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PRIMALITY TESTING

by
H.W. LENSTRA, JR.

Two fundamental problems from elementary number theory are the follow-
ing:
(a) (primality) given an integer n > 1, how can one tell whether n is prime

or composite?
(b) (factorization) if n is composite, how does one find a,b > 1 such that

n = ab?

Many mathematicians have been fascinated by these problems throughout history.
Among these are ERATOSTHENES (~-284-~-204), FIBONACCI (~1180-~1250), FERMAT
(1601-1665), EULER (1707-1783), LEGENDRE (1752-1833) and GAUSS (1777-1855).
Some of the fascination of the subject derives from the fact that, roughly
speaking, problem (a) is 'easy' and (b) is 'difficult'. Suppose, for example,
that two 80-digit numbers p and q have been proved prime; this is easily
within reach of the modern techniques for dealing with (a). Suppose further,
that the cleaning lady gives p and q by mistake to the garbage collector,
but that the product pq is saved. How to recover p and q? It must be felt
as a defeat for mathematics that, in these circumstances, the most promising
approaches are searching the garbage dump and applying mmemo-hypnotic tech-
niqués. The 'numerologists' occupying themselves with (a) and (b) do not
accept this defeat. They imagine all composite numbers to be created by
multiplication on the zeroth day of Creation, and they make it their task
to unravel the mysteries involved in this process. In this connection, it
is remarkable that no clairvoyants have ever been employed to identify
Mersenne primes or to factor large numbers. Such an attempt might lead to
new insights, if not in numerology then in parapsychology.

"Numerology" - this condescending term was, until recently, the fashion-
able one for the branch of science under discussion, in spite of the famous
names listed above. Nowadays, a change in this attitude is noticeable.

Partly, this change is due to an increased interest in general problems of
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feasibility of computations. The revival of the specific problems (a) and
(b) has, in addition, been stimulated by their striking application in cryp-
tography. For the details of this application we refer to the lecture of
P.J. HOOGENDOORN [10]. Suffice it to say that, in this application, it is
essential that (a) is 'easy' and that (b) is 'hard'. It is an ironic fact
that the only existing evidence for the 'hardness' of (b) is the failure of
generations of 'numerologists' to come up with an efficient factorization
algorithm.

This lecture is devoted to a discussion of problem (a). For (b) we re-
fer to the contributions of C. POMERANCE [23] and M. VOORHOEVE [34] to this
volunme.

In complexity theory, it is customary to call an algorithm good if its
running time is bounded by a polynomial in the length of the input. For
problems (a) and (b) the input is the number n, which can be specified by
[logn/log2] +1 binary digits. Thus the length of the input has the same
order of magnitude as logn.

A well known algorithm for solving (a) and (b) consists of trial divi-
sions of n by the numbers less than or equal to /n. In the worst case, this
takes vn steps, which is exponential in the length of the input. We conclude
that this algorithm is not 'good'.

Before one searches for a short proof that n is prime, or for a short
proof that n is composite, it is a good question to ask whether such a proof
exists. In this direction, we first have the following theorem; an arithme-
tic operation is the addition, subtraction or multiplication of two inte-

gers.

THEOREM 1. If n is composite, this can be proved using only 0(1) arithmetic

operations. Similarly <f n is prime.

PROOF. For composite n, the theorem is trivial; to prove that n is composite,
it suffices to write down integers a,b > 1 and to do the single multiplication
necessary to verify that ab = n. Thus, in the composite case, the O-symbol

is even superfluous. For prime n, the theorem is less obvious. It is an out-
growth of the negative solution of HILBERT's tenth problem [6], that there

exists a polynomial in twenty-six variables

£ e Z[A,B,C,...,%Y,2]
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with the property that the set of prime numbers coincides with the set of
positive values assumed by f if non-negative integers are substituted for
A,B,...,Z. Such a polynomial, of degree 25, is explicitly given in [11]. A
similar polynomial in 10 variables of degree 11281 is constructed in [17;
English translation]. To prove that a positive integer n is prime it now
suffices to write down twenty-six non-negative integers A,B,...,Z and to do
the bounded amount of arithmetic necessary to verify that n = f(A,B,...,Z).
In fact, according to [11, Theorem 5] no more than 87 arithmetic operations
are needed in this verification. This proves Theorem 1.

From a practical point of view Theorem | has two serious defects. The
first is, that it tells us that certain proofs exist, but it does not tell
us how to find them. Thus, F.N. Cole's proof that 267-1 is composite con-
sists of the single observation that

287 1 = 193707721- 761838257287,

But it had taken him 'three years of Sundays' to find his proof, and the
methods that he employed are far more interesting than the final proof it-
self [5,25].

With primes, the situation is slightly different. The proof that, for

prime n, there exist non-negative integers A,B,...,Z such that
n=£f(,B,...,2)

is completely constructive, see [11]. But for the polynomial from [11] it

is not difficult to prove that the largest of A,B,...,Z necessarily exceeds

(For a much better polynomial in this respect, see [1, Theorem 3.51.) The
second defect of Theorem 1 is, that it is clearly unrealistic to count an
addition or multiplication of numbers of this size as a single operation.
It is more realistic to count bZt operations, which may be defined as arith-

metic operations on numbers of one digit. Thus, we have:

" THEOREM 2. If n s composite, this can be proved using only O((logn)z) bit

operations.
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PROOF. It suffices to remark that the usual algorithm. to multiply two num-—
bers less than n requires no more than 0((log n)z) bit operations. This

proves Theorem 2.

Using the fast multiplication routine of SCHONHAGE and STRASSEN [27,32]
we can replace (log n)2 in Theorem 2 by (log n)HE, for any € > 0, or more

precisely by 0((log n)+(log logn)-(logloglogn)) (for n > e®).

THEOREM 3. (PRATT [251). If n is prime, this can be proved using only
0((log n) 4) bit operations.

Again, using [27], we can replace (log n)4 by (log n)3+€, for any

e > 0.

PROOF. The proof relies on the structure of the group of units
(Z/nZ)* = {(amodn): ae Z, 0 < a < n, ged(a,n) = 1}

of the ring Z/nZ of integers modulo n. This is a finite abelian group of
order ¢(n), where ¢ is the Euler function. If n is a prime number, then

(Z/nZ)* is cyclic of order n-1. Conversely, if (Z/nZ)* has order = n-1,
then n is a prime number. Thus we see that n is prime if and only if there

exists (amodn) e (Z/n?Z)* of order n—1. If we assume n to be odd and write

k
n n-1 = igo qi’
4 = 2
2) qa prime (I <ic<k)

then (amodn) has order n-! in (Z/nz)* if and only if

3) 2D/2

-1 mod n,
(4) a(n_])/qi # Imodn, for 1 <i <k .

Therefore, to prove that n is prime, we can write down integers a, 9 = 2,
Qs sy verify that (1), (3) and (4) hold, and prove (2) recursively.
This proof requires k multiplications in (1), and k+l exponentiations (mod n)

in (3) and (4), plus what is needed for (2). So if f(n) denotes the total
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number of multiplications and exponentiations in the proof, then

k
fm) <k+k+1+ ] £(q)
i=1
where we define £(2) = 1. By induction we prove that f(n) < 3-(logn/log?2) -2,
This is true for n = 2, and if it holds for the q; then
k

2k + 1+ ) (3(logq;/log 2) - 2)
i=1

f(n)

N

k
(1 3(logq;/log2)) - 2
i=0

3(log(n~1)/log2) - 2 < 3(logn/log2) - 2

as required.

We conclude that no more than O(logn) multiplications and exponentia-—
tions are needed. Each exponentiation in (3), (4) can be done by 0(logn)
squarings and multiplications modn. Finally, each of these multiplications,
squarings and multiplications modn (or mod a number smaller than n) can be
done with 0((logn)2) bit operations. The total number of bit operations is

therefore 0((logn) * (logn) '(1ogn)2) = 0((logn)4). This proves Theorem 3.

Theorems 2 and 3 still have the first defect of Theorem l: one is not
told how to find the short proof whose existence is asserted. Nevertheless,
the proof we have given of Theorem 3 is not exclusively of theoretical in-
terest, and the same ideas are actually used in computer-assisted primality
proofs. To illustrate this, we begin with a particularly simple case, in

which n-1 has no odd prime factors at all.

THEOREM 4. (PEPIN, 1877). Let n = 2%+ 1, with m > 1. Then n is prime «>
P

3:n—]j;2 = -1mod n.

PROOF. The implication < follows from the proof of Theorem 3, with a = 3.
Conversely, suppose that n is prime. Then n is not divisible by 3, since
n >3, somis even. Thenn = 2mod 3 and n = 1 mod 4, so quadratic recipro-
city gives

3

==& =-1

By Euler's theorem, é? = 3(n_1)/2modn. This proves Theorem 4.
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It is known that n = 2"+1 can only be prime if m is a power of 2; then

n is one of the Fermat numbers F, = 22k+1. For k = 0,1,2,3,4 these numbers

are actually prime, for 5 < k < TQ and some other values (such as k = 1945)
they are known to be composite. It is reasonable to conjecture that they are,
in fact, all composite for k = 5. The number F14 has been proved composite
by Pépin's test, but no factor is known. To the uninitiated reader it may
seem surprising that it is possible to prove that a number is composite,
without the proof yielding a factorization. This is surprising indeed; the
phenomenon will be further discussed at the end of this lecture. See [36,

Sec. 53, [3] and [31] for more information on the Fermat numbers.

For general n, the main difficulty of the above test is to find the
complete factorization (1) of n-1. In the following variant only a partial

factorization of n-1 is needed.

THEOREM 5. Let n and s be integers satisfying
n>1, s >n .

Suppose that for every prime q dividing s there exists an integer a (depend-
ing on q) satisfying

m(q) m(q)-1
(5) at = 1 modn, gcd(aq -1,n) =1

where m(q) denotes the number of factors q in s. Then n is a prime number.

PROOF. Let r be any prime dividing n and q any prime dividing s. From (5)

m(q)

we see that the order of (amodr) in the group (Z/rz)* equals q , SO0 by

m(q) divides r-1. Since q is arbitrary, this implies

Lagrange's theorem q
that s divides r-1, so r > s. The inequality s > n® shows that n has at most

one such prime factor. Hence n is prime, as required. This proves Theorem 5.

From the proof of Theorem 5 we see that the hypotheses imply that s
divides n-1. To obtain a primality test from Theorem 5, one chooses s to be
the largest divisor of n—-1 that one is able to factor completely. For each
q, the number a is constructed as follows. Search for an integer b such
that

bn—l = lmodn, b(n-l)/q # 1modn,
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and put

B m(q)
= b(n D/q mod n.

a
If it is difficult to find such a number b, it is unlikely that n is prime,
and one should attempt to show that n is composite, using Miller's method

(n-1)/q

described below. The ged in (5) is now equal to ged(b -1,n), and it
can be calculated efficiently using Euclid's algorithm. In fact, only one
gcd-computation is necessary if one considers the product of the numbers

b(n~l)/q_ 1modn, with q ranging over the primes dividing s.

1/2 that

The critical condition of Theorem 5 is the inequality s > n
must be satisfied by the completely factored part of n-1. There are several
ways to replace this condition by a weaker one. Suppose, for example, that
s only satisfies

s > n1/3.

From the proof of Theorem 5 we see that every prime divisor of n is lmods,
and the same is then true for every divisor. Hence, if n is composite, there

exist integers x and y satisfying
n = (xs+1)(ys+l), x>0,y >0.

From n < s3 it follows that xy < s, and (x-1)(y-1) = 0 now implies that

0 < x+y < s. Since x+y = (n-1)/smod s this means that we know the value of
x+y. We also know that n = (xs+1) (ys+1), so x and y can now be solved from
a quadratic equation. Hence, if we add the hypothesis that the solution of
this equation does not give rise to a non-trivial factorization of n, we
still can conclude that n is a prime number.

A second method to relieve the condition s > nl/2 makes use of lower
bounds for the unknown prime factors of n-1. For a discussion of this tech-
nique, and references to the literature, see [36, Sections 10, 11].

Later in this lecture we shall consider a third type of generalization
of Theorem 5, in which the role of n-1 is played by nt-l, where t is some
positive integer; see Theorem 11,

G.L. MILLER [18] introduced a different way to exploit the multiplica-
tive structure of the integers mod n in primality tests. It leads to-the

following theorem, in which "GRH" denotes the generalized Riemann hypothesis,
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formulated in the course of the proof.

THEOREM 6. (MILLER). Assume the validity of GRH. Then there exists an algo-
rithm, described below, that in 0((log n)S) steps decides whether or not n

8 prime.

This theorem has none of the defects of Theorems 1, 2 and 3, but it has
a new one: the assumption of an unproved hypothesis.

Assume that n is odd, and write n-1 = u-2k, where u is odd and k > 1.
Employing RABIN's terminology [26], we call an integer a a witness to the
compositeness of n, or simply a witness for n, if the following three condi-

tions hold:

(6) n does not divide a,
@) a" # Imodn,
u-2i
(8) a # -lmodn for i = 0,1,...,k-1.

(Others say in this situation, that n is "not a strong base a pseudoprime"
el

Whether or not a is a witness for n depends only on a modn; so we may
restrict to 0<a<n. For a given such a, it takes only 0((1ogn)3) steps to
check whether or not a is a witness for n, by the last paragraph of the
proof of Theorem 3.

We note that witnesses are reliable: if a is a witness to the composite-
ness of n, then n is composite. To see this, suppose that 6), (7), (8) hold
and that n is prime. By (6) and Fermat's theorem, au'2 = an-l = lmodn.

Hence the last term in the sequence

k
u u-2 ue?2
a ,a sesesd

is 1modn, but by (7) the first term is not Imodn. Let b = au'21 be the
last term in the sequence that is not 1modn. Then 0 < i < k-1, and b2 =
Imodn while b # 1 modn. Since the integers modn form a field, this implies
that b = =1 modn, contradicting (8).

The algorithm referred to in Theorem 6 now runs as follows. We may

assume that n is odd, and n > 1. Check whether there is a witness a for n
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satisfying 0 < a < 70(1ogn)2. If there is one, n is composite. If there is
none, declare n to be prime. This algorithm clearly runs in time O((logn)s).

To prove the correctness of the algorithm, we have to show that any
composite odd n has a positive witness a < 70(10gn)2, if GRH is assumed.

We sketch this proof only, referring to the literature for details.

First we describe the GRH as we need it. Let n be an arbitrary positive
integer, and let x: (Z/nz)* > ¢ (the group of non-zero complex numbers) be
a group homomorphism. We view X as a function on Z by x(a) = x(amod n) if
ged(a,n) = 1, and x(a) = O otherwise. Such a function on Z is called a char—

acter modulo n. The L-series associated to X is defined by

L(s,x) =

If x is non-trivial, i.e. x(a) ¢ {0,1} for some a, this series converges for
all s € € with Re(s) > 0. We say that L(s,X) satisfies the generalized
Riemann hypothesis if L(s,x) # O for all s € € with Re(s) > %u For trivial
X, this is only meaningful if L(s,X) has been analytically continued; to
avoid this, let us simply say that L(s,x), for trivial x, satisfies the gen-
eralized Riemann hypothesis if and only if the classical Riemann hypothesis

is true, which is equivalent to

Z (-‘s) +0 for all s ¢ € with % < Re(s) < 1.

The GRH in Theorem 6 is the conjunction of all generalized Riemann hypotheses

described above.

LEMMA. (ANKENY-MONTGOMERY). There <e an absolute constant c with the follow-
ing property. Let X be a non-trivial character modulo n, and suppose that
L(s,x) satisfies the gemeralized Riemarm hypothesis. Then there exists
aeZ, 0<ac< c-(logn)z, such that y(a) # 0 and x(a) # 1.

PROOF. See [20, Theorem 13.1], or [12, Corollary 1.3] for a version in which

also the classical Riemann hypothesis is needed.

COROLLARY. Assume GRH, and let G # (z/nz)” be a subgroup of (Z/nz)”. Then
there exists a e Z such that

0 < a < ce(log n)z, ged(a,n) = 1, (amodn) ¢ G,
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with ¢ as in the lemma.

PROOF. It suffices to apply the lemma to a non-trivial x: (Z/nZD* > ¢* that

is trivial on G.

Let now n > 1 be composite and odd. To finish the proof of Theorem 6,
with an unspecified constant c instead of 70, it suffices, by the corollary,
to exhibit a proper subgroup G ¢ (Z/nz)* containing all non-witnesses a

that are not divisible by n. For this we take (cf. [331)
G = {(amodn) € (Z/n?Z)*: a(n—l)/Z = (g-) mod n}

where (%) is the Jacobi symbol. It is a charming theorem of LEHMER [13, cf.

301 that G # (Z/nz)* for composite odd n. It is an equally charming result

of SELFRIDGE [36, Theorem 17.2] that G contains all non-witnesses (modn) not
divisible by n. This finishes the proof of Theorem 6.

Using additional arguments it can be proved that the generalized
Riemann hypothesis is only needed for the L-series associated to characters
x of the form x(a) = (%), where d runs over the positive integers that are
1mod 4 and either prime or the product of two distinct primes, see [15].

The value 70 for the constant is taken from [21, Théor&me 4]; here a-
gain the classical Riemann hypothesis is needed, in addition to the general-
ized Riemann hypotheses just described. It is reported that Weinberger (un-

published) obtained sharper results.

The idea used in the proof of Theorem 6 has two other applications.

The first is a fast primality test for small numbers:

THEOREM 7. (SELFRIDGE & WAGSTAFF). Every odd composite n

satisfying : has a witness among:

n < 2047 2

n < 1373653 2,3

n < 2-10%, n # 25326001, 161304001, 2,3,5
960946321, 1157839381

n < 25-10°, n # 3215031751 2,3,5,7

"PROOF. By computer, see [24]. This proves Theorem 7.

The numbers in the left hand column are composite:
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2047 = 23-89, 960946321 = 11717-82013,
1373653 = 829-1657, 1157839381 = 2406148121,
25326001 = 2251-11251, 3215031751 = 151-751-28351.

161304001 = 7333-21997,

The test provided by Theorem 7 is easily implemented on a programmable pock-
et calculator. Thus, an HP-41C can decide the primality of an arbitrary
n < 2'109 within two minutes, using only 2, 3, 5 as possible witnesses.

The second application is based on the following theorem.

THEOREM 8. (RABIN). Every odd composite n has at least %{n—l) witnesses
among {1,2,...,n~1}.

The proof is an attractive exercise in elementary number theory, in
which the Carmichael numbers play a role. See [26,19]. This proves Theorem
8.

Rabin proposes the following primality test. Let m be a large integer,
like 100, and choose randomly m integers a, € {1,2,000,n-1}, 1 €1 <m. If
one of these a; is a witness for n, then n is composite. If none of the a;
is a witness for n, then either n is prime or we have extremely bad luck.

By Theorem 8, this bad luck occurs in at most one out of every 4™ cases.
While this method is basically incapable of yielding rigorous primality
proofs, it is difficult to doubt the correctness of the answers. In any case,
Rabin's method can be used to produce primes on a commercial basis: if found
defective, they can easily be replaced.

If we try to remove the unproved assumption from Theorem 6 we are left

with an algorithm that is no longer 'good':

THEOREM 9. (ADLEMAN, POMERANCE & RUMELY). There <s an algorithm that in
A
0((log n)c logloglogn

Here c' denotes an effectively computable constant.

) steps decides whether or not n is prime, for n > e®.

A complete proof of this theorem can be found in [2] and [16]. A prob-
abilistic version of the algorithm, which is somewhat easier to explain,
will be described below. This version of the algorithm has been implemented
by H. Cohen on the CDC—Cyber 170-750 computer of the SARA Computer Centre
in Amsterdam, cf. [4]. It is the only primality test in existence that can

routinely handle numbers of up to 100 decimal digits, and it does so within

approximately 45 seconds.
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The algorithm that we shall describe can be viewed as a special case

of the following primality criterion.

THEOREM 10. Let n > | be an integer. Then n is prime Lf and only if every

divisor of n 1s a power of n.

The proof is left to the reader.

To prove that n is prime using Theorem 10 we must check that any divi-
sor of n is a power of n, and it clearly suffices to consider only prime
divisors of n. Below we shall see how to do this without explicitly knowing
the prime divisors of n. Actually, something weaker will be done: rather
than showing that a prime r dividing n is a power of n, one attempts to show
that this is true for the images of r and n in certain auxiliary groups,
such as the group (Z/SZD* for an integer s that is coprime to n.

An example of this approach is provided by Theorem 5 and its proof: in
that theorem we have n = I1mod s, and the proof proceeds by showing that any
prime divisor r of n satisfies r = 1mods, i.e. is congruent to a power of

n modulo s. The following theorem provides a less trivial example.

THEOREM 11. Let n and s be positive integers, and let A be a commutative
ring with 1 containing Z/nZ as a subring (with the same 1). Suppose that

there exists o € A satisfying the following conditions:

€)) o = 1,
(10) oSy ¢ A (the group of units of A) for every prime
q dividing s,
- i
an the polynomial ﬁ;(}) (%-a" ) has coefficients in Z/nZ for some

positive integer t.

Then every divisor r of n is congruent to a power of n modulo s.

PROOF. We may assume that r is prime. Since r is a zero divisor (or zero)
in A, there exists a maximal ideal M of A with r € M. Let A be the field
A/M, and o = (omodM) € A. By (9) and (10), the order of & in A" equals s.
The polynomial ﬂ;;é (X—Eni), which has a as a zero, has coefficients in the
subfield Fr of A of cardinality r. Therefore o' is also a zero of this

. . . . -r _ =pi .
polynomial, so there exists i ¢ {0,1,...,t=1} with o = a7, i.e.
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r = ol mod s. This proves Theorem 11. ‘

If we take A = Z/nZ and t = 1, then condition (i]) is trivially satis-
fied. It is easy to deduce Theorem 5 from Theorem 11, by choosing o equal to
the product of the a's appearing in Theorem 5, taken modulo n.

The proof of Theorem 11 shows that the residue classes (nimod s),

0 <i<t, are permuted upon multiplication by (rmods), for any prime r
dividing n. Writing n as the product of its prime factors, we see that multi-
plication by (nmod s) also permutes these residue classes, which just means
that nt = Imod s. Hence s must be chosen to be a divisor of n'-1.

Let t = 2. In this case known prime factors of n+l = (nz—l)/(n—l) can
be used in addition to those of n-1 to build up the number s. Starting from
Theorem 11 one can, for practically every primality test based on factors
of n-1, devise a corresponding test based on factors of n+l. These tests are
usually formulated in terms of LUCAS functions [36, Sections 12,13,14]. In
the simplest case, corresponding to P&pin's Theorem 4, the number n+l is a

power of 2:

THEOREM 12. (LUCAS-LEHMER). Let n = 2™ -1, with m > 2. Define (ek);] by

2 . . . . _
e, = 4, Csl = ek—Z. Then n is prime i1f and only if e | = Omodn.

PROOF. First let m be even. Then n is divisible by 3, and not prime. Also

e =

1 -1mod 3 by induction, so e 1 # Omod n. This proves the theorem for

even m. Assume now that m is odd, and define
A = @/nz)(T1 /(T - /3T- 1),

where ¥2 denotes any element of Z/nZ with /52 =2; e.g.,
V2 =A(2(m+])/2 mod n). Denoting the image of T in A by a we have

A= {a+ba: a,b € Z/nZ}, a2=/§a+l.

Let 8 = V2-0a = -—am] be "the" other zero of X2 - Y2X-1 in A. From a+ B =V2

and of = -1 it follows easily by induction on k that
a” + B = (ekmod n) € Z/nZ

for all k > 1. Now let first n be prime. The discriminant of Xz— V2X -1

equals 6, and fromn = Imod3, n = -1 mod 8 and quadratic reciprocity it fol-

lows that (%) = -1, Hence A is a quadratic field extension of ]Fn, and o
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and B are conjugate over m%f By the theory of finite :fields this implies

that o™ = B. Multiplying this by o we get 2™ = -1, so (em_lumd n) =
azm—]-+82m_] = azm-]-ka'zm—] = 0. This proves the "only if'" part. Suppose,
conversely, that (em_lmodn) = 0. Then

oM 2m+l

o = -1, o =1,
so (9) and (10) of Theorem 11 are satisfied with s = 2m+1. Also, ot = o201 =
‘anl = B8, so the polynomial

(%-a) (X=o®) = (X-) (X-B) = X2 - vV2:X - I

has coefficients in Z/nZ, which is condition (11) of Theorem 11 with t = 2.
From Theorem 11 and n2 = Imods it now follows that any divisor of n is
congruent to ! or n modulo s. But s > n, so this means that n is prime.

This proves Theorem 12.

It is known that n = 2®-1 can only be prime if m is prime: then n is
one of the Mersenne numbers Mp = 2P-l, p prime. These are known to be prime

for 27 values of p:

2, 3,5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279,
2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701,
23209, 44497,

and composite for all other p < 50000, see [29] and [31]. It is reasonable
to conjecture that #{m < x: 2™-1 is prime}/log x tends to a finite non-zero
limit for x -+ «. GILLIES [8] gives a probabilistic argument leading to the
value 2/log 2 for the limit, but his reasoning is clearly in error since
the same argument leads to a contradiction with the prime number theorem,
cf. [9, §22.20]. The number eY/logZ, where y is Euler's constant, has been
proposed as a more likely value for the limit [22]; see also [35].

If the complete factorization of n-1 is known then in practice it is
easy to test n for primality, e.g. using Theorem 5. The same étatement is
true with n-1 replaced by n+l1, using Theorem 11 with t = 2. A combination
of both tests is employed in the discovery of large twin primes, in the
following way. Let m be a large number whose complete prime factorization

is known; such a number can be found by multiplying together small numbers.
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Then (m+1) -1 and (m—~1) +1 are completely factored, so we can apply an (n-1)-
primality test to m+! and an (n+1)-primality test to m-!. If both numbers
turn out to be prime we have found a pair of twin primes. The largest known
pair is

3426i 1 = 23426'3-5-7~11-13-113']51i 1,

256200945+2
which have 1040 decimal digits. This pair was discovered by ATKIN and
RICKERT [7].

We next discuss how Theorem 11 can for general t be used for primality
testing. For A one takes a ring that if n were prime would be the field Eht
of nt elements. If n behaves as if it were a prime number then such a ring
‘is in practice not difficult to comstruct: as in the proof of Theorem 12 one
can take A = (Z/nZ)[T1/(f), where f ¢ (Z/nZ)[T] is a polynomial of degree
t that passes a suitable irreducibility test (see [14, Sec. 5]). For s one
takes the largest divisor of nt—l that one is able to factor completely, and
for o one takes an element of A" of order s. If n is actually prime then o
is usually easy to conmstruct, by manipulating with elements of the form
B(nt-l)/s, B € A. In this case conditions (9) and (10) are clearly satisfied,
and the polynomial in (11) is a power of the irreducible polynomial of o
over ]%1 so has certainly coefficients in Fn. Suppose, conversely, that (9),
(10) and (11) are found to be true. Then we cannot immediately conclude that
n is prime, but we know, by Theorem 11, that any r dividing n is congruent
to a power of n modulo s. If s is sufficiently large then this information
can be used to finish the primality proof, in the following manner. Suppose
that

s > n1/2

(as in Theorem 5), and let r, be determined by

i
n = rinmd S, 0 < Ty <'s

for 0 < i < t. If n is composite then it has a non-trivial divisor r with

2 . . .
1/ < 8, and since r is congruent to a power of n modulo s it must be

r <n
equal to one of the r;. Hence, if we verify that none of the ry is a
non-trivial divisor of n, we have proved that n is prime. A similar but some-

what more involved procedure can be followed if s satisfies the weaker
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inequality s > nl/3.

We refer to [16, Theorem (8.4)] for a more flexible version of Theorem
11, in which it is possible to vary o with q, as in Theorem 5.

For very small values of t, such as t = 2, 3, 4, 6, it is again possible
to employ lower bounds for the unknown prime divisors of nt-l, cf. [36, Sec—
tions 13-16] and the references given there. It is doubtful whether such
lower bounds are equally useful for the larger values of t considered below.

T72analyze the above algorithm we must know how to choose t such that
n

s > . We need the following theorem.

THEOREM 13. (ODLYZKO-POMERANCE). There exists an effectively computable con-
stant c" with the following property. For every integer n > e° there exists
a positive integer t satisfying

"
t < (log n)c logloglogn

t is squarefree
such that the number

s = ﬂd prime, g-1divides t 4

satisfies

1/2

s >n

PROOF. See [2, Sec. 6]. This proves Theorem 13.

Let t be as in Theorem 13; the condition that t be squarefree is ir-
relevant for our present purpose. If q is a prime number for which g-1
divides t, then nt = 1mod q by Fermat's theorem, unless q divides n. Hence,
if s is as in the theorem, then s divides nt-1 provided that ged(n,s) = 1.

]/2. We conclude

Also, the complete factorization of s is known, and s > n
that these values for t and s can be used in the primality test described
above. The resulting algorithm has, for prime n, an expected tumning time

c' i
logloglogn for some constant c'. This does not

that is less than (log n)
yet prove Theorem 9, since we have no such bound for the worst case running
time. It appears that the size of t makes the test unsuitable for practical

primality testing.
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The test underlying Theorem 9 is closely related to the test just de-
scribed. It depends on properties of Gaussian sums, wﬁich we shall now con-
sider. By T, Ve denote a primitive m-th root of unity.

Let p and q be prime numbers not dividing n for which p divides q-1.

We choose a character y = Xp,q modulo q that has order p; i.e., Yx: FZ > <Cp>
is a surjective group homomorphism, where <cp> denotes the subgroup of €*
generated by Cp' Such a X can be obFained by choosing a primitive root g
modulo q and putting x(glmodq) = ;; for i € Z. We define the Gaussian sum

T(x) by

q-1
(x) = - ) x(®¢t

X
x=1 q

This is an element of the cyclotomic ring R = Z[:cp,cq]. We have

T(X)n = X(n)_n°T(Xn)m0an if n is prime.

To prove this, notice that modulo nR we have

(" = - ) xGO ™ (since n is prime)
x=1
q=1 -
= -1 x@Tx@)  (withy = nxmod q)
y=1

x@ ™M,

as required. We investigate what can, conversely, be said about n if the

following weaker condition is satisfied:
n _ -n n
(12) T(x)" = n(x) “et(x )modnR for some n(x) e <cp>.

Let o be the automorphism of R with o(cp) = C; and o(;q) = Cq' Then (12)

can be written as

T(X)n_0 n(x)_nmoan.

i

Raising both sides to the power zg;g np—2—161 we obtain:

nP -1
T(x) = n(x) mod nR.



72

Now let r be any prime divisor of n. Then we know that (12), with n replaced

by r and n(x) by x(r), is valid, so for the same reason we have

rp -1 _
T(x) = y(r) mod rR,

Combination of the last two congruences suggests that

p_] p_lg
(13) K@) = i & T/ D

for any prime r dividing n. To make this meaningful we have to explain how
to interpret the fractional exponent. For this we need the following hypo-

thesis on p:
(14) vp(rp_]—]) > vp(np_]—l) for every prime r dividing n,

where v_(m) denotes the number of factors p in m. If (14) is satisfied we
can write (rp_l—])/(np_]—l) = a/b, with a,b ¢ Z, b = 1modp, and the resi-
due class of (rp—l—l)/(np_l—])modp is then defined to be (amodp); this
does not depend on the choice of a and b. Since n(X)p = ] it is now meaning-
ful to define the right hand side of (13) as nGo?.

With this interpretation it is straightforward to verify that (12) im-
plies (13), provided that (14) is assumed. By induction on the number of
prime factors one can now prove that (13) holds for any divisor r of n, prime
or not. In particular, with r = n we obtain x(n) = n(x), so (13) now yields

p-1_ p-1_
15 x@ =@ T

for any r dividing n. Again we see that every divisor of n is a power of n,
if images under y are taken.

It is a vital question how to verify hypothesis (14). Trivially, we
have
(16) if n]‘)”l F3 lmodpz, then (14) holds.

In [16, Sec. 2] it is proved that

(17) if (12) holds with n(y) # 1, then (14) is true.
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The primality test based on the preceding theory runs as follows. Let
t be a positive integer having all properties listed in Theorem 13, and let
s have the same meaning as in that theorem. Choose, for every pair of prime
numbers p, q with q dividing s and p dividing q-1 (so p dividing t) a char-
acter y = x ,q as above, and check that y = Xp,q satisfies (12); we know that
this is necessary for n to be prime. Next, attempt to prove that every prime
p dividing t satisfies hypothesis (14). Usually, for each p there is a q
dividing s with n(xp,q) # 1, and then (17) applies. If there is no such q,
and (16) does not apply either, ome should test (12) for characters Xp,q with
q a prime not dividing s for which p divides q-1, until an example of
n(Xp,q) # 1 is found.

At this stage of the algorithm one knows that every Xp,q’ with p divid-
ing q-1 and q dividing s, satisfies (15) for each r dividing n. We claim
that this implies that each r is congruent to a power of n modulo s, so that
the test can be completed in the same way as the test described before Theo-
rem 13.

To prove the claim, let r divide n, and let (imod t) be determined by
.o p-1 p-1
iz (& -1)/@ "-1)modp

(in the sense explained before) for each prime p dividing t; notice that
here we use that t is squarefree. Then (15) implies that

Xp,q () = X, (@
for each pair p, q as above. For fixed q, the product of the primes p divid-
ing d-1 equals g-1, so the characters ¥ generate the group of all charac~
ters modulo q; therefore r = nimodq. Sgaze this holds for all q dividing s,
we conclude that r = ninwd s, as required.

The only non-deterministic part of the test is the verification of
hypothesis (14). If n is composite it is conceivable that (14) is not satis-
fied, so that the algorithm will get stuck at this point. We refer to [2,
Sec. 5] and [16, Sec. 5] for a variant that avoids hypothesis (14). It con-
structs an auxiliary number v such that from a set of conditiéns similar to
(12) it can be deduced that any divisor r of n is congruent to a power of v,
rather than a power of n, modulo s. This test is completely deterministic,
c' logloglogn

. . . e
and it has running time less than (log n) for n > e, where c'

denotes an effectively computable constant. This concludes our sketch of
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the proof of Theorem 9.

There are several ways to improve the practical performance of the test
[4,16]. In the first place, the Gaussian sums can be replaced by Jacobi sums,
which belong to Zi[cp] rather than Z[:Cp,cq]. Secondly, characters of prime
power order rather than of prime order can be employed, so that the condi-
tion that t be squarefree can be dropped. Finally, it is possible to combine
the test with the tests described earlier depending on variants of Theorem
11. However, none of these improvements reduces the running time in a theo-

retically significant way.

As we noted in connection with the Fermat numbers, it is surprising
that we can prove that a number is composite without actually finding a fac-
tor. To analyze this situation, let us assume that we proved n composite by

exhibiting an integer a for which
n-1
(18) a # 1modn, ged(a,n) = 1,

and applying Fermat's theorem that (18) is impossible for prime n. To see
why this gives no factorization of n we must investigate how Fermat's theo-
rem is proved. One proof is based on the remark that the map sending i to

a*i (mod n) is a permutation of {1,2,...,n~1}, so

n-1 n-1 . n=1 |
a e(n~-1)! = T (aei) = 1T i-= (n-1)! mod n.
. i= i=1

Hence (18) implies that (n-1)! has a non-trivial ged with n, which tells us
nothing more than that n is composite. Other proofs of Fermat's theorem have
similar shortcomings. The situation would be different if factorials or bi-
nomial coefficients were easy to compute modulo n. This is clear from the
proof of the following charming but useless theorem, in which we also con-—

sider 'division with remainder' as an arithmetic operation.

THEOREM 14. (SHAMIR). There is an algorithm that for every composite n yields
a non-trivial divisor of n, using no more than 0(logn) arithmetic opera-

tions.

PROOF. We notice that n is composite if and only if 1 < gcd(aol,n) < n for
some positive integer ag- Since ged(al!,n) is a non-decreasing function of a,
and is equal to 1, n for a = 1, n, respectively, we can determine such an

a, by O(log n) bisections, provided that we know how to calculate gcd(al,n).

0
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Once we know a!, we can determine the gcd by Euclid's algorithm in

O0(log n) arithmetic steps. To calculate a!, we apply the formulae

(2b+1)! = (2b+1)-(2b)!,

2b
b

20

(2b): = (BH™ ()

O(log a) times. To calculate the binomial coefficient (if) needed here, we
remark that (Zb) is the middle block of n binary digits in the binary expan—
sion of (2n+1)2b, for 2b < n; and the exponentiation can be done by
0(log(2b)) multiplicatioms.

This algorithm, as we described it, takes O((log n)3) arithmetic opera-
tions. For the modifications to bring it down to 0(log n) we refer to
SHAMIR's paper [28]. This concludes the proof of Theorem 14.

We notice that the best known deterministic factorization algorithm,
which is due to POLLARD, also depends on the calculation of factorials modu-
lo n. This algorithm and several more practical ones are described in the

papers of POMERANCE [23] and VOORHOEVE [34].
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