 4,

table 1).
(b) Perform steps (bl) and (b2) for each prime qle(t).
(bl) Find by trial and error a primitive root g modulo g, i.e. an
. (@-1)/p .
integer g # 0 mod g such that g # 1 mod q for every prime plg - 1.

Make a table of the function £: {1, 2, ..., g-2}->{1, 2, ..., g-2} defined

f
by 1-ngg(X) mod .

(b2) Perform steps (b2a), (b2b), (b2c), (b2d), (b2e), (b2f) for each

prime plg - 1.
(b2a) Put k = vp(q - 1), the number of factors p in q - 1.

(b2b) If pk # 2, compute

. g-2 _x+f(x)
= z ®
Ip,q = Tx=t Lok € [Cpk]

i .
H ith € Z is to be
ere an element ¥ pk-1 aicpk of Z[C_.pk], wi a, ,

0<i< (p-1)

represented as a vector (a,) cf. section 7. (Notice that

i'0<i< (p-1)pk-1’

j = J £ = 8.1).
Io,q J(x, x) for ¥ Xp,q" see (8.1).)

(b2c) If p # 2, do the following. Let

M= {x¢e Z: 1£x$pk,x¢0modp},

8 = erM xo e z[G],

a(v) = KCJ_l e zlG] for v € M,
XeM pk X
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where [y] denotes the greatest integer < y and Ox and G are as in

section 7. Calculate

. _ .8

jO,p,q Jp,q
. o (v
j - 5 (v)

V:Pr9q bP.q

for each v € M, as elements of zicpk] (see section 7 for the definition

of the action of %[G]). The numbers 3, i’ for v e {0} u M, should be
4 14
tabulated.
(b2d) If p=2, k=1, let
Jol2lq -
Jll2lq = b

and tabulate these values.

(b2e) If p =2, k = 2, do the following. Calculate
j = 32 .q e zlg,],
0,2,q 2,q 4
and let
Jllzlq =L

33121q - leq.

0, 1, 3, should be tabulated.

Hh
9}
a}
<
Il

The numbers jv 2 q'
I 7

(b2f) If p =2, k 2 3, do the following. Calculate

5a-2  2x+f (x)

s K = =
J2,q J2,q x=1 7ok
4 - g-2 _3x+f(x), 2
JZ,q (Xx=1 Lg )
2k—3
as elements of Zitzk], where Lg = Lok - (Notice that j§ q° J(Xr Xe X)
1
. . 3.2 ok=3 . .
and j# = j(¢, ¢°)°, with ¢ = y , as in section 9.) Put

2,9
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x is odd},

=
i
-
kg
m
N
[N
IA
x
A
N

M={xeL: x=1or 3 mod 8},
6 =X xc“1 e z[a]

xeM T x !

vx | -1
a(v) = erM [zk]cx e z[G] for v € L,
and calculate
0

. o (a%
JO,2,q (leq) '
. = (3% oW for v e M,
v,2,9 2,q
. = (3% )¢ e for v e L - M.
V'2lq 2,q 2,9

The numbers , for v € {0} u L, should be tabulated.

Jvlzlq

Step 2. Preliminary tests. Let now an integer n be given, 1 < n < N, to

be tested for primality.

(c) Depending on the information that one may already have about n, it
may be wise to test n for small divisors, or to subject n to the test of
Miller and Rabin [8, page 379].

(d) Test whether gcd(te(t), n) = 1, using Euclid's algorithm. If not, then
a prime divisor of n is obtained, since te(t) is completely factored, and
we stop.

(e) Select a divisor s of e(t) with s > n1/2 (cf. section 4). Re-

place t by the smallest t' for which s divides e(t'). (Note that the

new t divides the old t.)

Step 3. Pseudoprime tests with Jacobi sums. Perform steps (f), (g), (h) for

each prime p dividing t.
(f) Declare a boolean variable Ap (telling us whether (6.4) has been

checked). Put Ap = "true" if p is odd and np“1 # 1 mod pz, and AP =
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"false" otherwise.

(g) For each integer k = 1 with pklt, determine integers U Vi

k k
= <
such that n ukp + Vi and 0 < Vi <p .

(h) Perform steps (hl), (h2), (h3) for each prime gls with plg-1.

(hl) Put k = vp(q-l), and u = u v = v as in (g). Calculate

k' k

u
j *j mod nzlz 4]
JO:P:q JVrpiq Cpk

by means of repeated squarings and multiplications modulo nzicpk]; here a
. i . .
residue class (ZOS i < (p-1)pk-1 ai?;pk mod Z[Cpk]) , with a, €z, is to be

represented as a vector (bi)O:Si.<(p—1)pk“1' where bi e {0, 1, ..., n-11},

b, = a, mod n. If there does not exist h ¢ {0, 1, ..., pk-l} with

jg,p,q.jv,p,q = Cgk mod nZ[Cpk]

then n is composite and the algorithm halts. (This is test (8.8) with a =
b=1 if p is odd; test (9.2) if p* = 2; test (9.4) or (9.6) if p~ = 4;
and test (9.11) or (9.20) if p =2, k 2 3.) Suppose now that h exists.

k

(h2) If h # 0 mod p, and either p = 2, n 1 mod 4 or p is odd,

put Ap = "trye". (This combines (7.24) and (7.19).)

(h3) If h#0mod 2, p=2, k =22 and Az "false", do the following.

Test whether q(n—l)/2 = -1 mod n. If this does not hold, n is composite,

and the algorithm halts. If it does hold, put A2 = "true". (This is (7.26).)

Step 4. Additional tests. Perform steps (i) and (j) for every prime p dividing

t for which Ap = "false",

(1) Select a small prime number ¢q not dividing s such that

1 mod p,

Q
n

q lmod 4 if p =2 and n = 3 mod 4,

n(q—l)/p # 1 mod qg.
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If such a prime g cannot be found below a reasonable limit, do the follow-
ing. Test whether n is a p-th power. If so, declare n composite and halt.
Otherwise, halt with the message that the algorithm is unable to prove that

n is prime. Suppose now that g has been found. Halt if n = 0 mod q.

(j) Put k=2 if p=2 and n = 3 mod 4, and k = 1 else. Deter-

mine integers uk, vk as in (g). Calculate Jv,p,q as in (bl), (b2b), (b2c),
h
(b2d), (b2e), but only for v e {0, v.}. Test whether j°K  «j =
P ) Y r Vi Jo’p'q JVk,p,q Pk

mod nz[gpk] for some h e Z, 0 < h < pk, h # 0 mod p. If this is not the

case, n is composite, and the algorithm halts. (To justify this, cf. (11.4)

(b).) Otherwise, perform steps (h2) and (h3).

Step 5. Final trial divisions.

(k) Put r, = 1.
(L) Perform steps (1), (22), (R3) for i =1, 2, ..., t.
(21) Determine r, by r., = nr, mod s, 0 <r, < s.
i i i-1 i
(22) 1f r, = 1, declare that n is prime and halt.
(23) If riln, and r. <m, declare that n is composite and halt.
t
(Notice that one of (£2) and (43) applies for some i < t, since n =

1 mod s.)

This finishes the description of the algorithm.

(12.2) Remarks. (a) Since we used a =b =1 in (8.8) (see step (hl)), the

correctness of the test is only guaranteed if 2p # 2 mod p2 for all primes
plt, cf. (8.6). This condition is satisfied for all p < 1093, see (8.9) (c).
In practice we usually have p < 20, see section 4, table 1.

(b) Several improvements have not been incorporated in the above descrip-
tion. First of all, the results of section 10 have not been uysed, Secondly, the
algorithm of (3.1) has not been included. Finally, the possibility to combine
the test with the older tests described in [26] has been neglected, see [16,

section 8].
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13. The implementation.

The algorithm described in section 12 has been programmed in PASCAL for the
CDC CYBER 170~750 computer system at the SARA computer centre in Amsterdam.
The necessary multiprecision routines were written in the assembly language
COMPASS by D.T. Winter.

The auxiliary number t was chosen to be 5040. We have e (5040) >
1.5'1052, SO our program can handle numbers of up to 104 decimal digits.

The program incorporates the following improvements that are not included
in the algorithm in section 12. Use has been made of the results of section
10, but only in those cases where the integer f defined at the beginning of
that section equals 1 or 2. This was done by constructing a ring F of
n2 elements that is a field if n is prime. This ring also enabled us to
combine our algorithm with the test that is based on known prime factors of
n2 -1, see [16, section 8].

For each prime power pk dividing t special routines were written to
do multiplications in Zicpk]/nﬂiipk]; or, equivalently, to multiply poly-
nomials of degree less than m = (p - 1)pk_1, with coefficients in Z/n%,

0 X . The straightforward

modulo the pk—th cyclotomic polynomial ZE;
way to do one such multiplication takes m2 multiplications in Z/nZ. It is
important to reduce this number. Theoretically, 2m - 1 multiplications in
Z/nZ suffice, by a theorem of Winograd [8, page 495]; but Winograd's method
is completely impractical because it involves a great number of additions and
parameter multiplications. We made use of special formulae for each pk. For
example, for pk = 16 we use 27 instead of 64 multiplications in Z%Z/nZ%
to do one multiplication in ZIC16]/nZIC16], and only 18 to do one squaring.
It may be that along these lines further improvements are possible.

Table 3 contains data on the running time of the algorithm. For each

number d in the first column we tested 20 prime numbers of d decimal

digits. Each prime number was selected by drawing a random number of d digits
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number average standard maximum minimum

of digits deviation
50 6.437 1.687 10.030 4.525
60 8.634 2.554 15.168 5.009
70 12.074 2.289 15.214 7.032
80 16.224 3.897 23.800 8.006
90 25.572 5.870 35.752 15.810
100 33.230 6.477 50.119 22.013

Table 3. Running times in seconds (see text).

and using our program to determine the least prime exceeding the number

drawn. The second column gives the average running time ¢t = (Zigl ti)/20,

the third the sample standard deviation (ngl (ti-E)z)/19)1/2, the fourth
the maximal running time, and the fifth the minimal running time. All times
are in seconds. The time spent on the composite numbers is not counted.

We indicate the speed of the multiprecision routines that are used. One
multiplication of two numbers each consisting of eight words takes on the
average less than 7'10_5 seconds; each word contains 47 bits. Calculating
the remainder of a 16-word number upon division by an 8-word number takes
on the average less than 2-10"4 seconds .

Acknowledgements are due to D.T. Winter for writing the COMPASS multi-

precision routines, and to A.K. Lenstra for his great help in getting the

program running and for taking care of it ever since.
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