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Let E be an elliptic curve over a field K with a discrete

valuation v with residue class field k. Suppose E has "very bad

reduction" at v, i.e. the connected component An of the special

fibre An of the Neron minimal model is isomorphic to ffi . Then
U cl

the order of An(k)/A„(k) is at most 4 äs can be seen by inspection

of the usual tables, cf.[9], pp. 124/125, cf. [5], p.46. Thus it

follows that if the order of the torsion subgroup Tors(E(K)) is

at least 5 and prime to p = char(k), the reduction cannot be very

bad. This note arose from an attempt to see whether an explicit

classification really is necessary to achieve this result.

We prove a generalization for abelian varieties. The proof

does not use any specific classification, but it relies on monodromy

arguments. It explains the special role of prime numbers l with

l < 2g + l in relation with abelian varieties of dimension g.

We give the theorem and its proof in §1. Further we show

that the bound in the theorem is sharp (§2), and we give examples

in §3 which show that the restriction l ̂  char(k) in the theorem

is necessary.In §4 we indicate what can happen under the reduction

map E(K) -»- EQ(k) with points of order p in case of very bad

reduction.

§1. Torsion points on an abelian variety having very bad reduction.

Let K be a field and v a discrete valuation of K. We denote

the residue class field v by k; we assume k is perfect. Let K be



a separable closure of K and v an extension of v to K . We denote

the inertia group and first ramification group of v by I and J,

respectively. These are closed subgroups of the Galois group

GaKK /K). If the residue characteristic char(k) = p is positive,
S

then J is a pro-p-group; if char(k) = 0 then J is trivial. The

group J is normal in I, and the group I/J is pro-cyclic:

I/J ~ Π1 prime, l Φ char(k) ̂  l'

Let A be an abelian variety of dimension g over K, and A

the Neron minimal model of A at v, cf. [9]. We write A for the

special fibre : AQ = A ®Rk, where R is the valuation ring of v.

We denote by An the connected component of A~. Let

0 + L + L + A° ->· B + 0
s u 0

be the"Chevalley decomposition" of the k-group variety Ά~ , i.e.,

B is an abelian variety, L is a torus, and L is a unipotent
s u.

linear group. We write

α = dim B, y = dim L .
s

0
We say that A has very bad reduction at v if L = A^, so if

Ll L·

α = μ = 0.

Throughout this paper, l will stand for a prime number

different from char(k). If G is a coonmutative group scheme over K,

and n S ZZ , we write G[ n] for the group scheme Ker(n.l0 : G + G) and
ta '

TnG = lim G[ l1] (K ) .
j. ^ s

This is a module over the ring 2Z of 1-adic integers, and it has a

continuous action of GaKK /K). For G = ffi , the multiplicative
o Jll

group, T^G is free of rank l over 2Z , and the supgroup

I C GaKK /K) acts trivially on T, ffi . We write
s l m
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This is a free module of rank 2g over ΊΖ, .

Let M be a finitely generated ZZ., -module. By the eigenvalues

of an endomorphism of M we mean the eigenvalues of the induced

endomorphism of the vector space M 'X̂  φ-, over the field (Q, of

1-adic numbers. Suppose now that M has a continuous action of I.

If I' C i is a subgroup, we write

M1' = {x S M : τχ = χ for all τ e I1}.

We claim that the image JQ of J in Aut(M) is finite. If char(k) = 0

this is trivial, so suppose that char(k) = p > 0. Then J is a

pro-p-group, and the kernel of the natural map Aut(M) -> Aut(M/lM) is

a pro-1-group. From p =£ l it follows that JQ has trivial intersection

with this kernel, so JQ is isomorphic to a subgroup of Aut(M/lM)

and therefore finite. This proves our claim.

M -»· MJ by N(x) = (#= J )"1' ̂ & σχ. This map is the identity on MJ,

We define, in the above Situation, the averaging map N,:

f \ C //- -r
J U W —U |-J

so gives rise to a Splitting

(1.1) M = MJ Φ ker Nj.

It follows that the function ( ) is exact:

(1.2) (M1/M2)J = M^/Mi.

Notice that M has a continuous action of the pro-cyclic group

I/J. This is in particular the case for

We denote by σ a topological generator of I/J.
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(1.3) Proposition. The multiplicity of l äs an eigenvalue of the

action of σ on X., = U, is equal to 2μ + 2α. In particular, it

does not depend on the choice of the prime number l Φ char(k).

Froof. We begin by recalling the results from [SGA], 71, exp. IX

that we need; see also [11]. Let a polarization of A over K be

fixed. Then we obtain a skew-Symmetrie pairing

< ' > ; ui x ui *· Ti ffim s sr

which is separating in the sense that the induced map U.. ->

Hom~ (U, ,Τ-,Ε ) becomes an isomorphism when tensored with Q, .

The pairing is Galois-invariant in the sense that

<TU,TV> = T<U,V> for τ 6 Gal(Ks/K), u,v S π ,

= <u,v> if τ e i.

We write

where i denotes the orthogonal compleinent in U, with respect to

< , > . We have

(1.4) rank„7 W = μ, rank^ V/W = 2α.
7L]_ 7LI

Since A has potentially stable reduction, there is an open normal

subgroup I' C l such that the module

V = U^'

satisf ies

(1.5) V'1 C V .

Notice that V C V .



We now take J-invariants. The Galois-invariance of < , >

implies that X, = U, is orthogonal to the complement of U^ in

U^ defined in (1.1). Therefore < , ) gives rise -to a separating

Galois-invariant pairing

Χ-, χ Χ.. + T., Ε
l l I m

which will again be denoted by < , > . We let § denote" the

orthogonal complement in X, with respect to < , > .

There is a diagram of inclusions

μ

Ο c 5> W ** r ./Υ _

2α

and

where μ \2a indicate the 7L^ -ranks of the quotients of two successive

modules in the diagram; here we use (1.4) and the equalities

r c c·
rank„ (Xn/W3) = rank™ (W), rank^ (W3/VS) = rank,„ (V/W),

"-1-1 l ~\ l l

which follows by duality.

All eigenvalues of σ on V are l, and by duality the same is

true for X-^V5, hence for X-L/W§. We have

rank™ V + rank™ X, /W§ = 2μ + 2α,
U-ί -i LL· -, J.

so in order to prove the proposition it suffices to show that

(1.6) no eigenvalue of σ on W /V equals 1.

Let Υ = V'J. We first prove that

(1.7) no eigenvalue of σ. on Y/V equals 1.

Suppose in f act , that y G Υ satisfies ay = y + v for some v G V.



Then σηγ = y + ην for all positive integers n. Choosing n such

that ση G l' we also have σ y = y, since y £ V ' , so we find that

v = 0 and y S V. This proves (1.7).

We have Y§ C Y, by (1.5), so (1.7) implies that

(1.8) no eigenvalue of σ on (Y +V)/V equals 1.

§ §
By duality, (1.7) implies that no eigenvalue of σ on V /Y equals

l, and therefore

(1.9) no eigenvalue of σ on (V§+V)/(Y§+V) equals 1.

f, C £

From W = V n V it follows that V + V is of finite index in W ,

so (1.8) and (1.9) imply the desired conclusion (1.6). This

proves Proposition (1.3).

(1.10) Corollary. The abelian variety A has very bad reduction

at v if and only if σ has no eigenvalue equal to l on X,.

Proof. Clear from Proposition (1.3). It is easy to prove the

corollary directly, using that rank^-, V = μ + 2α.

*Ί

Let I1 C I and Υ = (U*')J C X1 be äs in the proof of Propositio

(1.3), and n a positive integer for which σ e I'. Then ση acts

§ §
äs the identity on Y, and by duality also on X,/Y . By Y C Y

this implies that all eigenvalues of σ on X are 1. Thus we find

that all eigenvalues of σ on X-, are roots of unity. These roots

of unity are of order not divisible by char(k) = p, since the

pro-p-part of the group I/J is trivial. Let a,(m) denote the number

of eigenvalues of σ on X that are m-th roots of unity, counted

with multiplicities.
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(1.11). Proposition. For any two prime numbers l, l' different

from char(k) and any positive integer m we have a,(m) = a, ,(m).

Proof. We may assume that m is not divisible by char(k). Let L

t>e a totally and tamely ramified extension of K of degree m.

Replacing K by L has no effect on J, but σ should be replacedby

m m
σ . Since a,(m) is the multiplicity of l äs an eigenvalue of σ

on X the proposition now follows by applying Proposition (1.3)

with base field L.

11.12) Corollary. The number rank^, X.̂  does not depend on 1.

. This follows from Proposition (1.11), since rank^ X-, =

sup a, (m) .

m

Remark . Proposition (1.11) and Corollary (1.12) can also easily be

deduced from the fact, for each τ G l, the coefficients of the

characteristic polynomial of the action of τ on LL are rational

integers independent of l, see [ SGA] , 7 I, exp . IX, Theoreme 4.3.

j.1.13) . Theorem. Suppose that A has very bad reduction at v. then

for every prime number l Φ char(k) the number b(l) € {0,1, 2, ...,<»}

defined by

sup
N>0

is f inite , and

ΣΊ . , f . (l-l)b(l) < 2g.
l prime,! Φ char(k)

Proof . First let l be a fixed prime, l Φ char(k), and let N be

a. positive integer. We have



.N] (K) < =#=A[1N] (K )J
o

= =#=(kernel of σ-l on A[ 1N] (K )J)
O

= ^(cokernel of σ-l on A[1N](K )J),
o

the last equality because A[lNJ(K ) is finite. By (1.2) the

natural map

= A[lNJ(Ks)J

Is sur jective , so the above number is

< 7̂ = (cokernel of σ-l on X, ) .

Let us write | | , for the normalized absolute value on an algebraic

_ _ -JL
closure Q-, of Q-, for which |l|, = l · Then by a well-known and

easily proved for.mula we have

^(cokernel of σ-l on X-,)

= |det(a-l on X ) Γ1

= π ζ-ιΐ"1,

where ζ ranges over the eigenvalues of σ on X, .

Letting N tend to infinity we see that we have proved

(1.14) ib(1) < πίζ-ιΐ'1.

By Corollary (1.10) the right hand side of (1.14·) is f inite . This

proves the Claim that b(l) is f inite .

Next we exploit the fact that the eigenvalues ζ of σ are roots

of unity . It is well-known that for a root of unity ζ Φ l we have

- 1/ ( l- 1 )
ζ-ΐ| -. > l if ζ has 1-power order ,

ζ-ΐ| , = l otherwise.

Write a-.Q00) = max a, (l ). Then (1.14·) implies that
l i



so there is a number d(l) such that

(l-l)b(l) < 3ι(1α(1)).

Now let q be an arbitrary prime number different from char(k)

Using proposition (1.11) we deduce

Ί . .
l prime,!

<- y _ / η d(l) ,
^ Zr η a, (. l ;

= ΣΊ a (ld(1))
i q

, (X ) (since a (1) = 0)
q q q

(U ) = 2g.

q q

This completes the proof of Theorem (1.13).

_(1.15) Corollary. Suppose that A has very bad reduction at v.

Denote by m the number of geometric components of the special

fibre A„ of the Neron minimal model of A at v . Then

ΣΊ . , f v(l-l) ordn (m) < 2g
l prime,! ̂charik) l ö

where ord, (m) denotes the number of factors l in m.

Proof. Analogous to the proof of [ 11] , 2.6.

We shall see in Section 3 that the restriction l ¥= char(k) is

essential in Theorem (1.13). We do not know whether this is also

the case for Corollary (1.15).
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§2. An example which shows the bound in theorem (1.13) to be sharp

(2.1) Example. Let l be an odd prime number, and g = (l-D/2. We

construct an abelian variety A of dimension g over a field K with

a point of order l rational over K such that A has very bad

restriction at a given place of K.

Let ζ = ζ be a primitive 1-th root of unity (in (E), and

F ;=(ζ(ζ) . We write

D = 2Ζ[ζ]

for the ring of integers of F. The field

is totally real of degree g over $ and F is a totally imaginary

quadratic extension of F„ , i.e. F is a CM field. We choose

Φί : F ·* C, φ.(ζ) = ej27ri/1, l < j < g;

in this way, cf.[14], 6.2 and 8.4(1), we obtain an abelian

variety

B = £g/r, Γ = (φ1?. ..,φ )(D),

with

End(B) = D,

with a polarization

λ : B -»· Et

(defined by a Riemann form, cf.[14] , page 48)

Aut(B,X) = < ζ) x { + 1} = 7L/2I;
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in fact by a theorem af Matsusaka, cf.[3], VII.2, Prop. 8, we

know that Aut(B,A) is a finite group, hence only the torsion

elements of the group of units of 2Z[ ζ] can be automorphisms

of (B,λ), moreover complex multiplicication by ζ leaves the

Riemann form invariant (use [14], page 48, line 8), and the

result follows. Let P G B be the point

P = ίΦ-ί^τρ) : l < j < g} mod Γ e (Eg/F;

note that l-ζ divides l e ZZ [ζ], hence P is an 1-torsion point;

moreover

*'1-ζ " 1-ζ'

hence complex multiplicication by ζ leaves P invariant; thus

Aut(B,X,P) = < ζ> = ZZ /l.

We choose for k an algebraically closed field over which (B,λ,P)

is defined (we can choose k = £, but we could also take for k an

algebraic closure of <Q, cf.[14] , p.109, Prop. 26). We recall the

notation

B[ 1] := Ker(l. lß : B -> B) ;

we choose an isomorphism

3 : (ZZ /l)2g 3 B[l]

such that $(1,0,...,0) = P. We denote by A , , the fine moduli
g ) α 3 -L

scheme (over (E) of abelian varieties of dimension g, with a

2
polarization of degree d , and a level-1-structure (cf.[7], p.129

2
and page 139, Theorem 7.9). Let d be the degree of the polarization

λ defined above, and write:
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(Β,λ,β)=γ e Ag5djl(k).

Consider triples (Ο,μ,γ), where C is an abelian variety (of

2
dimension g), μ a polarization on C (of degree d ), and

γ : ZZ /l <-»· Cl 1] .

These objects define a moduli functor , and it is easy to see

(using results of [7]), that a coarse moduli scheine exists ; we

denote it by A, , , ; moreover there exists a morphism
-"- 3 S 5 Q 5 -L

f : Υ = A , Ί -* A. , , = X
g,d,l l,g,d,l

by sending 22 /l into (2Z/1) * say via the first coordinate . We

write

(Β,λ,γ) = χ S A, (k) = X(k),
J- 5 g 5 G 5 -1-

f(y) = x.

The morphism f : Υ -> X is a Galois covering (same methods äs in

[ 7] , 7.3), and the inertia group S of the point y G Y(k) is

precisely

S = S = Aut(B,A,Y)/Aut(B,X,ß) =

= Ααΐ(Β,λ,γ) = <ζ> = E/l .

Note that l > 3, thus Υ = A , -, is a fine moduli scheme (cf .
g»d,l

[7], p. 139); moreover we work in characteristic zero, hence λ is

separable; thus the Grothendieck deformation theory (cf.[10] ,

Theorem (2.4.1)) implies that Υ is smooth; thus the completion

ö* of the local ring of y on Υ is a regulär local ring. Note that

g : ZZ /l = S = < ζ> er* Aut(00,

and GrS = (V .
Λ , Χ
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Futhermore remark that the residue characteristic of & equals

char(k) = 0, hence i t is different from 1; thus it follows that

there exists a local ring homomorphism

compatible with the action

g : TL /l r* Aut(k[[ T] ] ), (g(I))(T) = ζΤ

a suitable choice of ζ.

Proof . Let M be the maximal ideal of Cr", and γ^.,.,γ a basis of

2
eigenvectors for the action of ZZ /l on M/M ; these eigenvectors

lift to eigenvectors x^ . . . ,XN in M, and & = k[ [ x^ . . . ,x ] ] ; the

action is non- trivial, so (g(T))(xj,) = ζχ^ Φ χ., for some i;

now map this χ . to T and the others to 0.)

Let (Α',μ',α') be the abelian variety , etc., define over

L = k((T))

derived from the universal family over Y; this is the generic fibre

°f a family over Spec (k[[T]]), whose special fibre is B, thus A'

has good reduction at T H" 0 . We write

K := LS = kCCT1)),

Let 6' : ZZ/1 ->A'[1] be given by the restriction of a' to the

first coordinate, i.e. δ ' ( l ) = a'(l,0,...,0).

Note that

u = (A1 ,μ1 ,α' ) e Y(L),

v = f (Α',μ',α1) = (Α',μ',61) E X(K) .

The morphism f is unramified at u (because S acts faithfully on

L) , hence
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AutCA1 ,y' ,6') = {!}.

Moreover L/K is Galois, and for any

σ eGaKL/K) = S,

the universal property of Υ = A , , induces an isomorphism
g 5 α 5 -1-

between (A1,μ',δ') and (Α',μ',δ')σ. Thus by the usual methods

(e.g. see [15], pp. 168/169)we conclude that it is defined over K,

i.e.

there exists (A,μ,δ)

defined over K such that

(A,μ,δ) ®KL = (A1,μ',δ').

Let Q e A(K) be the generator of

<Q> = 6CZZ/1 ) C A[l] ,

and let v be the valuation on K belonging to the ring

Rv := k^T1]] C kCCT1)) = K.

We conclude the example by showing :

A has very bad reduction at v

(and note that Q e A(K) has order l = 2g+l). We know that A ® L = A'

has good reduction, and the reduction of A' at T H» 0 is B.

Note that B is of CM-type, hence B is a simple abelian variety.

Let A be the Neron minimal model of A over k[ [ T ]] , and let A1 be

the Neron minimal model of A' over k[[T]]; let AQ be the ccnnected

component of the special fibre of A, and let

0 - Ls © Lu - A° - C - 0
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be the "Chevalley decomposition" äs bef ore .

By the minimality property of A' the L-isomorphism

A' ig) L ̂  A

extends to a k [ [T] ] -homomorphism

A ' ® k [[T] ] -* A ,

hence it defines a k- homomorphism

(i) Suppose C ̂  0 . Note that for any prime number q,

T (L ) = 0,
q u '

0 -* T (L ) -> T (A?) -»· T (C),
q s q 0 q

moreover the image of T (AQ) is of finite index in T (C). From this ,

and from C Φ 0 we easily conclude that

B

(TB = T (A1), and T AQ = (TA)1, cf. [13], page 495, Lemma 2,

etc.). However, B is simple, thus ψ(Ο = B, thus dim(C) > dim(B) = g;

in this way we see that C Φ 0 implies thar A has good reduction at

v; in that case A is an abelian scheine and k[ 1] is etale over

Spec(k[ [ T1] ] ) . Note that K = kUT1)) is a local field with algebraically

closed residue class field k. Thus AJ 1] is constant over K. We

define

,2g

which is a level-1-structure α on A (over K). The triple (A,μ,α)
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induces a K-homorphism L -* K, thus L = K äs K-algebras, a contradictio

and we conclude C = 0.

(ii). Suppose L0 Φ 0. On the one band
o

φ(Ls) = 0,

(cf. [3]„page 25, Corollary). On the other hand

Γ Β = TA'
q
\

Φ
q

ΤΓ

q

Γ A)1 c > T A

for any prime number q the group T L would be non zero, and

φ|Τ L = φ would be injective, a contradiction with φ = 0. Thus

we conclude C = 0 = Lg, hence AQ = LU, i.e. A has very bad reduction

at v, and the example is established.

(2.2) Remark. The last step of the proof can be deduced from the

more general fact:

let K be a field with a discrete valuation v, and K C L, w|L = v

an extension. Let A be an abelian variety over K which has semi-simple

rank μ at v (i.e. dim LS = μ)*, then A ® L has semi-simple rank

^ μ at w. In case of elliptic curves this is well-known: E _

-reduction implies j(E) is not integral at v, hence E has bad reduction

at w, it does not have ffi^-reduction, hence i t has (E -reduction.

2 .3. Remark. There exists elliptic curves with =#=E[2] (Κ) = 4- which

O
have E -reduction (i.e. very bad reduction: take Υ = X(X-t)(X+t)

ci
R

in characteristic =£2, Δ = 64·.t , type C ) . Combination with the previox.

example shows the bound in the theorem to be sharp, i.e. suppose

*

given prime numbers 1^ and primitive integers b., g, such that
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then there exists an abelian variety A over a local field K such that

b.
(S /l ) ! C A(K), dim A = g,

such that A has very bad reduction at v.
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§ 3 · Points of order p on elliptic curves having very bad

reduction

Let K, .v, and k be äs in Section l, and suppose

char(k) = p > 0. Let A be an abelian variety over K having

very bad reduction at v; we have seen in (1.13) that the

prime-ΐο-ρ torsion in A(K) is very limited in this case.

What about the p-power torsion in this case? With the help

of some examples we show this torsion can be arbitrarily

large .

First we give equal-characteristic examples .

(3.1) Example. Let p = 5 (mod 6) and suppose given an integer

i > 1. We construct K, v, k, E such that char(K) = p = char(k)

E has very bad reduction at v and

p1 divides ^(Etp1] (K)) .

Consider k = Γ and L = k(t)5 define an elliptic curve C

over L by the equation

2 Y3 27 t
ϊ = λ + a X + a , a = ~ · 1728 - t '

note that

= 1728 . — 5-̂  - T = t,

4a + 27a

and that its discriminant equals

Δ = -16(4a3 + 27a2) = at2 ;

here w is the valuation on L with w(t) = l, with valuation

ring R = k[t], , and α S R* (note that 2 and 3 are invertible



- 19 -

in k); thus C has potentially good reduction at w (its

j -invariant being integral), and it has bad reduction at

w, because its discriminant satisfies

0 < w(A) = 2 < 12;

note further that for any extension K D L of degree not

divisible by 6 and for any extension v of w to K the

reduction at v is very bad (note that C is of type II = C

at w, cf. [ 5] , p. 16). Let φ be the i-th iterate of the

Frobenius homomorphism, and let M be its kernel:

) __ _

thus E is given by the equation

Y2 s χ3 + a^X + a*, q = p1,

and M is a local group scheine of rank q. Note that C is not

a super-singular elliptic curve (because its j -invariant is

not algebraic over k), thus

M®LLs ̂  V

By duality we obtain

MD = N C E, N®TL s JZ/q.
J_i S

We take for K D L the smallest field of rationality for the

points in N, and we extend w to a discrete valuation v on K.

Note that K D L is a Galois extension and the degree

[K : L] divides #(Aut(SZ/q) ) = (p-Dp1'1;
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thus 3 does not divide [K : L], we conclude E «Ja. K has very
L·

bad reduction at v; moreover

C E(K)

by construction, and the Example (3.1) is established.

(3.2) Example. Take p = 2, the other data äs in (3.1), and

we construct E so that

21 divides #(E[21] (K)).

Define C over L = k(t), k = F2 , by the equation

Y2 + tXY = X3 + t5;

well-known formulas (cf. [5], p. 36) yield:

* = t". : = t;

note that 3 does not divide

#(Aut(2Z/21)) = 21"1, i > l,

and the methods of the previous example carry over.

Now we construct some examples in which char(K) =

= 0 < p = char(k) .

(3.3) Example . Take p = 2, let i > l be an integer. We

construct K, v, k, E äs before, such that E has very bad

reduction at v, and such that char(K) = 0, char(k) = 2, and

Et 21] C ECK).
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Let m > l be an integer, define

L = <ζ(π>, um+1 = 2, W(TT) = l,

choose a € L, and let E be given over L by the equation

Υ2 + ΛΥ = X3 + TT2aX2 + aX;

the point

P = (̂  , -L) e E(D

π ΤΓ

is a point of order 2, because it is on the line

2Y + Λ = 0,

and the same holds for (0,0) e E(L); thus

E[ 2] C E(L).

Suppose w(a) > 1; because

we conclude

W(A) = 4m + 2w(a);

suppose

m = l and vna) = 2, thus W(A) = 8 and w(j) = 0,

or

m = 2 arid w(a) = l, thus W(A> = 10 and w(j) > 0;

then the equation in minimal, the curve E has very bad

reduction at w and the reduction is potentially good. Let
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K 3 L be the smallest field of rationality for the points

of E[ 21] ; note that

Gal(K/L) C AutCCZ/21)2) = GL(2,Z2/21)

is in the kernel of

) -»· GL(2,Z2/2)

(because E[ 2] C E(K) by construction) , thus the degree [ K : L]

is a power of 2 , hence it is not divisible by 3 . This implies

that ν(Δ) is not divisible by 12 (where v is some extension

of w to K), thus the reduction of E®, K at v is very bad

(because of w(j) > 0 it cannot become £ -type). Hence over

K we have

E[2X] C ECK), and

E has very bad reduction at v.

(3Λ) Example . Let p = 5 (mod 6), and let i > l be an integer.

We construct K, v, k, E äs above with char(K) = 0 < char(k) = p,

with E having very bad reduction at v, and

Etp1] C ECK).

Consider over Q the modular curve X-Cp)*; this is a coarse

moduli scheine of pairs N C E where E is an elliptic curve

and N a subgroup scheme over a field K such that N(K ) = ZZ/p;
O

consider the scheme M„(p) over Spec(ZS) (cf. [l] , p. DeRa-94,

Th. 1.6; cf. [6], p. 63), and consider the point XQ G MgCpKlF )
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given by j = 0. Note that p = 2 (mod 3) implies that the

curve E„ with j = 0 is supersingular in characteristic p,

hence it has a unique subgroup scheine α = NQ C E , the

kernel of Frobenius on EQ . Let 0 be the local ring of

M0(p)<8>^W at XQ, where W = W^iF 2) (i.e. W is the unique

unramified quadratic extension of TL ) . We know: the local

deformation space of α = NQ C EO is isomorphic to the

formal spectrum of

Zp[[X,Y]]/(XY - p),

the automorphism group Aut(E80F 2) = A' acts via

P

on W[[X,Y]]/(XY - p), and the completion of 0 is canonically

isomorphic with the ring of invariants

= W[[S,T]]/(ST - p3), S = X3, T = Y3.

(cf . [ 6] , p. 63, cf . [ 4] , VI. 6) . Let L be the field of

fractions of W (i.e. L is the unramified quadratic extension

of φ ) , and construct

A

this is a point χ G XQ(p)(L); by results by Serre and Milne

(cf. [ 4] , p. DeRa-1323 Prop . 3.2) we know there exists a pair

N C E defined over L, N ® L = Z/p,
O

with moduli-point x. Let K be the smallest field containing
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L such that all points of Etp1] are rational over K. Note

that the degree [K : L] divides (p-l)2p?, thus it is not

divisible by 3; hence

Ο » L

1

Υ

W[[X,Y]]/(XY-p) ..?.-* K

the pair (N C E)®K does not extend to a deformation of

α c En ' ^~t ^ol-l-ows that E does not have good reduction

at the discrete valuation v of K (if so, N would extend flatly,

reduce to a subgroup scheme of rank p of En5 hence to

α = NO C EQ). Thus E has very bad reduction at v, and by

construction

E[px] C ECK).

(3.4 bis) Example. Consider p = 11, take 121.H of [5], p. 97.

This is a curve E over L = (ß with very bad reduction at

w = v^^, with w(A) = 2, with w(j) > 0 and which has a sub-

group scheme of order 11. Now proceed äs before: K = L(E[II1]),

etc., and we obtain a curve E over K with very bad reduction

at v (a valuation lying over w), and with E[ II1] C E(K).

(3.5) Remark.. We have not been able to produce examples

analogous to (3.4) in case p = l (mod 3). Hence for these

primes the Situation is not clear; we did not get beyond

an example of the following type: -
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(3.6) Example. Take p = 7, consider a curve with conductor

49 over $, cf. [5], p. 86. Then w(A) = 3 or wCA) = 9

(with w = v.^), and the curve has potentially good reduction

(because of CM); furthermore it has a subgroup scheme N C E

over $ of rank 7. Thus K := (ßCN) has degree dividing 6, we

see that ν(Δ) is not divisible by 12 (where v lies over w)

thus E has very bad reduction at v and

2Z/7 CECK).

(3.7) Example. Consider p = 3, and let i > l be an integer.

We construct K, v, k, E äs before with char(K) = 0,

char(k) = 3 and E[ 31] C ECK). We Start with L = Q, w = v
o

and we choose an elliptic curve E over Q) with minimal

equation f such that:

E has very bad reduction at w,

w(j) > 0,

w(Af) Ξ l (mod 2), and

(Z/3) C ECU);

such examples exist, e,g. see [5], p. 87, the curve 54.A

has w(A) = 3, w(j ) > 0, and ZZ/3 äs EC<ß) . Let K = Q(E[ 31] ) ;

7
then [ K : <Q] divides 2.3', thus ν(Δ) ̂  0 (mod 4) for any

v lying over w = v~; thus:

E has very bad reduction at v, and

EfS1] C ECK).
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. The image of a point of order p under the reduction map.

Let A be an abelian variety over a field K, let R C K

be the ring defined by a discrete valuation v on K, and let

A be the Neron minimal model of A over Spec(R). At first

suppose n > l is an integer such that char(k) dos not divide

n (here k is the residue class field of v, i.e. k = R/m) .

Let A[n] denote the kernel of multiplication by n on A.

Note that

A[n] -+ Spec(R)

is etale and quasi-finite. Thus we see that A(K)[n] injects

in AQ(k) (here AQ = A8>Rk is the special fibre), and all

torsion points of AQ(k) lift to torsion points of A defined

over an extension of K which is unramified at v. In short:

for n-torsion the relation between A(K) and AQ(k) is

clear (äs long äs char(k) does not divide n).

We give some examples what happens if we consider points

whose order is divisible by char(k) = p > 0. Also in case

of stable reduction it is not so difficult to describe the

Situation (A[p] -> Spec(R) is quasi-f inite in that case).

Thus we suppose the reduction is very bad; in that case

all points on the connected component AQ of the special

fibre A„ are p-power torsion, and A[ p] -+ Spec(R) is not

quasi-finite. We use the filtration on E(K) äs introduced

in [5], Section 4.

ECK) D E(K)Q D E(K)1

where

ECK) = {(x,y) S E(K)|v(x) < -2m, v(y) < -3m}
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after having chosen a minimal equation for E.

(Ί.l.l) Remark. We take p > 3. If P e E(K) (and ord(P) =

= p = char(k), and E has very bad reduction at v) then

P E E(K)Q (because p > 3 does not divide the number of

connected components of EQ , and E(K)Q -* E (k), use p. M-6,

table of [5]). We show that both cases P £ E(K) and

P S ECK), indeed occur:

(4.1.2) Example. Take p > 3, we construct P e E(K), ord(P) =

= p and P 'i E(K)1· Let E be the curve 150.C (cf. [5], p. 103),

thus the curve given by the minimal equation

Y2 + XY = X3 - 28X + 272;

O
it has very bad reduction at v = v5 (because 5 divides its

conductor 150), and it has a point of order 5 (indeed

#E(fli) = 10). We claim

P e E(i||)0, P ̂  E(iQ)1

(relative the valuation v5). This we can prove äs follows:

by (4·. 1.1) we know P e E(Q)Q, thus the group <P> = N C E

extends flatly to a finite group scheme

W C E

over Spec(2Zx5J (one can work with the Neron minimal model

E, but also with the (plane) Weierstrass minimal model, and

then A/ <8 Pr is not the singular point because of P G E(Qp ).

If we would have P € ECQ)^ then it would follow



(because of very bad reduction) , but a,- over Fr does not

lift to the unramified Situation ^(c\ ->· IV (cf. [16],

Section 5), thus

P £ ECflj)1.

One can avoid the abstract proof by an explicit computation:

P = (-4,20) e ECU}), P £ E((Q)1,

the tangent line at P is y = 20, so

-2P = (8,20),

the tangent line at -2P is 3X - Υ - 4 = 0, so

4P = (-4,-16) = -P,

thus <P> — TLI5; the singular point on E mod 5 is (x = 2,

y = -Dmod 5?thus P ̂  E(Q)Q, and the example is established.

(4.1.3) Remark. Take p > 3, and construct Q <Ξ Ε(Κ)1 with

ord(Q) = p. Indeed, take i > l, and use Example (3.4); then

ord(P) = p1, and P S E(K)Q (because of 4.1.1), thus

p.P S E(K), (because E has very bad reduction), thus

Q := ρ1-1Ρ G E(K)1 and ord(Q) = p.

Next we choose p = 3, and we show various possibilities

indeed occur:

(4.2.1) Example. We construct P G E(Q), with ord(P) = 3,

P έ E(ÖJ)Q. Let E be given by the equation

Y2 + 3aXY + 3bY = X3;
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by well-known formulas (cf. [ 5] , p. 36) one computes

Δ = 36b3(a3 - 3b).

6 3 3
If 3 does not divide b (a - 3b) this equation is minimal

(e.g. take a = l = b). Furthermore P-- (0,0) is a flex on E

(hence ord(P) - 3), and E mod 3 has a cusp at (0,0). Thus

P £ E(Q})0.

C4.2.2) Example. It is very easy to give P E ECK) with ord(P)

= 3, P G E(K)Q and P ί E(K)r E.g.

P = (0,2) on Y2 = X3 + 4

Ccf. 108.A, [5], p. 95) has this property, because (x = -l,

y = 0) mod 3 is the singular point on E mod 3, thus P

,0

J0
reduces to a point on En but not to the identity. Another

example:

P = (0,0) on Y2 + Y = X3

(cf. 27.A, [5], p. 83) is a flex, which does not reduce to the

cusp (x = l, y = 1) mod 3 on E mod 3.

(<4.2.3) Example. We coilstruct P S E (K) with ord(P) = 9,

P £ E(K)Q and 3P £ E(K)1- Indeed consider K = φ, ν = v„, and

take 54.B (cf. [5]. p. 87), a curve which has very bad

reduction at 3 such that^E(Q) = 9. Note that $ does not

contain a primitive cube root of unity, thus E($) does not

contain (2Z/3 )x( Z/3 ) , hence
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let P be a generator for this group . Note that cu over 3F0
«J G

does not lift to Z£,„^, thus P and 3P do not reduce to

the identity under reduction modulo 3 , hence

Ε(φ) ·> Ε({||)/Ε(φ)1

is injective, thus

ord(P) = 9, 3P £ E(2J)1, P £ E($)Q,

and note that the extension

0 ->- E(tQ)0 ->· E(0j) -»- Z/3 -> 0

is non-split.

( 14 . 2 . LV ) Remark . Take i = 3 in (3.7), then

p = 3, P e ECK), ord(P) = 33

and E has very bad reduction at v. Then

3P e E(K)Q, Ο Φ 9P S Ε(Κ)1?

thus Q := 9P has the property

ord(Q) = 3, Q € E(K)±.

( 14 . 3 ) Examp_le . We conclude by an example with p = 2. Consider

H8 .E (cf . [ 5] , p. 86) , i.e.

Y2 = X3 + X2 + 16X + 180;

the right hand side factors over φ in the irreducib'le factors
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(Χ + 5)(X2 - 4X + 36),

hence E[2](Qp = 71/2. Because ^ECQJ) = 8 we conclude

Ε([ζ) = 2Ζ/8

(of course it is well-known that such examples exist, e.g.

cf. [6], p. 35, Th. 8). Thus

E(0|)1 = Ο, Ε(φ)0 = Z/2 = <Q = (5,0)>

and

ECm)/E(H|)0 = 2Z/4

(because (0,0) mod 2 is the cusp on E mod 2, and Q mod 2 is

smooth on E mod 2).
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