Séminaire de Théorie des Nombres Année 1981-1982 - exposé n° 35

REDUCED BASES FOR LATTICES AND FACTORIZATION OF POLYNOMIALS

by

H. W. LENSTRA, Jr.

ms + ms + ms + ms

1. - Reduced bases for lattices

Let n be a positive integer, and b₁, b₂,...,b_n linearly independent in a real vector space. We call $L = \sum\limits_{i=1}^{n} \mathbb{Z} b_i$ a <u>lattice</u> of rank n with <u>basis</u> b₁, b₂,...,b_n, and its determinant is defined by $d(L) = det((b_i, b_j)) \frac{1}{2}$; this is independent of the choice of the basis of L. Hadamard's inequality asserts that

$$d(L) \leq \frac{n}{\displaystyle \prod_{i=1}^{n}} \ \left| \ b_{i} \right|$$
 ,

the equality sign holding if and only if the b_i are pairwise orthogonal. It is a classical theorem that any lattice of rank n has a basis b_1, b_2, \ldots, b_n that is nearly orthogonal in the sense that

$$\frac{n}{\left| \right|} \left| b_i \right| \le c_n d(L) ,$$

for a constant c only depending on n. It has recently been shown by Lovász that there exists a fast ("polynomial-time") algorithm to find such a basis with

 $c_n = 2^{n(n-1)/4}$, see [3L, sec. 1]. We call such a basis <u>reduced</u>. If b_1 , b_2 , ..., b_n is a reduced basis, then

$$\min \left\{ \left| b_i \right| : \ 1 \le i \le n \right\} \le c_n \min \left\{ \left| \mathbf{x} \right| : \mathbf{x} \in L, \ \mathbf{x} \ne 0 \right\} \ .$$

Therefore Lovász's algorithm can be used to find small elements in a lattice, and this leads, in section 2, to an efficient factoring algorithm for polynomials. There are other applications in simultaneous diophantine approximation, generalized continued fractions, integer programming, and linear programming.

2. - Factoring polynomials

Let f be a polynomial in one variable with integer coefficients. Assume for simplicity that the leading coefficient of f equals 1. Denote by m the degree of f. We wish to factor f into irreducible factors in $\mathbb{Z}[X]$. One way to proceed is to factor f into irreducible linear and quadratic factors in $\mathbb{R}[X]$ to a certain accuracy, using methods from numerical analysis. Searching among all subproducts for polynomials with integer coefficients we can then find the desired factorization in $\mathbb{Z}[X]$. This algorithm is not a polynomial-time algorithm, because of the large number of subproducts to be tried.

A faster method is as follows. Fix one irreducible factor h of f in $\mathbb{R}[X]$, and look for the unique irreducible factor h of f in $\mathbb{Z}[X]$ divisible by h. Suppose for example that h is linear: h = X - a, where a is a real zero of f. Then h(a) = 0. From the numerical analysis we will only get an approximation \hat{a} of a; so we have to look for a factor h of f for which $h(\hat{a})$ is very small. Since we know an upper bound for the coefficients of h we can view h as a "small" element of the lattice of rank m+1 defined by

$$\{(g,g(\hat{a})):g\in\mathbb{Z}[X], \deg(g)\leq m\}\subset\mathbb{Z}^{m+1}\times\mathbb{R}.$$

We can now find h by means of Lovász's algorithm.

It is likely that the above procedure, when all details are filled in, leads to a polynomial-time algorithm to factor f in $\mathbb{Z}[X]$. In [3L] the field of real numbers is replaced by the field \mathbb{Q}_p of p-adic numbers, for a suitable small prime number p. The role of the numerical analysis is then played by a combination of Berlekamp's factoring algorithm over finite fields and Hensel's lemma.

It has been shown in [3 L] that in this way one does obtain a polynomial-time algorithm to factor primitive polynomials with integer coefficients in one variable. There are generalizations to polynomials in several variables and to polynomials over algebraic number fields.

REFERENCE

[3 L] A.K. LENSTRA, H. W. LENSTRA, Jr., L. LOVÁSZ, Factoring polynomials with rational coefficients, to appear, Preliminary version:

Report IW 195/82, Mathematisch Centrum, Amsterdam 1982.

(texte reçu le 7 juillet 1982)

H. W. LENSTRA, Jr. Mathematisch Instituut Universiteit van Amsterdam Roetersstraat 15 1018 WB AMSTERDAM