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Throughout this lecture, n denotes an integer larger than 1. We

call n composite if there exist integers a, b for which

n = a-b, a > l, b > l.

Otherwise n is called prime.

Every positive integer can be decomposed into prime factors, and

this decomposition is unique up to the order of the factors. It is a

basic and difficult problem from elementary number theory, how to find

the prime faotor deeomposition of a given integer n in an efficient

manner. In this lecture we shall only consider a subproblem, which

turns out to be much more tractable: the problem how to reeognize prime

numbers, i.e. how to determine whether a given integer n is prime or

not.

Recent advances on this problem have been made by the American

niathematici ans L.M. Adleman and R.S. Rumely. A substantial simplifica-

tion of their method was developed by me, in cooperation with H. Cohen.

The simplified algorithm was programmed for the CDC Cyber 170-750 Com-

puter System of the SARA Computing centre in Amsterdam, with the help

of D.T. Winter and A.K. Lenstra.

Before I discuss the theory on which the program is based I treat

a few numerical examples. Mathematically speaking they are mere curiosi-

ties, but they illustrate at least what can be done at the moment.

The number

1010° + 267 = 100 ... 00267

97
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is the least prime number of 101 digits. Our program proved the primal-

ity of this number within 42.8 seconds. This running time is typical

for prime numbers of this order of magnitude. Older methods were not

able to deal with the number 10 + 267. In fact, one of the few good

reasons we had to program our algorithm was to obtain convincing evi-

dcnce that is better than earlier algorithms.

If our program is adapted to 200 digit numbers, the typical prime

number of that size will require 6 minutes approximately.

The number

io1031 - i
1̂  = in ... in

1031 χ

has a high probability of being prime; the exact meaning of this, will

be seen later. We estimate that our method would need roughly one week

for this number, on the same machine. It may well be that the number

is within reach of future improvements of our algorithm.

For numbers of certain special types one can go rauch further. For

example, D. Slowinski proved with the help of a CRAY-1 Computer that

the 25962-digit number

286243- l - 536 ... 207

is prime. This is presently the largest prime number known. It must

have required several hours of Computing time.

The problem to decompose a number into prime factors is much harder.

Existing methods can usually deal with numbers of up to 40 or 50 digits

in a few hours. No prime factor is known of the 89-digit number

- l = 159 ... 791.

It is known that this number is composite.

It may seem surprising that a number can be known to be composite

without a factor being known. This state of affairs is usually due to

the following theorem or one of its variants:
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FERMAT'S THEOREM (Pierre de. Fermat, 1601-1665).

n is prime =* Va e ZZ : a = a mod n.

We remark that, for given a and n, it is easy to check whether the con-

gruence in Fermat's theorem holds, at least if one uses an electronic

Computer. This is even true if a and n are very large (e.g., &s 10 ).

To do this, one should not start by calculating a1 itself: even for

a = 3, n κί 10 this number is much too large to be computed on any

Computer. Instead, one calculates the remainder of a11 upon division by

n, which can be done by a series of successive squarings and multipli-

cations modulo n.

A single a not satisfying a Ξ a mod n suffices to show that n

is composite, without yielding a non-trivial divisor of n however.

In order to prove that a number n is prime rather than composite

we need a converse to Fermat's theorem. Two problems present themselves

in this connection.

I. The first problem is that the direct converse, in which "=»" is

replaced by " *= ", is false. Ramanujan's number 1729 = 7-13-19 is com-

posite, but we do have

a1729 Ξ a mod 1729 for all a e 7L .

Composite numbers with this propert·) are called Carmichael nwribers, and

there are probably infinitely many ot them.

II. The second problem is that even if the direct converse of Fermat's

theorem were true it would not help us much, since checking all iiite-

gers a (mod n) is completely unfeasible, even for moderately sized n.

How can these problems be solved?

The first problem is solved by the use of sharper versions of

Fermat's theorem, which do admit a converse. We give two examples.

The first is an algebraie generalization of Fermat's theorem:

THEOREM. If n is pvime, then for any aonwrutative ring R we have

(a+b)n Ξ a11 + bn mod nR for all a, b e R.



136 H.W. LENSTRA, Jr.

Here nR denotes the ideal {x + χ + ... + χ (n terms): χ e R} of R.

The proof of the theorem makes use of the binomial theorem of Newton.

It depends on the observation that the binomial coefficients (?) , for

0 < i < n, are divisible by n if n is prime.

Taking R = TZ, b = l, and using induction on a, we regain Fermat's

theorem.

It can be proved that the oonverse of the above theorem is also

valid: if the congruence in the theorem holds for all R and all

a, b e R then n is prime. It suffices, in fact, to take R equal to the

polynomial ring ZZ[X], and a = X, b = 1.

Before we go into a nwriber theoretia generalization of Fermat's

theorem we treat a few properties of the Jaoobi symbol (—); for more

details we refer to the textbooks, such äs [3].

For the rest of this lecture we assume that n is odd. If n is

prime, then Fermat's theorem implies that

a Ξ l mod n for a e ZZ , gcd(a,n) = l

and therefore

a Ξ l or -l mod n.

The Jaoobi symbol (—) e {l, -1} is defined, for a e. TZ , gcd(a,n) = l,

by

(-)= a mod n if n is prime,

(clv f ̂  \ f \ f ~̂ \ ' f ·^ _ ^ ) ^ —. ̂ < β β ^ y -ĵ -j- -Q _ p p ... p. 5 p. pnipe.
Ώ P i Po P I Z. u l ·

Further we put (—) = 0 if gcd(a,n) $ l, and (—) = l for all a.

The Jacobi symbol is studied in a theory developed by Gauss (1801),

the main theorem of which is the quadratic reciprooity law., see [3].

I do not state this law here, but I jusc note one consequence of it

that is important to know for the sequel: ucing the reeiproaity lau

one oan effieiently caloulate (—), even if the prime factorization of

n is not known.
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The definition of (— ) immediately implies the following strengthen-

ing of Fermat's theorem.

THEOREM.

n prime =* (Va e TZ :gcd(a,n) = l =* a*-11"·12 Ξ (·£) mod
n

Again it is, even for large a and n, easy to check whether the con-

gruence a = (— ) mod n holds, at least with the help of a Com-

puter.

D.H. Lehmer proved in 1976 that the converse to the above theorem

is also valid. More precisely:

THEOREM. If n is an odd composite mmber, then

(n-l)/2 ., ,a,
a f (—) mod n

n

for at least half of all a e {l, 2, ..., n-1} with gcd(a,n) = 1.

With these results problem I is solved in a satisfactory way. In the

actual prime number test we use in fact a combination of both ap-

proaches: we consider congruences in certain extension rings of TZ,

and these congruences contain a symbol that generalizes the Jaoobi

symbol.

We are still faced with problf.m II: it is not computationally

feasible to test all a (mod n), and even less to try all rings R.

The first method to solve this problem that we discuss, is a

probabilistia method. It is äs follows. Choose 100 random values of

a from {l, 2, ..., n-1}, and test for each a that is chosen, whether

a(n-l)/2 Ξ ( a , mod n_
n —

If this is false for at least one a, then n is certainly composite.

On the other hand, if it is true for all 100 values of a, then n has

a high probability of being prime.

To see this, suppose that n is not prime. By Lehmer 's theorem,

every single a has a probability < 5 to satis Ey the above congruence,
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so the probability that all 100 values of a satisfy the congruence is

^ φ 10° < o.oooooooooooooooooooooooooooooi.

It is therefore very difficult to doubt that n is prime.

This method, proposed by R. Solovay and V. Strassen, is basically

incapable of yielding rigorous primality proofs. On the other hand it

is very fast, and it may be applied before the more time consuming

method discussed below is used.

G.L. Miller and M.O. Rabin proposed an improvement of the above

test, in which the same error probability is achieved with less than

half the same amount of computation.

The second method to solve problem II is a futuvistia one, since

it depends on an unproved conjecture, the generalized R-iemann hypothe-

sis. This is an assertion about the location of the zeros of certain

complex functions that arise in analytic number theory. The hypothesis

is likely to be correct, but it remains unproved to this day.

Assuming this hypothesis, G.L. Miller proved in 1976 that it suf-

fices, in the ahove test, to try only the numbers a with

2
a < 70 (log n) , a prime.

If all these a satisfy a = (—) mod n then with the help of the

generalized Riemann hypothesis it can be shown that n is prime.

This method has two shortcomings. First, a rough estimation shows

that for numbers of about 100 digits it is approximately 500 times

slower than the method discussed below, although it is faster for much

larger values of n. Secondly, the generalized Riemann hypothesis is

still unproved.

We now turn to the methods by which the primality of a number

can be proved with mathematiaal eertainty. The number of such methods

is greater than I have time to enumerate in this lecture. Ultimately,

they all depend on the following theorem, which is so obvious that no-

body eise is likely to claim it for himself:
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LENSTRA's THEOREM.

n is prime <=» every divisor r of n -is a power of n.

To prove =* , remark that l = n and n = n . The proof of «= is lef t

to the audience.

Which role does this theorem play in prime number tests? Inaccur-

ately speaking it comes down to the following. Suppose that n satisfies

many conditions of the sort

- ,aN ,
a Ξ (— ) mod n.

Then it can be proved that every divisor r of n behaves in a oertain

Way äs a power of n. In certain circumstances this Information can be

used to deduce that l and n are the only divisors of n, so that n is

prime.

The following theorem may serve to illustrate this procedure. It

is now also assumed that n is not divisible by 3.

THEOREM. Suppose that

a(n-l)/2 _ φ mod n j,ßl, a = _ l f 2, 3

and that there exists a e ZZ for wh-Leh

(n- I)/2 _ , ,a = - l mod n .

Then there exists, for every divisor r of n, an integer i 2 0

such that

r Ξ η mod 24..

The condition that a = -l mod n for some a e ZZ cannot be re-

moved, äs can be seen from the example n = 1729. If n is indeed a prime

number then it is usually easy to find an integer a for which
(n-l)/2 _ .a = -l mod n.

Xhe conclusion of the theorem is, that every divisor r of n
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behaves "in a certain way" (viz.: modulo 24) äs a power n of n. In
2

fact we can take i = 0 or i = l, since n Ξ l mod 24.

The proof of the theorem depends on the following assertion, which

is valid for positive integers n ,n„ that are not divisible by 2 or 3:

n = n„ mod 24 <=» (—) = (—) for a = -l, 2, 3.
l Z. \ O-rj

This assertion is an easy consequence of the quadratic reciprocity law

mentioned above.

To prove the theorem it clearly suffices to consider a prime di-

visor r of n. Write

n-l = u-2k, r-l = v-2l

with u, v odd and k, i >. \. By hypothesis, there exists a e TZ with

u.2 _ (.n-i;// Ξ _ Raisin this to the power v we see that

„k- 1
auv2 Ξ -l mod r.

L
Since v2 = r-1 we have by Fermat's theorem

->uv2 _ ,
a = l mod r

for the same a. Comparing these two congruences we see that we must

have k-l < t, so £ > k.

Now let a = -l, 2 or 3. As before, the hypotheses of the theorem

imply that

„k-1
uv2 _ .a. ,
a ^ (—) mod r

n

whereas we see from a = (—) mod r that

,£-!uv2 _ .a,
a = (—) mod r.

It follows that

(~) = φ2 for a = -l, 2, 3.
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If now t = k, then this reduces to (—) = (—), so the consequence of

the quadratic reciprocity law stated above implies that

r Ξ n = n rnod 24. If l > k, then (-) = ! = (γ) for a = -l, 2, 3, so
_ Ο Γ

for the saine reason Ί: = \ = n mod 24. This proves the theorem.

The theorem just proved is not a very useful one for the purpose

of primality testing, since the conclusion of the theorem is only very

weak. It would be far more useful to have a similar theorem in which

24 were replaced by a considerably larger number. The crucial proper-

ty of the number 24 on which the theorem depends is the following:

2
m = l mod 24 for every m e ZZ with gcd(m,24) = l.

It can be proved that 24 is the largest number with this property. If

one wishes to replace 24 by a larger number, then squares have to be

replsced by higher powers, and this leads to the consideration of sym-

bols that generalize the Jacobi symbol.

Replacing squares by twelfth powers we find that 24 can be re-

placed by a much larger number:

m'2 Ξ l mod 65520 for every m e ZZ with gcd(m, 65520) = 1.

Here we have 65520 = 24·32·5·7-Ι 3.

The Computer program mentioned at the beginning of this lecture

makes use of considerably larger numbers:

m Ξ l mod s for every m e ZZ with gcd(m, s) = l.

Here 5040 = 2 - 3 -5-7, and s is a number of 53 digits:

s = 15321986788854443284662612735663611380010431225771200

= 26-33-52-72·11-13-1 7·l 9-29-31-37-41-43-61-7 l-73-1 13-1 27-181·

211-241-281-337-421-631-1009-2521.

Notice that s > i/ΐΐ if n has at most 100 digits.
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I now give a sketchy and not very accurate description of our

prime number test. For more details I refer to [1].

Prime number test for n < 10

First step. Test whether gcd(n, s) = l, with s äs above. (This gcd can

be determined with Euclid's algorithm.) If gcd(n, s) > I then n is di-

visible by one of the prime factors of s, and we stop.

Second step. Test 67 congruences that are analogous to congruences of

the form

,, ,
Ξ (— ) mod n,

n

but with a replaced by suitably chosen elements of the rings

2Z(-e2TTi/p ̂  with p prime> k > ]5 and pk

dividing 5040 = 24·32·5 ·7,

and with (—) replaced by a generalized symbol, whose values are powers

of e " (for p = 2 we have e = -l, and then we regain the

Jacobi symbol).

If at least one of the 67 congruences is not satisfied, then n is

composite, and one stops.

Suppose now that all 67 congruences are valid. The congruences are

selected in such a way, that in this case it can be proved that for

every divisor r of n there exists i e ZZ such that

r = n1 mod s, 0 < i < 5040.

Third step. Starting from this Information we determine all divisors r

of n with r < Λΐ. This clearly suffices to factor n into primes and

hence to see whether n is prime.

From r < Λί it follows that r < s, so r is completely determined

if we know r modulo s. Because of the Information from the second step

we can therefore proceed äs follows: calculate for each

i = 0, l, ..., 5039, the number r. for which
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r. = n mod s, 0 < r. < s.i i

Then all divisors < /ä of n are found among the r., so we can finish

the test with 5040 trial divisions.

From the above description of the third step one should not get

the Impression that the algorithm is helpful in factoring n if n is

composite. In practice all composite numbers will be eliminated in one

of the first two steps.

The algorithm can be adapted to deal with larger values of n. It

was proved by C. Pomerance and A.M. Odlyzko that the running time is

0((log n)C ^gioglogn)

for some constant c.

I finish with a prime number of 100 digits that was specially

made for the Wintersymposium; our program proved it to be prime in

31.581 seconds:

23091420051819251316151909211300230919112114040907

00070514151520190308011600260509192000198301080967.
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