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Introduction

One of the most pleasant ways to familiarize oneself with the basic language of abstract

algebraic geometry is to study Galois theory for schemes. In these notes we prove the main

theorem of this theory, assuming as known only the fundamental properties of schemes. The

first five sections of Hartshorne’s book [10], Chapter II, contain more than we need.

The main theorem of Galois theory for schemes classifies the finite étale covering of a

connected scheme X in terms of the fundamental group π(X) of X. After the main theorem

has been proved, we treat a few elementary examples; but a systematic discussion of the

existing techniques to calculate the fundamental group falls outside the scope of these notes.

For a precise statement of the theorem that we shall prove we refer to Section 1. Here we

give an informal explanation.

We first consider the case of topological spaces. Let X, Y be topological spaces, and

f : Y → X a continuous map. We call f : Y → X a trivial covering if Y may be identified

with X×E for some discrete set E, in such a way that f becomes the projection X×E → X

on the first coordinate. The map f is said to be a covering ofX if it is locally a trivial covering,

i.e., if X can be covered by open sets U for which f : f−1(U) → U is a trivial covering. An

example of a non-trivial covering is suggested in Figure 1.

Figure 1.

This is an example of a finite covering, i.e., for each x ∈ X the set f−1(x) ⊂ Y is finite.

We call #f−1(x) the degree of the covering at x; so the covering of Figure 1 has everywhere

degree 2. A map from a covering f : Y → X to a covering g : Z → X is a continuous map

h : Y → Z for which f = gh.
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If X satisfies certain conditions then all coverings of X can be described by means of the

fundamental group π(X) of X. Suppose first that X is pathwise connected, and fix x0 ∈ X.

Then π(X) is defined to be the group of homotopy classes of paths in X from x0 to x0. It is

a theorem from algebraic topology that if X is connected, locally pathwise connected, and

semilocally simply connected (see [8; 19]), the fundamental group π(X) classifies all coverings

of X, in the following sense. There is a one-to-one correspondence between coverings of X,

up to isomorphism, and sets that are provided with an action of the group π(X), also up

to isomorphism. This correspondence is such that maps between coverings give rise to maps

between the corresponding sets that respect the π(X)-action, and conversely. In other words,

the category of coverings of X is equivalent to the category of sets provided with an action

of π(X).

There exist similar theories for wider classes of spaces, see [19, Notes to Chapter V].

In these theories the fundamental group is not defined with paths, but the existence of a

group for which the coverings of X admit the above description is proved. This group is then

defined to be the fundamental group of X.

A particularly wide class of spaces X can be treated if one wishes to classify only the

finite coverings of X. For this it suffices that X be connected, i.e., have exactly one connected

component. (In these notes the empty space is not considered to be connected.) For any

connected space X there is a topological group π̂(X) such that the category of finite coverings

of X is equivalent to the category of finite discrete sets provided with a continuous action

of π̂(X). This result, which is difficult to locate in the literature [2], is treated in detail in

these notes (see (1.15)), because of the close analogy with the case of schemes.

To find an analogue of the notion of a finite covering for schemes, one could repeat the

definition given above. The only changes are that f : Y → X should be a morphism of

schemes, and that E should be finite. This is, however, not the “correct” definition. Not

only does it give nothing new (Exercise 5.22(a)), but it is too restrictive in the sense that

many topological coverings cease to be coverings if one passes to the direct scheme-theoretic

analogue. To illustrate this, and to show how finite étale coverings are more general, we

consider an example.

Define g ∈ C[U, V ] by g = V 3 +2V 2−15V −4U , and let C be the curve {(u, v) ∈ C× C :

g(u, v) = 0}. We consider the map f : C → C sending (u, v) to u. Some real points of C

2



and their images under f in R are drawn in Figure 2. For each u ∈ C, the number #f−1(u)

of points mapping to u is the number of zeros of g(u, V ) = V 3 + 2V 2 − 15V − 4u, and this

is 3 unless the discriminant of g(u, V ) vanishes. This discriminant equals −432u2 + 2288u+

14400 = −16(27u + 100)(u − 9), so #f−1(u) = 3 for u ∈ C − {−100
27
, 9}. From this it can

be deduced that f becomes a covering if points with u = −100
27

or u = 9 are removed; i.e., if

X = C−{−100
27
, 9} and Y = f−1[X] ⊂ C, then f : Y → X is a finite covering of topological

spaces, and the degree is 3 everywhere.

The scheme-theoretic analogue is as follows. The scheme corresponding to X is SpecA,

whereA = C[U, ((27U+100)(U−9))−1], and Y corresponds to SpecB, whereB = A[V ]/gA[V ].

The morphism SpecB → SpecA is not locally a trivial covering in the same way as this is

true for the topological spaces. To see this, one looks at the generic point ξ of SpecA. Its

local ring is the field of fractions Q(A) = C(U) of A, and the fibre of SpecB → SpecA over ξ

is the spectrum of Q(B). That is a cubic field extension of Q(A), so SpecQ(B)→ SpecQ(A)

is not a “trivial covering”, and SpecB → SpecA is not “trivial” in a neighborhood of ξ.

It is true that SpecB → SpecA is a finite étale covering. The precise definition of

this notion is given in Section 1. Translating this definition in concrete terms, one finds

that the local “triviality” condition from the topological definition has been replaced by an

analogous algebraic condition, namely that a certain discriminant does not vanish locally

(cf. Exercises 1.3 and 1.6). In our topological example we saw that the existence of three

points of Y mapping to u was implied by the non-vanishing of the discriminant at u, for

u ∈ X. In the scheme-theoretic example this is still true if one restricts to closed points

u ∈ SpecA, since these have an algebraically closed residue class field C; but the non-closed

point u = ξ has a residue class field C(U) that is not algebraically closed, and there is only

one point of SpecB that maps to ξ; to compensate for this, it is “three times as large” in

the sense that its residue class field is a cubic extension of C(U).

The algebraic nature of the definition of “finite étale” makes it also work well for fields

different from C, which is not the case with the topological definition. To illustrate this we

write, for a subfield K ⊂ C:

YK = Y ∩ (K ×K) = {(u, v) ∈ K ×K : g(u, v) = 0, u 6∈ {−100
27
, 9}},

XK = X ∩K = K − {−100
27
, 9},

AK = K[U, ((27U + 100)(U − 9))−1],

BK = AK [V ]/gAK [V ],

with g = V 3 + 2V 2 − 15V − 4U as above.

Consider first K = R. The map YR → XR (see Figure 2) is still a covering, but it does not

have degree 3 everywhere; at points u with u > 9 or u < −100
27

the degree is 1. The algebraic
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Figure 2.

definition, however, takes the “invisible points” into account, and SpecBR → SpecAR is a

finite étale covering that has degree 3 everywhere. (The degree is defined in Section 5.)

For K = Q, the map YK → XK is not even a covering any more: u = 0 has three originals

in YQ, but u = 1
n

has none, for n ∈ Z, n 6= 0. The morphism SpecBK → SpecAK , however,

is a finite étale covering for K = Q, and in fact for every subfield K of C.

The main theorem to be proved in these notes asserts that for a connected scheme X the

finite étale coverings of X can be classified in precisely the same way as the finite coverings of

a connected topological space. A precise statement of the theorem is given in Section 1 (see

1.11). If X is the spectrum of a field, the theorem is essentially a reformulation of classical

Galois theory for fields. The connection is explained in detail in Section 2. Section 3 contains

an axiomatic treatment of the sort of categories that we are interested in. The proof of the

theorem is thereby reduced to the verification of the axioms. For the case of finite coverings
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of a connected topological space this verification is already done in Section 3, by way of

example. The “affine” information that we need for the proof of the theorem is assembled in

Section 4, and Section 5 contains the proof of the theorem. In Section 6 we show that the

definitions we use are equivalent to those found in the literature, and we prove a theorem that

enables us to treat some very elementary examples. The reader who wishes to see examples

of greater interest is encouraged to go on and read [20, Chapter I, §5; 9; 22].

It is a natural question how to classify the finite étale coverings (or finite coverings) of

a scheme (or topological space) X that is not connected. If, topologically, X is the disjoint

union of its connected components, then such a classification is easily derived from our main

theorem, cf. [9, Exposé V, numéro 9]. For the case of an affine scheme, see [18]. The general

case, however, seems not to have been dealt with.

Prerequisites and conventions

Sets. By #S we denote the cardinality of a set S.

Topology. Topological spaces are not assumed to be Hausdorff. The empty space is not

connected.

Categories and functors. Only a very basic familiarity with these notions is assumed.

Most terms from category theory are defined where they are needed. See also [12].

Commutative algebra. Rings are always assumed to be commutative with 1, except in

Exercises 1.18 and 4.40. The unit element is preserved by all ring homomorphisms, belongs

to all subrings, and acts as the identity on all modules. The group of units of a ring A is

denoted by A∗. If A is a ring, an A-algebra is a ring B equipped with a ring homomorphism

A → B. Everything we need from commutative algebra can be found in [1]. Projective

modules, which are not in [1], are treated in Section 4.

Fields. We assume familiarity with ordinary finite Galois theory for fields. Infinite Galois

theory is treated in Section 2. Several examples and exercises make use of valuation theory

and algebraic number theory; see [5; 17; 26].

Schemes. Everything we need about schemes can be found in [10, Chapter II, Sections 1–5].

Schemes need not be separated, and are not assumed to be locally noetherian. The empty

scheme is not connected.

Some exercises need more background. Appropriate references will then be given.

5



1 Statement of the main theorem

In this section we state the main theorem to be proved in these notes, and we discuss the

relationship with algebraic topology.

1.1 Free modules. Let A be a ring and M a module over A. A collection of elements (wi)∈I
of M is called a basis of M (over A) if for every x ∈M there is a unique collection (ai)∈I of

elements of A such that ai = 0 for all but finitely many i ∈ I and x =
∑

i∈I aiwi. If M has a

basis it is called free (over A). If A is not the zero ring and M is free with basis (wi)∈I , then

the cardinality #I depends only on M , and not on the choice of the basis (Exercise 1.1). It

is called the rank of M over A, notation: rankA(M). If M is a finitely generated free module

then the rank is finite (Exercise 1.1).

Let M be a finitely generated free A-module with basis w1, w2, . . . , wn and let f : M →M

be A-linear. Then

f(wi) =
n∑
j=1

aijwj (1 ≤ i ≤ n)

for certain aij ∈ A, and the trace Tr(f) of f is defined by

Tr(f) =
n∑
i=1

aii.

This is an element of A that depends only on f , and not on the choice of the basis (see 4.8,

or Exercise 1.2). It is easily checked that the map Tr: HomA(M,M)→ A is A-linear.

1.2 Separable algebras. Let A be a ring, B an A-algebra, and suppose that B is finitely

generated and free as an A-module. For every b ∈ B the map mb : B → B defined by

mb(x) = bx is A-linear, and the trace Tr(b) or TrB/A(b) is defined to be Tr(mb). The map

Tr: B → A is easily seen to be A-linear and to satisfy Tr(a) = rankA(B) · a for a ∈ A.

The A-module HomA(B,A) is clearly free over A with the same rank as B. Define the A-

linear map φ : B → HomA(B,A) by (φ(x))(y) = Tr(xy), for x, y ∈ B. If φ is an isomorphism

we call B separable over A, or a free separable A-algebra if we wish to stress the condition

that B be finitely generated and free as an A-module. See Exercise 1.3 for a reformulation

of this definition. In 4.13 and 6.10 we shall define the notion of separability for wider classes

of A-algebras.

1.3 Examples. For any integer n ≥ 0 the A-algebra An, with component-wise ring opera-

tions, is clearly a free separable A-algebra. If A = Z there are no others (see 1.12 and 6.18),
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and the same thing is true if A is an algebraically closed field (see Theorem 2.7). Generally,

if K is a field, then the free separable K-algebras are precisely the K-algebras of the form∏t
i=1Bi, where each Bi is a finite separable field extension of K in the sense of Galois theory,

and t ≥ 0, see Theorem 2.7. (Note that t = 0 gives the zero ring.) Further examples are

found in Exercises 1.5 and 1.6.

1.4 Finite étale morphisms. A morphism f : Y → X of schemes is finite étale if there

exists a covering of X by open affine subsets Ui = SpecAi, such that for each i the open

subscheme f−1(Ui) of Y is affine, and equal to SpecBi, where Bi is a free separable Ai-

algebra. In this situation we also say that f : Y → X is a finite étale covering of X.

In 6.9 we shall see that this definition is equivalent to the one found in the literature.

Note that a finite étale morphism is finite [10, Chapter II, Section 3], so for every open

affine subset U = SpecA of X the open subscheme f−1(U) of Y is affine, f−1(U) = SpecB,

where B is a finitely generated A-module. However, in this situation B need not be free as

an A-module, but it is projective, see Section 4 and 5.2.

1.5 Examples. For any non-negative integer n and any scheme X, the disjoint union X q
X q · · · q X of n copies of X, with the obvious morphism to X, is easily seen to be a

finite étale covering of X. Again it is true that for X = Spec Z there are no others (see 1.12

and 6.18). If X = SpecK, where K is a field, the finite étale coverings Y → X are precisely

given by Y =
∐t

i=1 SpecBi, with Bi and t as in 1.3. If X = SpecA, where A is the ring of

algebraic integers in an algebraic number field K, then the finite étale coverings Y → X are

precisely given by Y =
∐t

i=1 SpecAi, where t ≥ 0 and where for each i the ring Ai is the ring

of algebraic integers in a finite extension Ki of K that is unramified at all non-zero prime

ideals of A, see 6.18.

1.6 Morphisms of coverings. A morphism from a finite étale covering f : Y → X to a

finite étale covering g : Z → X is a morphism of schemes h : Y → Z for which f = gh. This

notion enables us to speak of the category of finite étale coverings of X, for any fixed scheme

X, notation: FEtX .

Our main theorem will describe this category for connected X. (Connected means for

us that the space of X has exactly one connected component; in particular X = ∅ is not

connected.)

1.7 Projective limits. A partially ordered set I is called directed if for any two i, j ∈ I there

exists k ∈ I satisfying k ≥ i and k ≥ j. A projective system consists of a directed partially

ordered set I, a collection of sets (Si)i∈I , and a collection of maps (fij : Si → Sj)i,j∈I, i≥j
satisfying the conditions
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fii = (identity on Si) for each i ∈ I
fik = fjk ◦ fij for all i, j, k ∈ I with i ≥ j ≥ k.

The projective limit of such a system, notation

lim←−Si or lim←−i∈I Si

(the maps fij are usually clear from the context) is defined by

lim←−Si = {(xi)i∈I ∈
∏
i∈I

Si : fij(xi) = xj for all i, j ∈ I with i ≥ j}.

If all Si are groups, or rings, or modules over a ring A, and all fij are group homomorphisms,

or ring homomorphisms, or A-module homomorphisms, then lim←−Si is a group, or a ring,

or an A-module. Likewise, if all Si are topological spaces, then lim←−Si can be made into a

topological space by giving
∏

i∈I Si the product topology and lim←−Si the relative topology.

1.8 Profinite groups. Let I, (πi)i∈I , (fij)i,j∈I, i≥j be a projective system in which the πi
are finite groups and the fij group homomorphisms. Then π = lim←− πi is a group, and if each

πi is endowed with the discrete topology then π is a topological space, by 1.7. In fact, π

is a topological group in the sense that the maps π × π → π, (x, y) 7→ xy and π → π,

x 7→ x−1, are continuous. A topological group that arises in this way is called a profinite

group. Profinite groups are compact (Exercise 1.9(a)) and totally disconnected; it can be

proved that conversely every compact totally disconnected topological group is profinite (see

[5, Chapter V, Theorem 1]). A homomorphism of profinite groups is a continuous group

homomorphism. An isomorphism is a homomorphism with a two-sided inverse that is again

a homomorphism. Since each continuous bijection from a compact space to a Hausdorff space

is a homeomorphism, each bijective homomorphism is an isomorphism.

1.9 Examples. Let G be an arbitrary group, and I the collection of normal subgroups of

finite index of G. Let I be partially ordered by N ≥ N ′ ⇔ N ⊂ N ′. Then the collection

of groups (G/N)N∈I gives rise to a projective system of finite groups, the transition maps

G/N → G/N ′ (for N ≥ N ′) being the canonical homomorphisms. Hence Ĝ = lim←−G/N is a

profinite group, and it is called the profinite completion of G. In particular we have

Ẑ = lim←−n>0
Z/nZ,
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the set of positive integers being partially ordered by divisibility. Since each Z/nZ is a ring,

Ẑ is in fact a profinite ring (definition obvious).

Next let p be a prime number, and I the set of positive integers, totally ordered in

the usual way. Then (Z/pnZ)n>0, with the obvious transition maps Z/pnZ → Z/pmZ (for

n ≥ m), is a projective system, and

Zp = lim←−Z/pnZ

is a profinite group. It is in fact a profinite ring, the ring of p-adic integers.

Other important examples of profinite groups occur in infinite Galois theory, see Theo-

rem 2.2.

1.10 Group actions. Let G be a group. An action (on the left) of G on a set E is said to

be trivial if σe = e for all σ ∈ G, e ∈ E, and free if σe 6= e for all σ ∈ G, σ 6= 1 and all

e ∈ E. It is said to be transitive if E has exactly one orbit under G; in particular E is then

non-empty.

A G-set is a set E equipped with an action of G on E. A morphism from a G-set E to a

G-set E ′ is a map f : E → E ′ satisfying f(σe) = σf(e) for all σ ∈ G and e ∈ E. This enables

us to speak about the category of G-sets.

If E is a G-set, we write EG = {e ∈ E : σe = e for all σ ∈ G}.
Next let π be a profinite group. A π-set is a set E equipped with an action of π on E

that is continuous in the sense that the map π × E → E defining the action is continuous,

if E has the discrete topology and π × E the product topology. (See Exercise 1.19 for a

reformulation.) A morphism of π-sets is defined as above, and the category of finite π-sets is

denoted by π-sets.

We are now able to formulate the main theorem of Galois theory for schemes.

1.11 Main theorem. Let X be a connected scheme. Then there exists a profinite group π,

uniquely determined up to isomorphism, such that the category FEtX of finite étale coverings

of X is equivalent to the category π-sets of finite sets on which π acts continuously.

This theorem will be proved in 5.25. The profinite group π occurring in the theorem is called

the fundamental group of X, notation: π(X).

1.12 Examples. The disjoint union of n copies of X corresponds, under the equivalence

in 1.11, to a finite set of n elements on which π acts trivially. The fact that for X = Spec Z
there are no other finite étale coverings of X is thus expressed by the group π(Spec Z)

being trivial. The same is true for π(SpecK), where K is an algebraically closed field. More
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generally, if K is an arbitrary field, then π(SpecK) is the Galois group of the separable

closure of K over K, see 2.4 and 2.9. In this case we will prove Theorem 1.11 (except

for the uniqueness statement) in Section 2, where we shall see that the theorem is only a

reformulation of classical Galois theory. In particular, one has π(SpecK) ∼= Ẑ if K is a finite

field (see 2.5).

Next let X = SpecA, where A is the ring of integers in an algebraic number field K.

Then π(X) is the Galois group of M over K, where M is the maximal algebraic extension

of K that is unramified at all non-zero prime ideals of A. More generally, if a ∈ A, a 6= 0,

then π(SpecA[1/a]) is the Galois group, over K , of the maximal algebraic extension of K

that is unramified at all non-zero prime ideals of A not dividing a. These facts will be proved

in 6.18.

If p is a prime number, then π(Spec Zp) ∼= Ẑ, see 6.18. More examples will be given in 1.16

and 6.24.

1.13 The topological fundamental group. In the introduction we defined coverings of a

topological spaceX, and maps between such coverings. This leads to the category of coverings

of X. If X satisfies certain conditions then this category has a description analogous to the

one given in 1.11, as follows.

For x ∈ X, the fundamental group π(X, x) is the group of homotopy classes of closed

paths through x; see [8; 19] for details. Now suppose that X is connected, locally pathwise

connected, and semilocally simply connected; the last condition means that every x ∈ X has

a neighborhood U such that the natural map π(U, x) → π(X, x) is trivial. Then the group

π(X, x) is independent of the choice of x ∈ X, up to isomorphism, and denoting it by π(X)

we have the following theorem.

1.14 Theorem. Let X be a topological space satisfying the above conditions. Then the

category of coverings of X is equivalent to the category of π(X)-sets.

For the proof of this theorem we refer to [8, Chapitre IX, numéro 6; 19, Chapter V].

The analogy with 1.11 is not complete: the fundamental group π(X) has no topology,

and the π(X)-sets need not be finite. As was said in the introduction, one obtains a much

closer analogy by considering only finite coverings.

1.15 Theorem. Let X be a connected topological space. Then there exists a profinite group

π̂(X), uniquely determined up to isomorphism, such that the category of finite coverings of

X is equivalent to the category π̂(X)-sets of finite sets on which π̂(X) acts continuously.

The proof of this theorem is given in 3.10.

10



Theorem 1.15 is weaker than 1.14 in the sense that it only classifies finite coverings of

X, but it does so for a much wider class of topological spaces.

If X satisfies the conditions stated just before 1.14, then the group π̂(X) from 1.15 is the

profinite completion of the fundamental group π(X) occurring in 1.14, see Exercise 1.24.

The analogy between 1.11 and 1.15 is more than formal. If X is a non-singular variety

over C, and Xh is the associated complex analytic space (see [10, Appendix B]), then the

algebraically defined fundamental group π(X) from Theorem 1.11 is isomorphic to the topo-

logically defined fundamental group π̂(Xh) from Theorem 1.15, which in turn is the profinite

completion of the classical fundamental group from 1.14. (See [10, p. 442] and [20, pp. 40 &

118] for references.) This opens the possibility of calculating the algebraic fundamental group

by topological means. This connection can even be used to calculate fundamental groups of

schemes in characteristic p (see [9; 22], and the discussion in [20, Chapter I, Section 5]).

1.16 Example. If K is a field, then one has π(P1
K) = π(SpecK), where P1

K denotes the

projective line over K. If moreover char(K) = 0, then one has also π(A1
K) = π(SpecK),

where A1
K is the affine line over K. (See 6.22 and 6.23.) For K = C, this shows that π(P1

C)

and π(A1
C) are both trivial. This is consistent with the above remarks, since the associated

complex analytic spaces are simply connected, hence have a trivial fundamental group.

Exercises for Section 1

1.1 Let A be a ring, A 6= 0, and M an A-module with basis (wi)i∈I .

(a) Prove that there is a ring homomorphism from A to a field k, and that #I =

dimk(M ⊗A k).
(b) Suppose that M is a finitely generated A-module. Prove that #I is finite.

1.2 (a) Let w1, w2, . . . , wn be a basis for M over A, and let

vi =
n∑
j=1

aijwj ∈M (1 ≤ i ≤ n)

with aij ∈ A. Prove: v1, v2, . . . , vn is a basis for M over A⇔ det((aij)1≤i,j≤n) ∈ A∗.
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(b) The trace Tr(C) of an n×n-matrix C = (cij)1≤i,j≤n over A is defined by Tr(C) =∑n
i=1 cii. Prove

Tr(CD) = Tr(DC),

Tr(ECE−1) = Tr(C)

for n× n-matrices C,D,E over A with det(E) ∈ A∗.
(c) Prove that the trace of an A-endomorphism of a finitely generated free module,

as defined in 1.1, is independent of the choice of the basis.

1.3 Let B be an A-algebra that is finitely generated and free as an A-module, with basis

w1, w2, . . . , wn. Prove: B is separable over A⇔ det(Tr(wiwj))1≤i,j≤n) ∈ A∗.

1.4 Let B be a free separable A-algebra, A′ an A-algebra, and B′ = B ⊗A A′. Prove that

B′ is a free separable A′-algebra.

1.5 Let K be an algebraic number field with discriminant ∆ and ring of integers A. Prove

that A[1/∆] is a free separable Z[1/∆]-algebra.

1.6 Let A be a ring.

(a) Let a ∈ A. Prove that A[X]/(X2 − a) is a free separable A-algebra if and only if

2a ∈ A∗.
(b) Let, more generally, f ∈ A[X] be a monic polynomial. Prove that A[X]/(f) is a

free separable A-algebra if and only if the discriminant ∆(f) of f belongs to A∗.

1.7 Suppose that the scheme X is the disjoint union of two schemes X ′, X ′′. Prove that the

category FEtX is equivalent to a suitably defined “product category” FEtX′×FEtX′′ .

1.8 Let S = lim←−Si be a projective limit as in 1.7, and define for each j ∈ I the projection

map fj : S → Sj by fj((xi)i∈I) = xj. Prove that the system (S, (fj)j∈I) has the following

“universal property”:

(i) fij ◦ fi = fj for all i, j ∈ I with i ≥ j;

(ii) if T is a set and (gj : T → Sj)j∈I is a collection of maps satisfying fij ◦ gi = gj (for

all i, j ∈ I with i ≥ j) then there is a unique map g : T → S such that gj = fj ◦ g
for all j ∈ I.

Prove further that this universal property characterizes (S, (fj)j∈I) in the following

sense: if S ′ is a set and (f ′j : S
′ → Sj)j∈I a collection of maps satisfying the analogues

of (i), (ii), then there is a unique bijection f ′ : S ′ → S such that f ′j = fj ◦ f ′ for all

j ∈ I.
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1.9 Let the notation be as in 1.7, and S = lim←−Si.

(a) Suppose that all sets Si are endowed with a compact Hausdorff topology, that all

Si are non-empty, and that all maps fij are continuous. Prove that S is non-empty

and compact. [Hint: Apply Tikhonov’s theorem.]

(b) Suppose that all sets Si are finite and non-empty. Prove that S 6= ∅.
(c) Suppose that I is countable, that all Si are non-empty, and that all maps fij are

surjective. Prove that S 6= ∅.
(d) Let I be the collection of all finite subsets of R, and let I be partially ordered

by inclusion. For each i ∈ I, let Si be the set of injective maps φ : i → Z, and

let fij : Si → Sj (for j ⊂ i) map φ to its restrictions φ|j. Prove that this defines

a projective system in which all Si are non-empty and all fij are surjective, but

that the projective limit S is empty.

1.10 Prove: If πj is a profinite group for each j in a set J , then
∏

j∈J πj is a profinite group.

1.11 (Open and closed subgroups of profinite groups.) Let π = lim←− πi ⊂
∏

i∈I πi be

a profinite group, with all πi finite groups, and fj : π → πj the projection maps as in

Exercise 1.8, for j ∈ I. Let further π′ ⊂ π be a subgroup.

(a) Prove: π′ is open ⇔ π′ is closed and of finite index ⇔ ∃j ∈ J : ker fj ⊂ π′.

(b) Prove: π′ is closed ⇔ there is a system of subgroups (ρi ⊂ πi)i∈I with π′ =

π ∩ (
∏

i∈I ρi) (inside
∏

i∈I πi) ⇔ there is a system of subgroups (ρi ⊂ πi)i∈I with

π′ = π ∩ (
∏

i∈I ρi) and for which in addition fij[ρi] = ρj for all i, j ∈ I with i ≥ j.

(c) Prove that π′ is profinite if it is closed.

(d) Suppose that π′ is a closed normal subgroup. Prove that π/π′, with the quotient

topology, is profinite.

1.12 (a) Let G be a group, and Ĝ its profinite completion. Prove that there is a natural

group homomorphism f : G→ Ĝ for which f [G] is dense in Ĝ.

(b) Prove: if G is a free group, then the natural map f : G→ Ĝ from (a) is injective.

(c) Let G = 〈a, b, c, d : aba−1 = b2, bcb−1 = c2, cdc−1 = d2, dad−1 = a2〉. Prove that

G is infinite and that Ĝ is trivial (see [24, I.1.4]).

1.13 Let p be a prime number, and Zp the ring of p-adic integers defined in 1.9. Prove:

(a) Z∗p = Zp − pZp;

(b) each a ∈ Zp − {0} can be uniquely written in the form a = upn with u ∈ Z∗p,
n ∈ Z, n ≥ 0;
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(c) Zp is a local domain with residue class field Fp.

1.14 Prove that there is an isomorphism Ẑ ∼=
∏

p prime Zp of topological rings (definition

obvious).

1.15 Let Z10 = lim←−n≥1
Z/10nZ.

(a) Prove that each a ∈ Z10 has a unique representation a =
∑∞

n=0 cn10n with cn ∈
{0, 1, . . . , 9}.

(b) Prove that there exists a unique continuous function v : Z10 → R such that v(a) =

(number of factors 2 in a)−1 for each positive integer a.

(c) Let (an)
∞
n=0 be a sequence of positive integers not divisible by 10 such that the

number of factors 2 in an tends to infinity for n→∞. Prove that the sum of the

digits of an in the decimal system tends to infinity for n→∞.

1.16 (a) Prove that each a ∈ Ẑ has a unique representation a =
∑∞

n=1 cnn! with cn ∈
{0, 1, . . . , n}.

(b) Let b ∈ Z, b ≥ 0, and define the sequence (an)
∞
n=0 of non-negative integers by

a0 = b, an+1 = 2an . Prove that (an)
∞
n=0 converges in Ẑ, and that lim

n→∞
an ∈ Ẑ is

independent of b.

(c) Let a = lim
n→∞

an as in (b), and write a =
∑∞

n=1 cnn! as in (a). Compute cn for

1 ≤ n ≤ 10.

1.17 A subset J of a partially ordered set I is called cofinal if ∀i ∈ I : ∃j ∈ J : j ≥ i.

(a) Prove: if J is a cofinal subset of a directed partially ordered set, then J is directed.

(b) Let the notation be as in 1.7, and let J ⊂ I be a cofinal subset. Prove that there

is a canonical bijection lim←−j∈JSj
∼= lim←−i∈I Si.

(c) Prove: Ẑ ∼= lim←−n>0
Z/n!Z.

1.18 (Compact rings are profinite.) In this exercise, rings are not necessarily commu-

tative. Let R be a compact Hausdorff topological ring with 1. It is the purpose of this

exercise to show that R is a profinite ring.

(a) For an open neighborhood U of 0 in R, let V = {x ∈ R : R×R ⊂ U}. Prove that

V is a neighborhood of 0 in R. If moreover U is an additive subgroup of R, prove

that V is an open two-sided ideal of R.

(b) Let χ : R → R/Z be a continuous group homomorphism. Prove that ker χ is

open in R. [Hint: Choose U in (a) such that χ[U ] ⊂ R/Z contains no non-trivial

subgroup of R/Z.]
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(c) Derive from (b) that the open additive subgroups U form a neighborhood base

for 0 in R (see [11, Theorems 24.26 and 7.7]) and that the same is true for the

open two-sided ideals.

(d) Conclude that R ∼= lim←−R/V , the limit ranging over the open two-sided ideals

V ⊂ R, and that R is profinite.

1.19 Let π be a profinite group acting on a set E. Prove that the action is continuous if and

only if for each e ∈ E the stabilizer πe = {σ ∈ π : σe = e} is open in π, and for finite

E if and only if the kernel π′ = {σ ∈ π : σe = e for all e ∈ E} of the action is open

in π.

1.20 Let G be a group with profinite completion Ĝ. Prove that the category of finite G-sets

is equivalent to the category Ĝ-sets.

1.21 (a) Prove that the category Ẑ-sets is equivalent to the category whose objects are

pairs (E, σ), with E a finite set and σ a permutation of E, a morphism from

(E, σ) to (E ′, σ′) being a map f : E → E ′ satisfying fσ = σ′f .

(b) Construct a profinite group π containing Ẑ as a closed normal subgroup of index

2, such that the category π-sets is equivalent to the category whose objects are

triples (E, σ, τ), with E a finite set and σ and τ permutations of E for which

σ2 = τ 2 = idE, a morphism from (E, σ, τ) to (E ′, σ′, τ ′) being a map f : E → E ′

satisfying fσ = σ′f and fτ = τ ′f .

1.22 Let p be a prime number. Prove that π(Spec Z[1/p]) is infinite.

1.23 Let A be the ring of integers of an algebraic number field K. The narrow ideal

class group C∗ of K is the group of fractional A-ideals modulo the subgroup {Aα :

α ∈ K∗, σ(α) > 0 for every field homomorphism σ : K → R}. Let π = π(SpecA), and

denote by π′ the closure of the commutator subgroup of π. Prove that π/π′ ∼= C∗.

[Hint: Use class field theory [5; 17].]

1.24 Let it be given that under the equivalence of categories in 1.14 finite coverings and finite

sets correspond to each other. Deduce from this and Exercise 1.20 that the profinite

group π̂(X) occurring in 1.15 is the profinite completion of the group π(X) occurring

in 1.14, if X is as in 1.14.

1.25 Let X be the topological space

{0, 1, 2, 3}, the open sets being

∅, {0}, {2}, {0, 2}, {0, 1, 2},
{0, 3, 2}, X. Prove: π̂(X) ∼= Ẑ.

0

1

2

3
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1.26 (a) Let π be a profinite group such that x2 = 1 for all x ∈ π. Prove that π is isomorphic

to (Z/2Z)n for a uniquely determined cardinal number n, which is equal to the

Z/2Z-dimension of the group of continuous group homomorphisms π → Z/2Z.

(b) Let G be the additive group of a Z/2Z-vector space of dimension k, where k is

an infinite cardinal. Prove: Ĝ ∼= (Z/2Z)2k
as profinite groups.

(c) Construct a profinite group that is not isomorphic to the profinite completion of

any abstract group.

1.27 Let X be an infinite topological space whose closed sets are exactly the finite subsets

of X and X itself.

(a) Prove that every covering of X is trivial (see the Introduction), that X is con-

nected, and that the group π̂(X) from 1.15 is trivial.

(b) Suppose that X is countable. Prove that X is not pathwise connected.

(c) Suppose that #X ≥ #R. Prove that X is locally pathwise connected and semilo-

cally simply connected, and that π(X) is trivial.

1.28 Let X be an irreducible topological space. Prove that the group π̂(X) from 1.15 is

trivial.

1.29 Put A = Z[
√
−3], B = Z[X]/(X4 + X2 + 1) and β = (X mod X4 + X2 + 1) ∈ B.

View B as an A-algebra via the ring homomorphism A→ B mapping
√
−3 to β−β−1.

Prove that B is a free separable A-algebra.

1.30 Let p be a prime number, π the profinite group
∏

n≥1 Z/pnZ, and π′ ⊂ π the closure

of the subgroup generated by (1 mod pn)∞n=1.

(a) Prove that one has π′ ∼= Zp as profinite groups, and that π′ is a pure subgroup of

π, i.e., mπ′ = π′ ∩mπ for all m ∈ Z.

(b) Prove that there is an isomorphism π ∼= π′ × (π/π′) of abstract groups. [Hint:

First look at finitely generated subgroups of π/π′, next use compactness of π′.]

(c) Prove that π and π′ × (π/π′) are not isomorphic as profinite groups.
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2 Galois theory for fields

In this section we explain the connection between the Main theorem 1.11 and classical Galois

theory for fields. We denote by K a field. It is our purpose to show that the category of free

separable K-algebras is anti-equivalent to the category of finite π-sets, for a certain profinite

group π. This is a special case of the Main theorem, with X = SpecK. In the general proof

we shall use the contents of this section only for algebraically closed K. In that case, which is

much simpler, the group π is trivial, so that the category of finite π-sets is just the category

of finite sets.

We assume, in this section, familiarity with the theory of finite Galois extensions of fields.

2.1 Infinite Galois theory. Let K ⊂ L be a field extension. We call K ⊂ L a Galois

extension if K ⊂ L is algebraic and there exists a subgroup G ⊂ Aut(L) such that K = LG;

here we use the notation LG from 1.10. If K ⊂ L is a Galois extension we define the Galois

group Gal(L/K) to be AutK(L); then we have K = LGal(L/K).

Let K be a fixed algebraic closure of K. If F ⊂ K[X]− {0} is any collection of non-zero

polynomials, the splitting field of F over K is the subfield of K generated by K and the

zeros of the polynomials in F . We recall that f ∈ K[X]− {0} is called separable if it has no

multiple zero in K, and that α ∈ K is called separable over K if the irreducible polynomial

of α over K is separable. We denote this irreducible polynomial by fαK . Let L be a subfield of

K containing K. We call L separable over K if each α ∈ L is separable over K, and normal

over K if for each α ∈ L the polynomial fαK splits completely in linear factors in L[X].

2.2 Theorem. Let K be a field, and L a subfield of K containing K. Denote by I the set of

subfields E of L for which E is a finite Galois extension of K. Then I, when partially ordered

by inclusion, is a directed partially ordered set. Moreover, the following four assertions are

equivalent:

(i) L is a Galois extension of K;

(ii) L is normal and separable over K;

(iii) there is a set F ⊂ K[X]−{0} of separable polynomials such that L is the splitting field

of F over K;

(iv)
⋃
E∈I E = L.

Finally, if these conditions are satisfied, then there is a group isomorphism Gal(L/K) ∼=
lim←−E∈I Gal(E/K).

Remark. The projective limit, in the final assertion, is defined with respect to the nat-

ural restriction maps Gal(E/K) → Gal(E ′/K), for E,E ′ ∈ I, E ′ ⊂ E. Since the groups
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Gal(E/K), for E ∈ I are finite, the isomorphism in the theorem shows that Gal(L/K) may

be considered as a profinite group, as we shall do in the sequel. In particular, Gal(L/K) is

compact and Hausdorff. The topology on Gal(L/K) is called the Krull topology (Wolfgang

Krull, German mathematician, 1899–1971). See Exercise 2.3(a) for a different description of

this topology.

Proof of 2.2. If E,E ′ ∈ I then EE ′ ∈ I so I is directed.

(i) ⇒ (ii) Suppose that K ⊂ L is Galois, with group G. Let α ∈ L. Since α is algebraic

overK, the orbitGα of α underG is finite. The polynomial g =
∏

β∈Gα(X−β) has coefficients

in LG = K, and g(α) = 0, so g is divisible by fαK . Since g splits completely into linear factors

in L[X], and has no multiple zeros, the same is true for fαK . (It is in fact easy to see that

g = fαK .) Therefore L is normal and separable over K.

(ii) ⇒ (iii) Simply take F = {fαK : α ∈ L}.
(iii) ⇒ (iv) For every finite set F ′ ⊂ F , the splitting field of F ′ over K belongs to I. The

union of the fields in I obtained in this way is the splitting field of F over K, which is L.

(iv) ⇒ (i) It suffices to construct, for each α ∈ L − K, an element τ ∈ AutK(L) for

which τ(α) 6= α. Choose E0 ∈ I with α ∈ E0. Since E0 is finite Galois over K, there exists

ρ ∈ Gal(E0/K) with ρ(α) 6= α. Because K is an algebraic closure of E0, the K-isomorphism

ρ : E0
∼→ E0 can be extended to a K-isomorphism σ : K

∼→ K. For each E ∈ I we have

σE = E, since E is Galois over K. But L =
⋃
E∈I E, so also σL = L, and τ = σ|L is now

the required K-automorphism of L with τ(α) 6= α.

To prove the final assertion, we map Gal(L/K) to lim←−E∈I Gal(E/K) by sending σ to

(σ|E)E∈I . It is straightforward to verify that this is a well-defined group isomorphism. This

proves Theorem 2.2.

2.3 Main theorem of Galois theory. Let K ⊂ L be a Galois extension of fields with

Galois group G. Then the set of intermediate fields of K ⊂ L corresponds bijectively to the

set of closed subgroups of G. More precisely, the maps

{E : E is a subfield of L containing K}
φ−→←−
ψ

{H : H is a closed subgroup of G}

defined by

φ(E) = AutE(L), ψ(H) = LH

are bijective and inverse to each other. This correspondence reverses the inclusion relations,

K corresponds to G and L to {idL}. If E corresponds to H, then we have

(a) K ⊂ E is finite ⇔ H is open; and [E : K] = index[G : H] if H is open;
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(b) E ⊂ L is Galois with Gal(L/E) ∼= H (as topological groups);

(c) σ[E] corresponds to σHσ−1, for every σ ∈ G;

(d) K ⊂ E is Galois⇔ H is a normal subgroup of G; and Gal(E/K) ∼= G/H (as topological

groups) if K ⊂ E is Galois.

Proof. Let first E be an intermediate field. Since K ⊂ L is normal and separable, the same

is true for E ⊂ L, so E ⊂ L is Galois and we can speak about Gal(L/E). Using that the sets

Uσ,F = {τ ∈ G : τ |F = σ|F} ⊂ G, for σ ∈ G, F ⊂ L, #F <∞,

form a base for the open sets of G, and similarly for Gal(L/E), one easily sees that the

inclusion map Gal(L/E)→ G is continuous. It follows that the image is compact, hence closed

in G, so that the map φ is well defined. Also, since E ⊂ L is Galois, we have LGal(L/E) = E,

so ψφ(E) = E.

Next let H ⊂ G be a closed subgroup, E = ψ(H) = LH , and J = φψ(H) = AutE(L).

We wish to prove H = J . The inclusion H ⊂ J is obvious. Conversely, let σ ∈ J . In order

to prove σ ∈ H it suffices to show that σ is in the closure of H, which is H itself; in other

words, given a finite subset F ⊂ L it suffices to show that Uσ,F ∩ H 6= ∅. Choose M ∈ I

(see 2.2) with F ⊂ M . Restricting the elements of H to M we obtain a subgroup H ′ of

the finite group Gal(M/K), and MH′
= LH ∩M = E ∩M . By the main theorem of finite

Galois theory, the extension MH′ ⊂ M is Galois with group H ′. But σ|M is the identity

on E ∩M = MH′
, so σ|M ∈ Gal(M/MH′

) = H ′. Hence σ|M = τ |M for some τ ∈ H, and

therefore τ ∈ Uσ,F ∩H, as required.

This completes the proof that φ and ψ are bijective and inverse to each other. It is clear

that they reverse inclusions, that φ(K) = G and that ψ({idL}) = L.

Let E correspond to H. The map that assigns to each σ ∈ G its restriction to E yields

in an obvious way an injective map

G/H → {τ : E → L : τ is a field homomorphism, τ |K = idK}.

This map is also surjective, since each τ : E
∼→ τ [E] ⊂ L, τ |K = idK , can be extended to an

automorphism ρ of the algebraic closure, and then ρ|L ∈ Gal(L/K) since K ⊂ L is normal.

We conclude that the above map is bijective. If K ⊂ E is finite, then the number of field

homomorphisms τ : E → L with τ |K = idK is [E : K], so then H is of finite index [E : K]

in G; since H and its cosets are closed this implies that H is open. Conversely, suppose that

H is open. Since G is compact, H is of finite index in G. By the above, there are precisely

index[G : H] field homomorphisms τ : E → L with τ |K = idK . It follows that for any

finite extension K ⊂ E ′ with E ′ ⊂ E there are at most index[G : H] field homomorphisms
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τ : E ′ → L with τ |K = idK , since any such τ can be extended to E. Hence [E ′ : K] ≤
index[G : H] for all those E ′, and since E is the union of all E ′ this implies that [E : K] is

finite. This proves (a).

Above we saw already that there is a continuous bijection Gal(L/E) → H. Since each

continuous bijection from a compact space to a Hausdorff space is a homeomorphism this

proves (b).

Assertion (c) is proved as in finite Galois theory.

By 2.2, the extension K ⊂ E is Galois if and only if it is normal, so if and only if

σ[E] = E for all σ ∈ G. By (c) this occurs if and only if H is normal in G. Suppose that these

conditions are satisfied. Then the set of field homomorphisms τ : E → L with τ |K = idK may

be identified with Gal(E/K). Hence we have a bijection G/H
∼→ Gal(E/K), which is easily

checked to be a continuous group homomorphism, if we give G/H the quotient topology. As

in (b) it follows that the map is a homeomorphism. This proves (d).

This concludes the proof of 2.3.

2.4 Separable closure. Let K be a field, and K an algebraic closure of K. The separable

closure Ks of K is defined by

Ks = {x ∈ K : x is separable over K}.

This is a subfield of K, and Ks = K if and only if K is perfect; in particular, Ks = K if

char(K) = 0. From 2.2 it follows that K ⊂ Ks is Galois. The Galois group Gal(Ks/K) is

called the absolute Galois group of K.

Observe that any finite separable field extension K ⊂ E can be embedded in Ks. Us-

ing 2.3(a), (c) we conclude that there is a bijective correspondence between the set of iso-

morphism classes of finite separable extension fields E of K and the set of conjugacy classes

of open subgroups of the absolute Galois group of K.

2.5 Example. Let Fq be a finite field, with #Fq = q and with algebraic closure Fq. The

only finite extensions of Fq in Fq are the fields Fqn = {α ∈ Fq : αq
n

= α} for n ∈ Z, n ≥ 1.

Each Fqn is Galois over Fq, with Gal(Fqn/Fq) ∼= Z/nZ, the generator of Z/nZ corresponding

to the Frobenius automorphism F with F (α) = αq for all α. Taking projective limits, we

see that the absolute Galois group of Fq is isomorphic to Ẑ, with 1 ∈ Ẑ corresponding to

F ∈ Gal(Fq/Fq). The closure of the subgroup generated by F is equal to the whole group

Gal(Fq/Fq). This is expressed by saying that F is a topological generator of Gal(Fq/Fq).

2.6 Finite algebras. Theorem. Let B be a finite dimensional algebra over a field K.

Then B ∼=
∏t

i=1Bi for some t ∈ Z≥0 and certain K-algebras Bi that are local with nilpotent

maximal ideals.
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Proof. If B is a domain, then for any b ∈ B−{0}, the map B → B, x 7→ bx, is injective, so

by dimension considerations also surjective, so that b ∈ B∗. This shows that B is a field if it

is a domain. Applying this to B/p, for p ⊂ B prime, we see that any prime ideal p of B is

maximal. If m1,m2, . . . ,mn are distinct maximal ideals of B, then by the Chinese remainder

theorem the natural map B →
∏n

i=1B/mi is surjective, so n ≤ dimKB. This shows that B

has only finitely many maximal ideals, say m1,m2, . . . ,mt. The intersection
⋂t
i=1 mi is the

intersection of all prime ideals of B, so it is the nilradical
√

0 of B. Since B is obviously

noetherian, the ideal
√

0 is nilpotent, so
∏t

i=1 mN
i = 0 for N sufficiently large. The mi are

pairwise relatively prime, so the same is true for the mN
i , and the Chinese remainder theorem

therefore gives an isomorphism B
∼→

∏t
i=1B/m

N
i . Here Bi = B/mN

i is local, since mi/m
N
i is

its only maximal ideal, and it is clearly nilpotent. This proves 2.6.

The decomposition in 2.6 is uniquely determined, see Exercise 2.23.

A similar theorem, with a slightly more complicated proof, is true for Artin rings, see [1,

Chapter 8].

2.7 Separable algebras. Theorem. Let K be a field with algebraic closure K, and let B

be a finite dimensional K-algebra. Denote by B the K-algebra B ⊗K K. Then the following

four assertions are equivalent:

(i) B is separable over K;

(ii) B is separable over K;

(iii) B ∼= Kn as K-algebras, for some n ≥ 0;

(iv) B ∼=
∏t

i=1Bi as K-algebras, where each Bi is a finite separable field extension of K.

Proof. (i) ⇔ (ii) Let w1, w2, . . . , wn be a K-basis for B. Then w1 ⊗ 1, w2 ⊗ 1, . . . , wn ⊗ 1 is

a K-basis for B. It follows that the diagram

B B

K K

................................................................................ ........................
............

.....................................................................................
...
.........
...

TrB/K

................................................................................ ........................
............

.....................................................................................
...
.........
...

TrB/K

(the horizontal arrows are the natural inclusions) is commutative. Hence TrB/K(wiwj) =

TrB/K((wi ⊗ 1)(wj ⊗ 1)), and (i) ⇔ (ii) now follows from Exercise 1.3.

(iii) ⇒ (ii) is obvious (cf. 1.3).

(ii) ⇒ (iii) Applying 2.6 to K,B we see that B ∼=
∏u

j=1Cj for certain local K-algebras

Cj with nilpotent maximal ideals mj. Since B is separable over K it clearly follows that each

Cj is separable over K. Let j be fixed, and let φ : Cj → K be any K-linear function. By 1.2

there exists c ∈ Cj with φ(x) = Tr(cx) for all x ∈ Cj. Taking x ∈ mj and observing that

21



nilpotent maps have trace zero (over a field), we see that mj ⊂ ker φ. This is true for each

φ, so mj = {0} and Cj is a field. Since Cj is finite over K and K is algebraically closed we

conclude Cj = K, as required.

(iv) ⇒ (iii) By the theorem of the primitive element we have Bi = K(βi) ∼= K[X]/(fi)

with fi ∈ K[X] separable and irreducible. Hence Bi
∼= K[X]/(fi), and since fi splits into

distinct linear factors X − αij in K[X] the Chinese remainder theorem now implies that

Bi
∼=

∏
jK[X]/(X − αij) ∼= Kdeg(fi). This implies (iii).

(iii) ⇒ (iv) Write B =
∏t

i=1Bi as in 2.6. For each b ∈ B the subalgebra K[b] generated

by b is isomorphic to K[X]/(fb) for some fb ∈ K[X] − {0}. Tensoring the injective map

K[X]/(fb) ∼= K[b] ⊂ B with K we find an injective map K[X]/(fb) → B. Thus by (iii) it

follows thatK[X]/(fb) has no non-zero nilpotent elements, which means that fb is a separable

polynomial. In particular, if b is nilpotent then Xn ∈ (fb) for some n, so X ∈ (fb) and b = 0.

This implies that all Bi are fields. If b = (b1, . . . , bt) ∈
∏t

i=1Bi = B is arbitrary then fb
equals the lcm of the irreducible polynomials of the bi over K, so these are all separable.

Therefore all Bi are separable field extensions of K, as required. (See also Exercise 2.24.)

This proves 2.7.

The technique used in this proof of making an algebra trivial by means of an extension of

the base ring will later play an important role.

2.8 Remark. Let K be a field, and π its absolute Galois group (see 2.4). Combining 2.7,

(i) ⇔ (iv), with the remark made in 2.4 we see that giving a free separable K-algebra B is

equivalent to giving a finite sequence of conjugacy classes of open subgroups of π, uniquely

determined up to order. Decomposing a finite π-set (see 1.10) into orbits under π we see

that finite π-sets are specified by exactly the same data, a finite sequence π1, π2, . . . , πt of

open subgroups of π corresponding to the disjoint union of the π-sets π/πi. This yields

a one-to-one correspondence between free separable K-algebras and finite π-sets. A more

formal statement appears in the following theorem, where the correspondence is extended to

morphisms between the objects.

2.9 Theorem. Let K be a field and π its absolute Galois group (see 2.4). Then the categories

KSAlg of free separable K-algebras and π-sets of finite sets with a continuous action of π

are anti-equivalent.

Remark. It is clear from the definition in 1.4 that KSAlg is anti-equivalent to FEtSpecK .

So Theorem 2.9 is exactly the case X = SpecK of the Main theorem 1.11, except for the

uniqueness statement in 1.11.
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Proof. The statement of the theorem means that there are contravariant functors F :

KSAlg → π-sets and G : π-sets → KSAlg such that FG and GF are naturally equiva-

lent to the identity functors on π-sets and KSAlg, respectively. This in turn means, for GF ,

that there is a collection of isomorphisms θB : B → GF (B), one for each object B of KSAlg,

such that for any morphism f : B → C in KSAlg, the diagram

B C

GF (B) GF (C)

...................................................................................................................................................... ............
f

.....................................................................................
...
.........
...

θB

.....................................................................................
...
.........
...

θC

............................................................................................... ............
GF (f)

is commutative; and analogously for FG.

We shall now first define F . Let Ks be a separable closure of K, so that π = Gal(Ks/K).

For each free separable B-algebra, let

F (B) = AlgK(B,Ks),

the set of K-algebra homomorphisms B → Ks. If g : B → Ks is such a homomorphism and

σ ∈ π, then σ ◦ g : B → Ks is also such a homomorphism. This provides us with an action

of the abstract group π on AlgK(B,Ks). In order to see that this action is continuous, and

that AlgK(B,Ks) is a finite π-set (see 1.10), we write B =
∏t

i=1Bi as in 2.7(iv), and viewing

Bi as a subfield of Ks we write Bi = Kπi
s with πi ⊂ π an open subgroup (see 2.4), for each i.

Then AlgK(B,Ks) may be identified with the disjoint union of the sets AlgK(Kπi
s , Ks), for

1 ≤ i ≤ t. Here AlgK(Kπi
s , Ks) is the set of field homomorphisms Kπi

s → Ks that are the

identity on K, and as we have seen in the proof of the Main theorem 2.3 (with G,H,E, L for

π, πi, K
πi
s , Ks) this set may be identified with π/πi; and clearly this identification respects the

π-action. We conclude that AlgK(B,Ks) may be identified with the disjoint union
∐t

i=1 π/πi,

and since the πi are open in π this is a finite set on which π acts continuously.

This proves that F (B) is an object of π-sets. Let f : B → C be a morphism in KSAlg,

i.e., a K-algebra homomorphism from a free separable K-algebra B to a free separable K-

algebra C. Then we define F (f) : F (C)→ F (B) by F (f)(g) = g ◦ f , for a K-algebra homo-

morphism g : C → Ks. This is evidently a morphism of π-sets, and it is now straightforward

to verify that F is a contravariant functor KSAlg→ π-sets.

Next we define G. For a finite π-set E, let

G(E) = Morπ(E,Ks),

the set of morphisms of π-sets E → Ks; this makes sense, since the underlying set of Ks is
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a π-set. The K-algebra structure on Ks induces a K-algebra structure on G(E), by

(f + g)(e) = f(e) + g(e), (fg)(e) = f(e)g(e),

(kf)(e) = k · f(e), 1(e) = 1

for all f, g ∈ G(E), k ∈ K, e ∈ E. In order to see that G(E) is finite dimensional and

separable as a K-algebra we decompose E into its orbits under π, say E =
∏t

i=1Ei. Then

G(E) may be identified with the product of the K-algebras G(Ei), for 1 ≤ i ≤ t. As a

π-set, we may identify Ei with π/πi for some open subgroup πi ⊂ π, see Exercise 1.19. Each

morphism of π-sets g : π/πi → Ks must be given by g(σπi) = σ(a) for some a ∈ Ks (namely,

a = g(πi)), and conversely if a ∈ Ks then this is a well defined map of π-sets if and only

if a ∈ Kπi
s . Thus we see that Morπ(π/πi, Ks) may be identified with Kπi

s , and this is an

identification of K-algebras. We conclude that G(E) ∼=
∏t

i=1K
πi
s , and by 2.3(a) and 2.7 this

is a finite dimensional separable K-algebra.

If f : E → D is a morphism of π-sets then G(f) : G(D) → G(E), G(f)(g) = g ◦ f , is a

morphism of K-algebras, and this makes G into a contravariant functor π-sets → KSAlg.

The functors F and G let
∏t

i=1K
πi
s and

∐t
i=1 π/πi correspond to each other, so clearly

B ∼= GF (B) and E ∼= FG(E) for any free separable K-algebra B and any finite π-set E. We

must now choose these isomorphisms in such a way that they are well behaved with respect

to morphisms, as made precise at the beginning of this proof.

For a free separable K-algebra B, define

θB : B → GF (B) = Morπ(AlgK(B,Ks), Ks)

by θB(b)(g) = g(b), for b ∈ B and g ∈ AlgK(B,Ks). This is easily seen to be a well-defined

K-algebra homomorphism. If f : B → C is a morphism in KSAlg then the diagram

B C

GF (B) GF (C)

...................................................................................................................................................... ............
f

.....................................................................................
...
.........
...

θB

.....................................................................................
...
.........
...

θC

............................................................................................... ............
GF (f)

is commutative, since for b ∈ B and g ∈ AlgK(C,Ks) we have

(θC ◦ f)(b)(g) = θC(f(b))(g) = g(f(b)),

{[GF (f)](θB(b))}(g) = {θB(b) ◦ F (f)}(g)
= θB(b)(g ◦ f) = g ◦ f(b) = g(f(b)).
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For B =
∏t

i=1K
πi
s one checks in a straightforward way that θB is an isomorphism. Hence

θB is an isomorphism for all B, and GF is naturally equivalent to the identity functor of

KSAlg.

The proof that FG is naturally equivalent to the identity functor of π-sets is completely

analogous. For a finite π-set E, one defines

ηE : E → FG(E) = AlgK(Morπ(E,Ks), Ks)

by ηE(e)(g) = g(e), for e ∈ E and g ∈ Morπ(E,Ks). This is easily seen to be a well-defined

morphism of π-sets, and if f : E → D is a morphism of π-sets then by a calculation similar

to the above one the diagram

E D

FG(E) FG(D)

...................................................................................................................................................... ............
f

.....................................................................................
...
.........
...

ηE

.....................................................................................
...
.........
...

ηD

............................................................................................... ............
FG(f)

is commutative. For E =
∐t

i=1 π/πi the map ηE is an isomorphism, so this is true for all E,

as required.

This completes the proof of Theorem 2.9.

Exercises for Section 2

2.1 Let K ⊂ L be a Galois extension of fields, and I a set of subfields E ⊂ L with K ⊂ E

for which

[E : K] <∞ for every E ∈ I⋃
E∈I

E = L.

Prove that I, when partially ordered by inclusion, is directed (see 1.7).

2.2 Let K ⊂ L be a Galois extension of fields, and I any directed set of subfields E ⊂ L

with K ⊂ E Galois for which
⋃
E∈I E = L. Prove that there is an isomorphism of

profinite groups Gal(L/K) ∼= lim←−E∈I Gal(E/K). (N.B.: the groups Gal(E/K) need not

be finite here, they are merely profinite.)
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2.3 (a) Let K ⊂ L be a Galois extension of fields, with Galois group G. View G as a

subset of the set LL of all functions L→ L. Let L be given the discrete topology

and LL the product topology. Prove that the topology of the profinite group G

coincides with the relative topology inside LL.

(b) Conversely, let L be any field and G ⊂ Aut(L) a subgroup that is compact when

viewed as a subset of LL (topologized as in (a)). Prove that LG ⊂ L is Galois

with Galois group G.

(c) Prove that any profinite group is isomorphic to the Galois group of a suitably

chosen Galois extension of fields.

2.4 Let K ⊂ L be a Galois extension of fields. Prove that Gal(L/K) is not countably

infinite.

2.5 Let K ⊂ L be a Galois extension of fields, S ⊂ Gal(L/K) any subset, and E = {x ∈ L :

∀σ ∈ S : σ(x) = x}. Prove that Gal(L/E) is the closure of the subgroup of Gal(L/K)

generated by S.

2.6 Let K ⊂ L be a Galois extension of fields, and H ′ ⊂ H ⊂ Gal(L/K) closed subgroups

with index[H : H ′] < ∞. Prove that LH ⊂ LH
′

is finite, and that [LH
′

: LH ] =

index[H : H ′]. Which part of the conclusion is still true if H ′, H are not necessarily

closed?

2.7 Let K,L, F be subfields of a field Ω, and suppose that K ⊂ L is Galois and that

K ⊂ F . Prove that F ⊂ L · F is Galois, and that Gal(L · F/F ) ∼= Gal(L/L ∩ F ) (as

topological groups).

2.8 Let K be a field. Prove that for every Galois extension K ⊂ L the group Gal(L/K) is

isomorphic to a quotient of the absolute Galois group of K.

2.9 (a) Suppose that H is a finite subgroup of the absolute Galois group of a field K.

Prove that #H ≤ 2 and #H = 1 if char(K) > 0. [Hint: [15, Theorem 56].]

(b) Let K be a field with separable closure Ks, and α ∈ Ks, α 6∈ K. Let E be a

subfield of Ks containing K that is maximal with respect to the property of not

containing α. Prove that Gal(Ks/E) ∼= Z/2Z or Gal(Ks/E) ∼= Zp for some prime

number p.

2.10 A Steinitz number or supernatural number is a formal expression a =
∏

p prime p
a(p),

where a(p) ∈ {0, 1, 2, . . . ,∞} for each prime number p. If a =
∏

p p
a(p) is a Steinitz

number, we denote by aẐ the subgroup of Ẑ corresponding to
∏

p p
a(p)Zp (with p∞Zp =

{0}) under the isomorphism Ẑ ∼=
∏

p Zp (Exercise 1.14).
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(a) Prove that the map a 7→ aẐ from the set of Steinitz numbers to the set of closed

subgroups of Ẑ is bijective. Prove also that aẐ is open if and only if a is finite

(i.e.,
∑

p a(p) <∞).

(b) Let Fq be a finite field, with algebraic closure Fq. For a Steinitz number a, let Fqa

be the set of all x ∈ Fq for which [Fq(x) : Fq] divides a (in an obvious sense).

Prove that the map a 7→ Fqa is a bijection from the set of Steinitz numbers to

the set of intermediate fields of Fq ⊂ Fq. [Ernst Steinitz, German mathematician,

1871–1928.]

2.11 Let G be a profinite group. We call G procyclic if there exists σ ∈ G such that the sub-

group generated by σ is dense in G. Prove that the following assertions are equivalent:

(i) G is procyclic;

(ii) G is the projective limit of a projective system of finite cyclic groups;

(iii) G ∼= Ẑ/aẐ for some Steinitz number a (Exercise 2.10);

(iv) for any pair of open subgroups H,H ′ ⊂ G with index[G : H] = index[G : H ′] we

have H = H ′.

Prove also that the Steinitz number a in (iii) is unique if it exists.

2.12 Let K be a field with separable closure Ks. Prove that the absolute Galois group of K

is procyclic (see Exercise 2.11) if and only if K has, for any positive integer n, at most

one extension of degree n within Ks; and that it is isomorphic to Ẑ if and only if K

has, for any positive integer n, exactly one extension of degree n within Ks.

2.13 (a) Let E be a torsion abelian group. Prove that E has exactly one Ẑ-module struc-

ture, and that the scalar multiplication Ẑ×E → E defining this module structure

is continuous, if E is given the discrete topology.

(b) Let E be the group of roots of unity in Q∗. Prove that the map Ẑ∗ → Aut(E)

induced by (a) is an isomorphism of groups.

(c) Write Q(ζ∞) = Q(E), with E as in (b). Prove that Q ⊂ Q(ζ∞) is Galois, and that

the natural map Gal(Q(ζ∞)/Q)→ Aut(E) ∼= Ẑ∗ is an isomorphism of topological

groups.

(d) Prove that there are isomorphisms

Ẑ∗ ∼=
∏

p prime

Z∗p ∼= Ẑ× (Z/2Z)×
∏

p prime

(Z/(p− 1)Z)

of topological groups.
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2.14 Let Q(
√

Q) be the subfield of Q generated by {
√
x : x ∈ Q). Prove that Q ⊂ Q(

√
Q)

is Galois, and that the map

Gal(Q(
√

Q)/Q) → Hom(Q∗, {±1}),
σ 7→ (a 7→ σ(

√
a)/
√
a)

(for σ ∈ Gal(Q(
√

Q)/Q) and a ∈ Q∗) is an isomorphism of topological groups, if

Hom(Q∗, {±1}) has the relative topology inside {±1}Q∗ . Prove also that this Galois

group is isomorphic to the product of a countably infinite collection of copies of {±1}.

2.15 Let a ∈ Q∗, n ∈ Ẑ∗, and write a = b/c, b, c ∈ Z− {0}. Prove that there is a sequence

(ni)
∞
i=0 of integers ni for which

ni > 0, gcd(ni, 2bc) = 1 for i ≥ 0,

n = lim
i→∞

ni in Ẑ.

Define the Jacobi symbol
(
a
n

)
∈ {±1} by

(
a
n

)
∈ {±1} by

(
a
n

)
= lim

i→∞

(
b
ni

)
/
(
c
ni

)
, where(

b
ni

)
,
(
c
ni

)
are the ordinary Jacobi symbols. Prove that this is well-defined and inde-

pendent of the choices made. Prove also that the map Q∗× Ẑ∗ → {±1}, (a, n) 7→
(
a
n

)
,

is continuous and bimultiplicative (Q∗ has the discrete topology).

2.16 Let the notation be as in Exercises 2.13, 2.14, and 2.15. Prove that Q(
√

Q) ⊂ Q(ζ∞),

and that the induced homomorphism

Ẑ∗ ∼= Gal(Q(ζ∞)/Q)→ Gal(Q(
√

Q)/Q) ∼= Hom(Q∗, {±1})

maps n ∈ Ẑ∗ to the homomorphism sending a ∈ Q∗ to
(
a
n

)
.

2.17 (Kummer theory.) LetK be a field with algebraic closureK andm a positive integer.

Suppose that K contains a primitive m-th root of unity ζm, and let Em ⊂ K∗ be the

subgroup generated by ζm. Prove that there is a bijective correspondence between the

collection of subfields L ⊂ K for which

K ⊂ L is Galois, Gal(L/K) is abelian, ∀ σ ∈ Gal(L/K) : σm = idL

and the collection of subgroups W ⊂ K∗ for which K∗m ⊂ W ; this correspondence

maps L to L∗m∩K∗ and W to K(W 1/m). Prove also that if L corresponds to W , there

is an isomorphism of topological groups Gal(L/K)
∼→ Hom(W/K∗m, Em) mapping

σ to (αK∗m 7→ σ(α1/m)/α1/m); here Hom(W/K∗m, Em) has the relative topology in

(Em)W/K
∗m

, where each Em is discrete.
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2.18 (Artin-Schreier theory.) Let K be a field with algebraic closure K, and let p =

char(K) > 0. Prove that there is a bijective correspondence between the collection of

subfields L ⊂ K for which

K ⊂ L is Galois, Gal(L/K) is abelian, ∀ σ ∈ Gal(K/L) : σp = idL

and the collection of additive subgroups W ⊂ K for which ℘[K] ⊂ W , where ℘ : K →
K is defined by ℘(x) = xp − x; this correspondence maps L to ℘[L] ∩ K and W

to K(℘−1[W ]). Prove also that if L corresponds to W , there is an isomorphism of

topological groups Gal(L/K)
∼→ Hom(W/℘[K],Fp) mapping σ to (α+℘[K]→ σ(β)−β,

where ℘(β) = α).

2.19 Let K be a field, Ks its separable closure, m a positive integer not divisible by char(K)

and w the number of m-th roots of unity in K.

(a) Let for τ ∈ Gal(Ks/K) the integer c(τ) be such that τ(ζm) = ζ
c(τ)
m , where ζm

denotes a primitive m-th root of unity. Prove that w is the greatest common

divisor of m and all numbers c(τ)− 1, τ ∈ Gal(Ks/K).

(b) (Schinzel’s theorem.) Let a ∈ K. Prove that the splitting field of Xm − a over

K is abelian over K if and only if aw = bm for some b ∈ K. [Hint for the “only

if ” part: if αm = a 6= 0, prove that ac(τ)/τ(α) ∈ K∗ for all τ .]

In the following two exercises we shall study the Galois group of

L = Q(∞
√

Q) = Q(α ∈ Q : ∃m ∈ Z>0 : αm ∈ Q)

over Q. We write

M = Q(ζ∞) (see Exercise 2.13(c)),
Em = (group of m-th roots of unity) ⊂M∗,
Q = multiplicative group of positive rational numbers.

If A is a multiplicatively written abelian group, we write Am = {am : a ∈ A} for m ∈ Z.

2.20 (a) Prove that Q ∩M∗m = Qm/gcd(m,2). [Hint: Exercise 2.19.]

(b) Let Lm = M(α ∈ Q : αm ∈ Q), for m ∈ Z>0. Prove that M ⊂ Lm is Galois, and

that there is an isomorphism of topological groups

Gal(Lm/M)
∼→ Hom(Q,Egcd(m,2)

m )

mapping σ to (a 7→ σ(a1/m)/a1/m).
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(c) Define Em → En by ζ 7→ ζm/n for n dividing m, and let Ê = lim←− En with respect

to these maps. Prove that Ê ∼= Ẑ as topological groups.

(d) Prove that M ⊂ L is Galois and that the isomorphisms in (b) combine to yield

an isomorphism of topological groups

Gal(Lm/M)
∼→ Hom(Q, Ê2) ;

here Hom(Q, Ê2) has the relative topology in (Ê2)Q. Prove also that this Galois

group is isomorphic to the product of a countably infinite collection of copies of

Ẑ.

2.21 (a) Prove that there is a function Q× (Z>0)→ L∗ such that, if the image of (a, n) is

denoted by a1/n, we have

(a1/n)n = a , (ab)1/n = a1/n b1/n , (a1/m)m/n = a1/n

for all a, b ∈ Q and n,m ∈ Z>0 with n dividing m.

(b) Let Γ be the semidirect product Hom(Q, Ê) o Ẑ∗ with the product topology, the

action of Ẑ∗ on Hom(Q, Ê) being induced by the natural Ẑ-module structure on

each En (cf. Exercise 2.13(a)). Prove that Γ is isomorphic to the group of those

automorphisms of the abelian group {x ∈ L∗ : ∃m > 0 : xm ∈ Q∗} that are the

identity on Q∗. Prove further that there exists a continuous group homomorphism

φ : Gal(L/Q)→ Γ such that the diagram

Gal(L/Q) Γ

Gal(M/Q) Ẑ∗

......................................................................................................... ............
φ

.....................................................................................
...
.........
...

.....................................................................................
...
.........
...

.................................................................................................... ............
∼

is commutative; here the vertical maps are the canonical ones and the bottom

isomorphism is from Exercise 2.13(c).

(c) Let H = {(f, c) ∈ Γ : ∀a ∈ Q : (f(a) mod Ê2) =
(
a
c

)
} where Ê/Ê2 is identified

with E2 = {±1} and the Jacobi symbol
(
a
c

)
is as in Exercise 2.15. Prove that H

is a closed subgroup of Γ.

(d) Prove that φ yields an isomorphism Gal(L/Q)
∼→ H of topological groups. [Hint:

use Exercises 2.16 and 2.20(d).]

(e) Prove that Gal(L/M) is the closure of the commutator subgroup of Gal(L/Q),

and that Gal(L/Q) is not a semidirect product of Gal(M/Q) and Gal(L/M).
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2.22 Let K be a field that is complete with respect to a discrete nontrivial valuation, and Ks

the separable closure of K. Let Kunr be the composite of all L ⊂ Ks for which K ⊂ L

is finite and unramified, and Ktr the composite of all L ⊂ Ks for which K ⊂ L is finite

and tamely ramified; here “unramified” and “tamely ramified” include separability of

the residue class field extension.

(a) Prove that K ⊂ Kunr is Galois, and Gal(Kunr/K) ∼= Gal(ks/k), where k is the

residue class field of K and ks its separable closure.

(b) Prove that Kunr ⊂ Ktr is Galois, and that Gal(Ktr/Kunr) is isomorphic to Ẑ if

char(k) = 0 and to Ẑ/Zp if char(k) = p > 0, with Zp embedded in Ẑ as in

Exercise 1.14.

(c) Prove that K ⊂ Ktr is Galois, that Gal(Ktr/K) is a semidirect product of

Gal(ks/k) and Ẑ or Ẑ/Zp (as in (b)), and determine the action of Gal(ks/k)

on Ẑ or Ẑ/Zp.

(d) Suppose that #k = q <∞. Prove that Gal(Ktr/K) is isomorphic to the profinite

completion of the group 〈a, b : aba−1 = bq〉.
(e) Prove that Ktr = Ks = K if char(k) = 0, and that Gal(Ks/Ktr) is a pro-p-group

if char(k) = p > 0. (A pro-p-group is a projective limit of finite p-groups.)

(f) Prove that Gal(Ks/K) is a semidirect product of Gal(Ktr/K) and Gal(Ks/Ktr).

[Hint: [23, Chapitre II, Proposition 3 and Chapitre I, Proposition 16].]

2.23 (a) Let A be a local ring and x ∈ A such that x2 = x. Prove that x = 0 or x = 1.

(b) Prove that any ring isomorphism
∏s

i=1Ai
∼→

∏t
j=1Bj, where the Ai and Bj are

local rings and s, t <∞, is induced by a bijection σ : {1, 2, . . . , s} ∼→ {1, 2, . . . , t}
and isomorphisms Ai

∼→ Bσ(i), 1 ≤ i ≤ s.

2.24 Let B be a finite dimensional algebra over a field K, and write B =
∏t

i=1Bi as in 2.6,

where Bi has maximal ideal mi. Let Ki = {x ∈ Bi/mi : x is separable over K}. Prove

that the number of K-algebra homomorphisms B → K equals
∑t

i=1[Ki : K], and use

this to give an alternative proof of 2.7, (iii) ⇒ (iv).

2.25 Let B be a free separable algebra over a field K, and write B =
∏t

i=1Bi as in 2.7(iv).

Let L be any field extension of K. Prove that B ⊗K L ∼= LdimK(B) as L-algebras if

and only if L contains for each i a subfield containing K that is K-isomorphic to the

normal closure of Bi over K.

2.26 Let π be a profinite group, π′ ⊂ π an open subgroup, and ρ ⊂ π the normalizer of π′

in π. Prove that the automorphism group of the π-set π/π′ in the category π-sets is
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isomorphic to ρ/π′. In particular, this automorphism group is isomorphic to π/π′ if π′

is normal in π.

2.27 Show that under the anti-equivalence of Theorem 2.9 injective maps correspond to

surjective maps, surjective maps to injective maps, and fields to transitive π-sets (i.e.,

consisting of exactly one orbit).

2.28 Let K ⊂ L be a finite Galois extension.

(a) Show that intermediate fields E of K ⊂ L can be described categorically as equiv-

alence classes of injective (or monomorphic) morphisms E
f→ L, two morphisms

E
f→ L and E ′

f ′−→ L being equivalent if f = f ′g for some isomorphism E
g→ E ′.

(b) Show how the bijective correspondence between subgroups of AutK(L) and inter-

mediate fields of K ⊂ L can be deduced from Theorem 2.9.

2.29 Let K be a field, M a Galois extension of K, and B a finite dimensional K-algebra. If

B ⊗K M ∼= M ×M × · · · ×M as M -algebras we say that M splits B. Prove that the

category of K-algebras that are split by M is anti-equivalent to Gal(M/K)-sets.
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3 Galois categories

This section contains an axiomatic characterization of categories that are equivalent to

π-sets (see 1.10) for some profinite group π. Our axiom system is slightly simpler than

that of Grothendieck [9, Exposé V, numéro 4] in that it does not mention “strict” epimor-

phisms. Our proof of the main result of this section, Theorem 3.5, was influenced by the

treatment in [13, Section 8.4]. As an application we prove the topological theorem 1.15.

We now first list the axioms, and explain the terms used afterwards.

3.1 Definition. Let C be a category and F a covariant functor from C to the category sets

of finite sets. We say that C is a Galois category with fundamental functor F if the following

six conditions are satisfied.

(G1) There is a terminal object in C, and the fibred product of any two objects over a third

one exists in C.

(G2) Finite sums exist in C, in particular an initial object, and for any object in C the

quotient by a finite group of automorphisms exists.

(G3) Any morphism u in C can be written as u = u′u′′ where u′′ is an epimorphism and u′

a monomorphism, and any monomorphism u : X → Y in C is an isomorphism of X

with a direct summand of Y .

(G4) The functor F transforms terminal objects in terminal objects and commutes with

fibred products.

(G5) The functor F commutes with finite sums, transforms epimorphisms in epimorphisms,

and commutes with passage to the quotient by a finite group of automorphisms.

(G6) If u is a morphism in C such that F (u) is an isomorphism, then u is a isomorphism.

3.2 Explanation. (G1) A terminal object of a category C is an object Z such that for

every object X there exists exactly one morphism X → Z in C. Clearly, a terminal object is

uniquely determined up to isomorphism, if it exists. We denote one by 1. In sets the terminal

objects are the one-elements sets.

Suppose we are given objects X, Y, S and morphisms X → S and Y → S in a category C.

The fibred product of X and Y over S is an object, denoted by X ×S Y , together with

morphisms called projections p1 : X×SY → X, p2 : X×SY → Y , which make a commutative

diagram with the given morphisms X → S, Y → S, such that given any object Z with

morphisms f : Z → X, g : Z → Y that make a commutative diagram with X → S and
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Y → S, there exists a unique morphism θ : Z → X ×S Y such that f = p1θ and g = p2θ.

Z

X ×S Y Y

X S

.................................................................................................................................. ............

p2................................................................................................................................................................
...
.........
...

p1

................................................................................................................................................................
...
.........
...

................................................................................................................................................................... ............

................................................................................................................................................................................................................................................................................................ ...........
.

g
........................................................................................................................................................................................................................................................................................................... ........

....

f

.............
.............

.............
.............

......................... .........
...

θ

The fibred product is uniquely determined up to isomorphism, if it exists. We write X × Y
instead of X ×1 Y ; this is the product of X and Y . In sets the fibred product X ×S Y is

the set of all pairs (x, y) in the cartesian product of X and Y for which x and y have the

same image in S; if the maps X → S, Y → S are inclusions this may be identified with the

intersection of X and Y .

The notions of a terminal object and a fibred product are special cases of the notion of

a left limit, see Exercises 3.1 and 3.2. Condition G1 implies that C has arbitrary finite left

limits, see Exercise 3.3.

(G2) Let (Xi)i∈I be a collection of objects of a category C. The sum of the Xi is an

object, denoted by
∐

i∈I Xi, together with morphisms qj : Xj →
∐

i∈I Xi for each j ∈ I, such

that for any object Y of C and any collection of morphisms fj : Xj → Y , j ∈ I, there is a

unique morphism f :
∐

i∈I Xi → Y such that fj = fqj for all j ∈ I. The sum is unique up

to isomorphism if it exists. In the category of sets the sum of the Xi is their disjoint union.

We say that finite sums exist in C if any finite collection of objects has a sum in C. This

is the case in sets. The empty collection of objects has a sum if and only if C has an initial

object, i.e., an object, to be denoted by 0, with the property that for every object X there is

exactly one morphism 0→ X in C. In sets the empty set is an initial object.

If I is finite, I = {i1, i2, . . . , in}, we may write Xi1 qXi2 q · · · qXin instead of
∐

i∈I Xi.

Let X be an object of C and G a finite subgroup of the group of automorphisms of X in

C. The quotient of X by G is an object of C, denoted by X/G, together with a morphism

p : X → X/G satisfying p = pσ for all σ ∈ G, such that for any morphism f : X → Y in C

satisfying f = fσ for all σ ∈ G there is a unique morphism g : X/G→ Y for which f = gp.

Such a quotient is unique up to isomorphism if it exists. In sets we can take X/G to be the

set of orbits of X under G.

Axiom G2 requires that certain finite right limits exist in C; see Exercise 3.4. It follows
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immediately from the main result of this section, Theorem 3.5, that in fact arbitrary finite

right limits exist in a Galois category.

(G3) Let f : X → Y be a morphism in C. We call f an epimorphism if for any object Z

and any morphisms g, h : Y → Z with gf = hf we have g = h, and a monomorphism if for

any object Z and any morphisms g, h : Z → X with fg = fh we have g = h. In sets a map

f is an epimorphism if and only if it is surjective, and a monomorphism if and only if it is

injective. Since any map is a surjection followed by an injection, a decomposition u = u′u′′

as in G3 exists in sets.

The morphism u : X → Y is called an isomorphism of X with a direct summand of Y if

there is a morphism q2 : Z → Y such that Y , together with q1 = u : X → Y and q2 : Z → Y

is the sum of X and Z. Taking Z to be the complement of the image of u we see that in

sets any monomorphism has this property.

(G4) This condition is equivalent to the condition that F commute with arbitrary finite

left limits (given G1); see Exercise 3.6(a). A functor F with this property is called left exact.

(G5) This condition is satisfied if F commutes with arbitrary finite right limits, i.e., if F

is right exact; see Exercise 3.7. Theorem 3.5 implies that any fundamental functor F on a

Galois category C is right exact, but this is not obvious from G5.

3.3 Examples of Galois categories. It is easy to see that the category sets is a Galois

category, the fundamental functor F being the identity functor. In the same way one verifies

that, for a profinite group π, the category π-sets of finite sets with a continuous π-action is

a Galois category. In this case one takes F to be the forgetful functor π-sets → sets.

The main result of this section, Theorem 3.5, asserts that any essentially small Galois

category C is equivalent to π-sets for a uniquely determined profinite group π. Here we call

C essentially small if it is equivalent to a category whose objects form a set. (Clearly, π-sets

is essentially small.)

Let K be a field, and let C be the opposite of the category KSAlg of free separable

K-algebras. From Theorem 2.9 it follows immediately that C is a Galois category, and from

the proof of 2.9 we see that we can take F to be defined by F (B) = AlgK(B,Ks), where Ks

is a separable closure of K. A direct verification of the axioms G1–G6, depending on 2.7, is

outlined in Exercise 3.9.

Further examples will be discussed in 3.6 and 3.7.

3.4 The automorphism group of a fundamental functor. Let C be a Galois category

with fundamental functor F . An automorphism of F is an invertible morphism of functors

F → F . Equivalently, an automorphism σ of F is a collection of bijections σX : F (X) →
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F (X), one for each object X of C, such that for each morphism f : Y → Z in C the diagram

F (Y ) F (Z)

F (Y ) F (Z)

........................................................................................................................ ............
F (f)

.....................................................................................
...
.........
...

σY

.....................................................................................
...
.........
...

σZ

........................................................................................................................ ............
F (f)

is commutative. Denoting by SF (X) the finite group of permutations of F (X) we can consider

the automorphism group Aut(F ) of F as a subgroup

Aut(F ) ⊂
∏
X

SF (X),

the product ranging over the objects X of C; it is supposed here that C is small, i.e., that its

objects form a set. Let
∏

X SF (X) be endowed with the product topology, each SF (X) being

discrete. Then for each morphism f : Y → Z the set {(σX) ∈
∏

X SF (X) : σZF (f) = F (f)σY }
is closed, so Aut(F ) is a closed subgroup of

∏
X SF (X). From Exercises 1.10 and 1.11(c) it

thus follows that Aut(F ) may be considered as a profinite group, as we shall do in the sequel.

Since we may replace C by an equivalent category, the foregoing is also valid if C is essentially

small instead of small.

For any object X of C, the profinite group Aut(F ) acts continuously on the finite set

F (X). Let the resulting Aut(F )-set be called H(X). If f : Y → Z is any morphism in C,

then by the commutativity of the above diagram F (f) is a morphism of Aut(F )-sets. Hence

putting H(f) = F (f) we see that H : C → Aut(F )-sets is a functor, and that F is the

composite of H and the forgetful functor Aut(F )-sets→ sets.

If we take C = π-sets for some profinite group π, and F the forgetful functor to sets,

then one finds that Aut(F ) may be identified with π, and that H : C→ Aut(F )-sets is the

identity functor; see Exercise 3.11. In the general case we have the following theorem.

3.5 Theorem. Let C be an essentially small Galois category with fundamental functor F .

Then we have:

(a) the functor H : C→ Aut(F )-sets defined in 3.4 is an equivalence of categories;

(b) if π is a profinite group such that the categories C and π-sets are equivalent by an

equivalence that, when composed with the forgetful functor π-sets → π-sets, yields the

functor F , then π is canonically isomorphic to Aut(F );

(c) if F ′ is a second fundamental functor on C, then F and F ′ are isomorphic;

(d) if π is a profinite group such that the categories C and π-sets are equivalent, then there

is an isomorphism of profinite groups π ∼= Aut(F ) that is canonically determined up

to an inner automorphism of Aut(F ).
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For the proof of the theorem, see 3.11–3.19.

3.6 Example. LetX be a connected scheme and x a “geometric point” ofX, i.e., a morphism

x : Spec Ω → X for some algebraically closed field Ω. As we shall see in 5.23, there is a

functor FEtX → FEtSpec Ω sending Y to Y ×X Spec Ω. Composed with the equivalence

FEtSpec Ω → sets from 2.9, this yields a functor Fx : FEtX → sets. We shall prove that

FEtX is a Galois category with fundamental functor Fx by verifying the axioms G1–G6;

see Theorem 5.24. From Theorem 3.5 we shall then deduce the Main theorem 1.11, with

π = Aut(Fx). The latter profinite group is denoted by π(X, x), the fundamental group of

X in x. If x′ is another geometric point of X, then 3.5(d) implies that π(X, x) ∼= π(X, x′)

by an isomorphism that is canonical up to an inner automorphism. This is analogous to the

situation with the fundamental group that is defined in algebraic topology with homotopy

classes of closed paths; see 1.13.

3.7 Finite coverings. Let X be a topological space, x ∈ X, and C the category of finite

coverings of X. Let the functor Fx : C → sets send a covering f : Y → X to f−1(x). We

shall prove that, if X is connected, C is a Galois category with fundamental functor Fx, and

deduce Theorem 1.15 from 3.5. The basic tool in the verification of axioms G1–G6 is the

following lemma.

3.8 Lemma. Let X, Y, Z be topological spaces, f : Y → X and g : Z → X finite coverings,

h : Y → Z a continuous map with f = gh, and x ∈ X. Then there exists an open neighborhood

U of x in X such that f , g and h are “trivial above U”, i.e., such that there exist finite discrete

sets D and E, homeomorphisms α : f−1(U) → U ×D and β : g−1(U) → U × E and a map

φ : D → E such that the diagram

U ×D U × E

f−1(U) g−1(U)

U U


h

................................................................................................................................................................
...
.........
...

f

................................................................................................................................................................
...
.........
...

g


idU

...................................................................................................................................................................................................... ............
idU × φ

.................................................................................................... ..........
..

∼.................................................................................................... ..........
..α

.....................................................................................................................
..
............

...................................................................................................
..
............

∼ ...................................................................................................
..
............ β

....................................................................................................................... ..........
..

is commutative; here the maps U ×D → U and U × E → U are the projections on the first

coordinate.

Proof of 3.8. By the definition of “finite covering” there exist open neighborhoods U ′ and

U ′′ of x in X, finite discrete sets D and E and homeomorphisms α : f−1(U ′) → U ′ × D,
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β : g−1(U ′′)→ U ′′ × E such that the diagrams

f−1(U ′) U ′ ×D

U ′

................................................................................ ............α
.................................................................................. .........

...f

....................................................................................
...
............

g−1(U ′′) U ′′ ×D

U ′′

........................................................................... ............
β

.................................................................................. .........
...g

....................................................................................
...
............

commute. Let now first U = U ′ ∩ U ′′; then these assertions are also valid with U ′ and U ′′

replaced by U . Since h maps f−1(U) to g−1(U), there is a continuous map βhα−1 : U ×D →
U×E. It respects the projections to U , so it maps each (u, d) ∈ U×D to (u, φu(d)) ∈ U×E
for some map φu : D → E. Let φ = φx. The two obvious maps U × D → D

φ→ E and

U×D → U×E → E combine into a continuous map U×D → E×E, (u, d) 7→ (φ(d), φu(d)),

mapping {x}×D to the diagonal in E ×E. Since the diagonal is open in E ×E there is an

open neighborhood of {x} ×D in U ×D that is also mapped to this diagonal, and since D

is finite this open neighborhood may be taken of the form V ×D, with V ⊂ X open. Then

φ = φv for all v ∈ V . Replacing U by V one now finds that Lemma 3.8 is proved.

3.9 Finite coverings: verification of the axioms. Let X be a topological space, and C

the category of finite coverings of X. We first verify axioms G1, G2, G3 for C.

(G1) The trivial covering idX : X → X is clearly a terminal object of C. If g : Y → Z,

h : W → Z are morphisms in C, then the fibred product is

Y ×Z W = {(y, w) ∈ Y ×W : g(y) = h(w) in Z} .

It must be shown that this space, with the obvious map to X, is a finite covering of X. Let

x ∈ X. There is a neighborhood U of x in X above which the coverings Y → X, Z → X

and the map g : Y → Z are trivial in the sense of Lemma 3.8. Replacing U by a smaller

neighborhood, if necessary, we may assume that also the covering W → X and the map

h : W → Z are trivial above U . Then it is straightforward to verify that p : Y ×Z W → X

is trivial above U in the sense that the restriction of p to p−1(U) can be factored into

a homeomorphism p−1(U)
∼→ U × E, for some finite discrete set E, and the projection

U × E → U .

(G2) One takes finite sums in C by forming disjoint unions in an obvious way. In particu-

lar, the unique covering f : Y → X with Y = ∅ is an initial object in C. Next let f : Y → X

be a finite covering and G a finite group of automorphisms of this covering. Then the space

Y/G of orbits of Y under G, provided with the quotient topology and with the obvious maps

to X, is a quotient of Y by G. It must of course be checked that this is a finite covering of

38



X. To do this one observes that each x ∈ X has a neighborhood U in X above which not

only the covering Y → X is trivial but each element of G as well, in the sense of Lemma 3.8.

(G3) For the verification of this axiom we refer to Exercise 3.14.

Next let Fx : C→ sets be defined as in 3.7. We show that Fx satisfies G4 and G5 for any

x ∈ X.

(G4) This is obvious from the explicit descriptions of terminal objects and fibred products

in C and sets; see G1 above and 3.2.

(G5) This is likewise obvious (cf. Exercise 3.14(b)).

Finally, assume that X is connected. We prove that axiom G6 is satisfied as well.

(G6) Let h : Y → Z be a morphism in C. Then Fx(h) is the restriction of h to the fibres

above x, and this map is bijective if and only if the map φ from Lemma 3.8 is bijective. Hence

from this lemma we see that each of the sets {x ∈ X : Fx(h) is bijective} and {x ∈ X : Fx(h)

is not bijective} is open in X. Since X is connected, one of the two sets is X and the other

is empty. Therefore, if Fx(h) is bijective for at least one x ∈ X then h is bijective, hence an

isomorphism because it is open (Exercises 3.13 and 3.12).

We conclude that, if X is connected, C is a Galois category with fundamental functor

Fx, for any x ∈ X.

3.10 Finite coverings: proof of Theorem 1.15. Let the notation be as in 3.9, with X

connected. Since every covering Y → X is equivalent to one in which the underlying set of Y

is a subset of X×Z, the category C is essentially small. It is also a Galois category, by 3.9, so

by Theorem 3.5(a) it is equivalent to π-sets for some profinite group π. Moreover, by 3.5(d)

the profinite group π is uniquely determined, up to isomorphism. This proves Theorem 1.15.

As in 3.6 we can speak about π̂(X, x) = Aut(Fx), the fundamental group of X in x, for

x ∈ X; and for x, x′ ∈ X we have π̂(X, x) ∼= π̂(X, x′) by an isomorphism that is canonical

only up to an inner automorphism.

3.11 Proof of Theorem 3.5. Let C be a Galois category with fundamental functor F . We

begin with the proof of Theorem 3.5. Without loss of generality we assume that C is small

(3.4).

3.12 Subobjects and connected components. A subobject of an object X of C is a

monomorphism Y → X, two subobjects Y → X, Y ′ → X being considered the same if

there is an isomorphism Y
∼→ Y ′ making the diagram

Y Y ′

X

.......................................................................................................................................... ............
∼

......................................................................................... .........
...

......................................................................................
...
............
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commutative. By Exercise 3.15(b) each subobject Y → X gives rise to a subset F (Y ) ⊂
F (X). The intersection of two subobjects Y → X, Y ′ → X is Y ×X Y ′, with its natural

morphism to X (see Exercise 3.16). By G4 we have F (Y ×X Y ′) = F (Y ) ∩ F (Y ′) inside

F (X); with G6 it thus follows that two objects Y → X, Y ′ → X are the same if and only

if F (Y ) = F (Y ′) as subsets of F (X).

An object X is called connected if it has precisely two distinct subobjects, namely 0→ X,

where 0 denotes an initial object (see 3.2, G2), and idX : X → X. Notice that an initial

object is not connected. See Exercise 3.17 for the meaning of connectedness in several Galois

categories.

If X is not connected then there is a subobject Y → X with ∅ = F (0) 6= F (Y ) 6= F (X).

Using G3 one then finds Z such that X may be identified with Y q Z so that F (X) is, by

G5, equal to the disjoint union of F (Y ) and F (Z). Arguing by induction on #F (X) one

concludes that every object of C is the sum of its connected subobjects. The latter objects

are called the connected components of the object. Likewise it follows that any subobject of

X is the sum of a subset of the set of connected components of X.

3.13 “Prorepresentability” of F . Let A be a connected object of C, and a ∈ F (A). We

claim that for each X the map

MorC(A,X)→ F (X), f 7→ F (f)(a)

is injective; here MorC(A,X) is the set of morphisms from A to X. To prove the claim,

suppose f, g : A → X are such that F (f)(a) = F (g)(a). Since F commutes with equalizers

(Exercise 3.6(a)), the equalizer C of f and g is a subobject of A with a ∈ F (C). By the

connectedness of A this implies that C = A, so f = g, as required.

Denote by I the set of all pairs (A, a), where A is connected and a ∈ F (A). Write

(A, a) ≥ (B, b) if b = F (f)(a) for some f ∈ MorC(A,B); by the injectivity proved above,

this f is unique if it exists. If both (A, a) ≥ (B, b) and (B, b) ≥ (A, a) in I, with corresponding

morphisms f : A→ B, g : B → A, then the uniqueness implies that gf = idA and fg = idB,

so that (A, a) and (B, b) are the same up to isomorphism. It follows that ≥ is a partial

ordering on the set of isomorphism classes of elements of I.

We claim that the resulting partially ordered set is directed (1.7). To prove this, let

(A, a), (B, b) ∈ I, and let C be the connected component of A×B for which F (C), considered

as a subset of F (A×B) ∼= F (A)×F (B) (axiom G4), contains the pair (a, b). Then (C, (a, b))

precedes both (A, a) and (B, b) in I, as required.
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If (A, a) ≥ (B, b) in I then the diagram of induced maps

MorC(B,X)

MorC(A,X)

F (X)

.....................................................................................
...
.........
...

..................................................................... ...........
.

......................
......................

.........................
............

is commutative for any X, so there is a map

lim−→I
MorC(A,X)→ F (X);

see Exercise 3.18 for the definition of the injective limit lim−→I
. We claim that this map is

bijective. Injectivity follows from the injectivity proved above. Further, if x ∈ F (X) then

x ∈ F (A) for some connected component A of X, and the map MorC(A,X) → F (X)

corresponding to the pair (A, x) ∈ I sends the canonical monomorphism A → X to x ∈
F (X). This implies surjectivity.

If X → Y is a morphism in C then the induced maps MorC(A,X) → MorC(A, Y ), for

(A, a) ∈ I, combine to a map between the injective limits, and the diagram

lim−→I
MorC(A,X) F (X)

lim−→I
MorC(A, Y ) F (Y )

............................................. ............

.....................................................................................
...
.........
...

.....................................................................................
...
.........
...

................................................ ............

is commutative. We conclude that the functor F is naturally equivalent to the functor

lim−→I
MorC(A,−). This is expressed by saying that F is “prorepresentable”.

3.14 Galois objects. Let A be connected. Then #AutC(A) ≤ #MorC(A,A) ≤ #F (A), so

AutC(A) is finite. We call A a Galois object if the quotient A/AutC(A) (axiom G2) is the

terminal object 1. This is the case if and only if the map F (A)/AutC(A) = F (A)/AutC(A)→
F (1) = 1 is an isomorphism, so if and only if AutC(A) acts transitively on F (A). Then clearly

#AutC(A) ≥ #F (A), so for a connected Galois object A we have AutC(A) = MorC(A,A)

and #AutC(A) = #F (A), and AutC(A) acts freely and transitively on F (A) (see (1.10)).

Let X be an arbitrary object of C. We claim that there exists (A, a) ∈ I with A Galois

such that the injective map MorC(A,X)→ F (X) from 3.13 is bijective.

To construct (A, a), put Y = XF (X), the product of a number of copies of X, one for

each element of F (X) (axiom G1). Let a be the element of F (Y ) = F (X)F (X) (axiom G4)

whose x-th coordinate is x, for x ∈ F (X), and let A be the connected component of Y for

which a ∈ F (A). We claim that (A, a) has the desired properties.
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Denote the composite of the canonical monomorphism A→ Y with the projection on the

x-th coordinate Y = XF (X) → X by px, for x ∈ F (X). Then the map MorC(A,X)→ F (X)

sends px to x, for x ∈ F (X), so it is surjective. We knew already that it is injective, so it is

bijective, and it follows at the same time that each morphism A→ X is of the form px.

Next let a′ be another element of F (A). From MorC(A,X) = #F (X) it follows that the

injective map MorC(A,X)→ F (X) induced by (A, a′) is also bijective. This means that the

coordinates of a′, when viewed as an element of F (Y ) = F (X)F (X), are precisely all elements

of F (X), each occurring once. Hence there is an automorphism σ of Y = XF (X), permuting

the factors, such that F (σ) maps a to a′. This automorphism transforms the connected

component A of Y into a connected component A′ of Y , and from a′ ∈ F (A)∩F (A′) (inside

F (Y )) we see that we must have A = A′. We conclude that A has an automorphism sending

a to a′, so that A is indeed a Galois object.

3.15 Construction of π. Put J = {(A, a) ∈ I : A is Galois}. We prove that J is a cofinal

subset of I (Exercise 1.17). Let (B, b) ∈ I. By 3.14 there is a connected Galois object A

such that there is a morphism f : A → B. By G3 and the connectedness of B the map

F (f) : F (A) → F (B) is surjective, so F (f)(a) = b for some a ∈ F (A). Now (A, a) ∈ J ,

and (A, a) ≥ (B, b), as required. Let f ′ : A → B be another morphism. By the surjectivity

of F (f) there exists a′ ∈ F (A) with F (f)(a′) = F (f ′)(a), and since A is Galois there is

σ ∈ AutC(A) with a′ = F (σ)(a). Then F (fσ)(a) = F (f ′)(a), so fσ = f ′ by the injectivity

of MorC(A,B)→ F (B). We conclude that the natural action of AutC(A) on MorC(A,B) is

transitive.

Since J is cofinal in I the result of 3.13 implies that F is naturally equivalent to the

functor lim−→J
MorC(A,−).

Let (A, a), (B, b) ∈ J be such that (A, a) ≥ (B, b), with corresponding morphism f : A→ B.

For each σ ∈ AutC(A) there is a unique τ ∈ AutC(B) for which

A B

A B

........................................................................................ ............
f

.....................................................................................
...
.........
...

σ

.....................................................................................
...
.........
...

τ

........................................................................................ ............
f

commutes, namely, the automorphism τ with F (τ)(b) = F (fσ)(a). The map AutC(A) →
AutC(B) sending σ to τ in this situation is clearly a group homomorphism. It is surjective,

since by the transitivity proved above each τf is of the form fσ. Thus we obtain a projective

system of finite groups with surjective transition maps. We write π for the projective limit

lim←−J AutC(A), which is a profinite group.
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3.16 A functor to π-sets. Let X be an object of C. For each connected Galois object A,

the group AutC(A) acts on MorC(A, x) by (σ, f) 7→ fσ−1. This action is, for (A, a) ≥ (B, b)

in J , compatible with the maps AutC(A) → AutC(B), MorC(B,X) → MorC(A,X), so it

gives rise to a continuous π-action on the finite set lim−→J
MorC(A,X) ∼= F (X).

If X → Y is a morphism in C then it is easy to check that the induced map

lim−→J
MorC(A,X) → lim−→J

MorC(A, Y ) is a morphism of π-sets. Hence if we write H(X)

for the set F (X) equipped with the π-action just defined, and H(f) = F (f) for a morphism

f in C, then H is a functor C→ π-sets that composed with the forgetful functor π-sets →
sets yields F . (We shall see in 3.19 that this H is the same one as in 3.4.)

3.17 The effect on connected objects. Let B be a connected object, and let (A, a) ∈ J
be such that MorC(A,B)

∼→ F (B). In 3.15 we proved that AutC(A) acts transitively on

MorC(A,B), so we have an isomorphism of π-sets

H(B) ∼= AutC(A)/G

with H as in 3.16, where G ⊂ AutC(A) is the subgroup

G = {σ ∈ AutC(A) : fσ = f}

for some fixed f : A→ B.

Since the natural map π → AutC(A) is surjective, the action of π on H(B) is transitive.

Hence H maps connected objects of the category C to connected objects of the category

π-sets (Exercise 3.17(a)).

Since fσ = f for all σ ∈ G, the morphism f : A→ B induces a morphism g : A/G→ B.

We claim that this is an isomorphism. To prove this, it suffices to check that F (g) is an

isomorphism. In any case F (g) is surjective, since F (f) is. Further F (A/G) = F (A)/G has

cardinality #(AutC(A)/G), because the action of AutC(A) on F (A) is free and transitive.

Since also F (B) has cardinality #(AutC(A)/G) this completes the proof.

3.18 An equivalence of categories. To prove that the functor H : C→ π-sets from 3.16

is an equivalence it suffices to check that (i) each finite π-set is isomorphic to one of the form

H(X), for an object X of C; and (ii) for every two objects X,Y of C the functor H yields

a bijective map MorC(X,Y )→ Morπ(H(X), H(Y )) (see Exercise 3.20).

We first prove (i). Every finite π-set is isomorphic to a finite sum of transitive π-sets,

and the functor H preserves finite sums since F does. Hence it suffices to consider a tran-

sitive π-set, and any such is of the form AutC(A)/G for some connected Galois object

A and some subgroup G ⊂ AutC(A) (cf. Exercise 1.19). Let a ∈ F (A). Then the map
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AutC(A) = MorC(A,A) → F (A) sending f to F (f)(a) is bijective, and F (A) with the π-

action (σ, F (f)(a)) 7→ F (fσ−1)(a) is H(A). Thus H(A) is isomorphic to the π-set AutC(A)

on which π acts by left multiplication, by F (f)(a) 7→ f−1. Since F is a functor, AutC(A)

and its subgroup G act in a second way on H(A) = F (A), namely by (σ, x) → F (σ)(x);

under the identification of π-sets H(A) ∼= AutC(A) just given this is right multiplication by

σ−1. We thus see that the quotient H(A)/G in the category π-sets is the π-set AutC(A)/G.

Since the natural map F (A)/G → F (A/G) is an isomorphism, by G5, the same is true for

H, so we have H(A/G) ∼= AutC(A)/G in π-sets. This proves (i).

To prove (ii), let X, Y be objects of C. The map MorC(X, Y ) → Morπ(H(X), H(Y ))

to be proved bijective is in any case injective, by Exercise 3.6(b). If X =
∐s

i=1Xi then

MorC(X,Y ) ∼=
∐s

i=1 MorC(Xi, Y ), by the definition of
∐

, and since H preserves finite sums

we have an analogous decomposition for Morπ(H(X), H(Y )). In this way the question is

reduced to the case that X is connected. If X → Y is any morphism, factored as X → Z → Y

with X → Z epimorphic and Z → Y monomorphic, then the connectedness of X implies

that Z is connected (Exercise 3.21), so Z is one of the connected components of Y . If we

write Y =
∐t

j=1 Yj, the Yj being the connected components of Y , then it easily follows that

MorC(X,Y ) ∼=
∐t

j=1 MorC(X, Yj) for connected X, and since also H(X) is connected (3.17)

there is a similar decomposition for Morπ(H(X), H(Y )). The question has now been reduced

to the case that both X and Y are connected.

Let X and Y be connected. Choosing (A, a) ∈ J sufficiently large we can write X = A/G1

and Y = A/G2 for certain subgroups G1, G2 ⊂ AutC(A) with H(X) ∼= AutC(A)/G1,

H(Y ) ∼= AutC(A)/G2 (see 3.17). Any π-homomorphism AutC(A)/G1 → AutC(A)/G2 is of

the form τG1 7→ τσG2 for some uniquely determined σG2 ∈ AutC(A)/G2, and for given σG2

this is a well-defined π-homomorphism if and only ifG1σ ⊂ σG2. Hence #Morπ(H(X), H(Y ))

= #{σG2 ∈ AutC(A)/G2 : G1σ ⊂ σG2}. To count MorC(X, Y ) we use that for any

f ∈ MorC(X, Y ) there exists σ ∈ AutC(A) for which the diagram

A A/G1 = X

A A/G2 = Y

............................................................... ............
h1

..............................................................................................................
...
.........
...

σ

..............................................................................................................
...
.........
...

f

................................................................. ............
h2

with natural horizontal maps hi commutes; namely, choose a′ ∈ F (A) with F (h2)(a
′) =

F (fh1)(a), and σ with F (σ)(a) = a′. We have h2σ = h2σ
′ ⇔ σ′σ−1 ∈ G2 ⇔ G2σ = G2σ

′, so

f uniquely determines the coset G2σ. Conversely, a given element σ ∈ AutC(A) gives rise to

a morphism f : X → Y if and only if h2σ factors via A/G1, so if and only if h2στ = h2σ for
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all τ ∈ G1, so if and only if σG1 ⊂ G2σ. Therefore #MorC(X,Y ) = #{G2σ : σG1 ⊂ G2σ},
and replacing σ by σ−1 we see that this is the same as #Morπ(H(X), H(Y )). This proves (ii).

We have proved that the functor H defined in 3.16 is an equivalence of categories.

3.19 End of proof of Theorem 3.5. We first prove (b). Let π be any profinite group

and H : C → π-sets any equivalence that composed with the forgetful functor F1 : π-sets

→ sets yields F . Then Aut(F ) ∼= Aut(F1), since H is an equivalence, and Aut(F1) ∼= π by

Exercise 3.11. Hence π ∼= Aut(F ). This proves (b).

To prove (a), we apply (b) to the group π constructed in 3.15 and the functor H defined

in 3.16. Then H is an equivalence by 3.18, and composed with the forgetful functor to sets

it yields F . Hence by (b) we may identify π with Aut(F ), and then H becomes identified

with the functor from 3.4 (cf. Exercise 3.11(c)). This implies (a).

To prove (c), let F ′ : C→ sets be a second fundamental functor. We have

lim−→
J

MorC(A,−) ∼= F, lim−→
J ′

MorC(A,−) ∼= F ′,

with J as defined in 3.15 and J ′ defined similarly for F ′. Since all pairs (A, a) ∈ J with

the same A are isomorphic, we may replace J by a subset J0 containing exactly one pair

(A, a) for each connected Galois object A. Similarly, choose J ′0 ⊂ J ′ such that J ′0 contains

exactly one pair (A, a′) for each connected Galois object A; it should be noted that the

definitions of “connected” and “Galois” (3.12 and 3.14) do not refer to a fundamental functor.

If (A, a), (B, b) ∈ J0 and g : A → B is a morphism, then there is a unique β ∈ AutC(B) for

which F (β) sends F (g)(a) to b. Then f = βg satisfies F (f)(a) = b, so (A, a) ≥ (B, b) in J0. It

follows easily that (A, a) ≥ (B, b) in J0 if and only if the corresponding elements (A, a′), (B, b′)

of J ′0 satisfy (A, a′) ≥ (B, b′); but the morphisms f, f ′ : A → B with F (f)(a) = b and

F ′(f ′)(a′) = b′ are not necessarily the same. For each α ∈ AutC(A) there exists γ ∈ AutC(B)

for which the diagram

A B

A B

........................................................................................ ............
f

.....................................................................................
...
.........
...

α

.....................................................................................
...
.........
...

γ

........................................................................................ ............
f ′

commutes, with f, f ′ as above. Mapping α to γ we obtain a projective system of finite non-

empty sets AutC(A), with A ranging over the connected Galois objects. By Exercise 1.9(b)

the projective limit is non-empty, so we can make a simultaneous choice of αA ∈ AutC(A)
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such that all diagrams

A B

A B

........................................................................................ ............
f

.....................................................................................
...
.........
...

αA

.....................................................................................
...
.........
...

αB

........................................................................................ ............
f ′

as above commute. These automorphisms induce an isomorphism

lim−→
J0

MorC(A,−) ∼= lim−→
J ′0

MorC(A,−),

so F ∼= F ′. This proves (c).

Finally, we prove (d). Let H ′ : C→ π-sets be an equivalence, and F ′ the composite with

the fundamental functor to sets. Then π ∼= Aut(F ′) by (b), and since F ′ ∼= F by (c) there

is an isomorphism of profinite groups Aut(F ′) ∼= Aut(F ) that is canonically determined up

to an inner automorphism.

This completes the proof of Theorem 3.5.

3.20 Theorem. Let C and C′ be essentially small Galois categories, F ′ : C′ → sets a

fundamental functor and G : C→ C′ a functor such that F = F ′G is a fundamental functor

for C. Let H : C → π-sets and H ′ : C′ → π′-sets be the equivalence from Theorem 3.5(a),

with π = Aut(F ), π′ = Aut(F ′). Then there is a natural continuous group homomorphism

π′ → π such that the functor G′ : π-sets → π′-sets that endows a π-set with the π′-action

induced by π′ → π gives rise to a commutative diagram

C C′

π-sets π′-sets.

...................................................................................................................................................... ............
G

.....................................................................................
...
.........
...
H

.....................................................................................
...
.........
...
H ′

.................................................................................................. ............G′

Proof. Each automorphism (σ′Y ) of F ′, with Y ranging over the objects of C′, gives rise to

an automorphism (σX) of F , with σX = σ′G(X) for each object X of C. The resulting map

Aut(F ′)→ Aut(F ) is easily seen to be a continuous group homomorphism (cf. Exercise 3.10)

and to have the property stated in the theorem. This proves 3.20.

3.21 Examples. Let X and X ′ be connected topological spaces, f : X ′ → X a continuous

map, x′ ∈ X ′ and x = f(x′) ∈ X. Denote the categories of finite coverings of X and X ′ by C

and C′, respectively. Then there is a functor G : C→ C′ with G(Y ) = Y ×X X ′ = {(y, z) ∈
Y ×X ′ : y and z have the same image in X}. Using the notation of 3.7 we have Fx′G = Fx, so
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the conditions of 3.20 are satisfied. Hence we find a natural continuous group homomorphism

π̂(X ′, x′)→ π̂(X, x). It follows that π̂ is a functor from the category of connected topological

spaces with base point to the category of profinite groups (cf. Exercise 3.22).

Let K ′ be a field and K a subfield. Then there is a functor KSAlg → K′SAlg sending

A to A ⊗K K ′. Passing to the opposite categories and defining the fundamental functor F ′

by F ′(B) = AlgK′(B,K ′
s) (cf. 3.3) one finds that the conditions of 3.20 are satisfied. This

gives rise to a continuous group homomorphism π′ → π, where π′, π are the absolute Galois

groups of K ′, K, respectively. It is easily seen that this is simply the map restricting the

action of π′ on K ′
s to Ks, which may be considered as a subfield of K ′

s.

Exercises for Section 3

3.1 (Left limits and right limits [12].) A directed graph D consists of a set V = VD
of vertices, a set E = ED of edges, a source map s = sD : E → V and a target map

t = tD : E → V ; each e ∈ E is to be thought of as an arrow from s(e) to t(e). Let D

be a directed graph and C a category. A D-diagram in C is a map that assigns to each

v ∈ V an object Xv of C and to each e ∈ E a morphism fe from Xs(e) to Xt(e) in C.

A morphism from a D-diagram ((Xv)v∈V , (fe)e∈E) to a D-diagram ((Yv)v∈V , (ge)e∈E)

is a collection of morphisms (hv : Xv → Yv)v∈V in C such that ht(e)fe = gehs(e) for all

e ∈ E.

(a) Show that the D-diagrams in C form a category. We denote this category by CD.

(b) Show that there exists a functor Γ: C→ CD mapping an object X to the constant

D-diagram with Xv = X for all v ∈ V and fe = idX for all e ∈ E, and mapping

a morphism h : X → Y to the morphism (hv)v∈V with all hv = h.

(c) A left limit of a D-diagram A in C is an object lim←−A of C such that

HomC(−, lim←−A) ∼= HomCD(Γ(−), A)

as functors on C. Prove that lim←−A is unique up to isomorphism if it exists, and

that the notion of a left limit generalizes that of a projective limit (see 1.7 and

Exercise 1.8).

(d) Show that C admits left limits of all D-diagrams in C if and only if the functor

Γ: C→ CD has a right adjoint lim←− : CD → C, i.e.,

HomC(−, lim←−−) ∼= HomCD(Γ(−),−) .
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If this right adjoint exists, we say that C admits left limits over D.

(e) A right limit of a D-diagram A in C is an object lim−→A of C such that

HomC(lim−→A,−) ∼= HomCD(A,Γ(−)).

Formulate and prove the analogues of the assertions in (c) and (d). If Γ has a left

adjoint lim−→ : CD → C we say that C admits right limits over D.

3.2 (Left limits in axiom G1.) Let C be a category.

(a) Prove that C admits left limits over the empty directed graph (with V = E = ∅)
if and only if C has a terminal object.

(b) Prove that C admits left limits over the directed graph •−→−−−•−−−←−• if and

only if the fibred product of any two objects over a third one exists in C.

3.3 (Equalizers and finite left limits.) Let C be a category. An equalizer of two mor-

phisms f, g : X → Y in C is a left limit of the D-diagram f, g : X ⇒ Y , with D =

. We say that C has equalizers if it admits left limits over D = . We say that

C has finite products if it admits left limits over any D with V finite and E = ∅. We

say that C has finite left limits if it admits left limits over any finite D (i.e., with both

V and E finite).

(a) Suppose that C satisfies G1 (see 3.1), and let f, g : X → Y be morphisms in C.

Let X ×Y X be formed with respect to f and g. Prove that there exists a natural

morphism X ×Y X → X ×X and a diagonal morphism X → X ×X such that

X ×X×X (X ×Y X) is an equalizer of f and g.

(b) Prove that C satisfies G1 if and only if it has equalizers and finite products, and

if and only if it has finite left limits.

3.4 (Right limits in axiom G2.) Left C be a category.

(a) Prove that C admits right limits over the empty directed graph if and only if C

has an initial object.

(b) Prove that the following three assertions are equivalent:

(i) finite sums exist in C;

(ii) any two objects X, Y of C have a sum X q Y in C, and C has an initial

object;

(iii) C admits right limits over any directed graph D with V finite and E empty.

(c) Show how the quotient X/G of an object X by a finite subgroup G ⊂ Aut(X)

can be interpreted as a right limit.
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3.5 Let f : X → Y be a morphism in a category C. Prove that f is an epimorphism if and

only if Y , together with idY : Y → Y and f : X → Y , is a right limit of the diagram

Y ← X → Y in which both arrows equal f .

3.6 Left C be a category satisfying G1, and F a covariant functor from C to the category

of sets.

(a) Prove that F satisfies G4 if and only if it commutes with equalizers and with

finite products, and if and only if it commutes with arbitrary finite left limits.

(b) Suppose that F satisfies G4 and G6, and let f, g : X → Y be morphisms in C

with F (f) = F (g). Prove that f = g.

3.7 Let C be a category and F a covariant functor from C to the category of sets. Suppose

that F commutes with finite right limits. Prove that F satisfies G4. [Hint: Exercises 3.4

and 3.5.]

3.8 Let C be the category of modules over a ring A, and F a covariant functor from C to the

category of abelian groups. Suppose that F is additive, i.e., that for any two A-modules

X, Y the map F : HomA(X, Y )→ Hom(F (X), F (Y )) is a group homomorphism.

(a) Prove that F commutes with finite products.

(b) Prove that a sequence 0→ X → Y
f→ Z in C is exact if and only if X, with the

map X → Y and the zero map X → Z, is an equalizer of f and the zero map

Y → Z.

(c) Prove that F , when composed with the forgetful functor to the category of sets,

is left exact if and only if for every exact sequence 0 → X → Y → Z in C the

sequence 0→ F (X)→ F (Y )→ F (Z) is exact.

3.9 Let K be a field, with algebraic closure K. In this exercise, A, B and C denote free

separable K-algebras.

(a) Prove that if A → B, A → C are K-algebra homomorphisms, B ⊗A C is a free

separable K-algebra. [Hint: 2.7.]

(b) Let G be a finite group of K-algebra automorphisms of A, and extend G by K-

linearity to A⊗K K. Prove that one has (A⊗K K)G ∼= AG ⊗K K as K-algebras,

and that AG is a free separable K-algebra. [Hint: use a basis of K over K.]

(c) Let f : A→ B be a K-algebra homomorphism. Prove that f [A] is a free separable

K-algebra, and that f [A] = {b ∈ B : b⊗ 1 = 1⊗ b in B ⊗A B}.
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(d) Deduce that the opposite of the category of free separable K-algebras is a Galois

category, with F (A) = AlgK(A,K) ∼= AlgK(A,Ks); here Ks is a separable closure

of K.

3.10 Let C be an essentially small Galois category with fundamental functor F . Prove that a

base for the open neighborhoods of idF in Aut(F ) is given by the sets {σ ∈ Aut(F ) : σX
is the identity on F (X)}, with X ranging over the objects of C.

3.11 Let π be a profinite group, and F the forgetful functor from π-sets to the category

sets of finite sets.

(a) Prove that an automorphism σ of F is completely determined by the maps

σπ/π′ : F (π/π′)→ F (π/π′), with π′ ranging over the open normal subgroups of π.

(The action of π on π/π′ is induced by left multiplication.)

(b) Let π′ be an open normal subgroup of π. Prove that the group of π-sets-auto-

morphisms of the π-set π/π′ is isomorphic to the group π/π′, with τ ∈ π/π′ acting

as right multiplication by τ−1. Prove also that any set-theoretic map π/π′ → π/π′

commuting with all π-sets-automorphisms of π/π′ is given by left multiplication

by some element of π/π′.

(c) Conclude that Aut(F ) may be identified with π, and that the functor H : π-sets

→ Aut(F )-sets defined in 3.4 is the identity functor.

3.12 Let X be a topological space, and f : Y → X a finite covering. Prove that f is open

and closed.

3.13 Let X, Y, Z be topological spaces, f : Y → X and g : Z → X finite coverings, and

h : Y → Z a continuous map with f = gh. Prove that h is a finite covering.

3.14 Let X be a topological space, C the category of finite coverings of X, and h : Y → Z

a morphism in C.

(a) Prove that the image of h is open and closed in Z.

(b) Prove that h is injective if and only if it is a monomorphism, and that h is

surjective if and only if it is an epimorphism.

(c) Prove that C satisfies axiom G3.

3.15 Let C be a category and F : C→ sets be a functor such that axioms G1, G4, G6 are

satisfied. Let further f : Y → X be a morphism in C.

(a) Prove that f is a monomorphism if and only if the first projection p1 : Y ×XY → Y

is an isomorphism.

50



(b) Prove that f is a monomorphism if and only if F (f) is injective.

3.16 Let C be a category, Y → X ← X ′ morphisms in C, and suppose that the fibred

product Y ×X Y ′ exists. Prove: if Y → X is a monomorphism, then so is Y ×X Y ′ → Y ′;

and if both Y → X and Y ′ → X are monomorphisms, then so is Y ×X Y ′ → X.

3.17 (a) Let π be a profinite group and E a finite π-set. Prove that E, as an object of

π-sets, is connected if and only if the action of π on E is transitive.

(b) Let K be a field and A a free separable K-algebra. Prove that A, as an object of

the category opposite to KSAlg, is connected if and only if A is a field.

(c) Let X be a connected topological space and Y → X a finite covering. Prove that

Y → X, as an object of the category of finite coverings of X, is connected if and

only if Y is connected as a topological space.

(d) Let X be a connected scheme and Y → X a finite étale covering. Prove that

Y → X, as an object of FEtX , is connected if and only if the scheme Y is

connected. (See Exercise 5.16.)

3.18 (Injective limits.) An injective system of sets consists of a directed partially ordered

set I, a collection of sets (Si)i∈I and a collection of maps (fij : Si → Sj)i,j∈I, i≤j satis-

fying the conditions

fii = (identity on Si) for each i ∈ I,
fik = fjk ◦ fij for all i, j, k ∈ I with i ≤ j ≤ k.

Call x ∈ Si equivalent to y ∈ Sj if there exists k ∈ I with k ≥ i, k ≥ j and

fik(x) = fjk(y) in Sk.

(a) Prove that this is an equivalence relation on the disjoint union of the sets Si. The

set of equivalence classes is called the injective limit of the system, notation: lim−→Si
or lim−→i∈I Si.

(b) Prove that the injective limit can be interpreted as a right limit (Exercise 3.1).

(c) Suppose that I 6= ∅, that all Si are groups and that all fij are group homomor-

phisms. Show that lim−→Si has a natural group structure.

(d) Let I be the set of positive integers, ordered by divisibility. For n,m ∈ I, n

dividing m, let Z/nZ→ Z/mZ be the group homomorphism mapping (1 mod n)

to (m/n mod m). Prove that lim−→Z/nZ ∼= Q/Z.

3.19 Describe the connected Galois objects in the category π-sets, for a profinite group π.

Do the same thing for the category opposite to KSAlg, for a field K.
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3.20 Let H be a covariant functor from a category C to a category D. Prove that H is an

equivalence of categories if and only if the following two conditions are satisfied:

(i) every object of D is isomorphic to one of the form H(X), for an object X of C;

(ii) for any two objects X, Y of C the functor H yields a bijective map MorC(X,Y )→
MorD(H(X), H(Y )).

3.21 Let X → Z be an epimorphism in a Galois category, and W → Z a subobject different

from 0, Z. Prove that W ×Z X → X is a subobject different from 0, X.

3.22 Let Gal be the category whose objects are pairs (C, F ) where C is a small Galois

category and F a fundamental functor on C. A morphism(C, F )→ (C′, F ′) is a functor

G : C → C′ with F = F ′G. Prove that the assignment (C, F ) 7→ Aut(F ) extends to

a contravariant functor from Gal to the category of profinite groups with continuous

group homomorphisms. Is this functor an anti-equivalence of categories?

3.23 Let π′ → π be a homomorphism of profinite groups and G′ : π-sets → π′-sets the

induced functor (see 3.20).

(a) Prove that π′ → π is surjective if and only if G′ sends connected π-sets to con-

nected π′-sets.

(b) Prove that π′ → π is injective if and only if for every connected object X ′ of

π′-sets there is an object X of π-sets and a connected component Y ′ of G′(X)

such that there is a π′-homomorphism Y ′ → X ′.

3.24 Let C be a category and F : C → sets a covariant functor. Prove that the following

two assertions are equivalent:

(i) C is a Galois category with fundamental functor F ;

(ii) for every set S of objects of C there is a set T of objects of C with S ⊂ T such that

the category D whose objects are the elements of T , with the same morphisms as

in C, is a small Galois category with fundamental functor F |D.

3.25 Let C be a Galois category with fundamental functor F , let A be a connected object

of C (cf. 3.12), and a ∈ F (A). By CA we denote the category whose objects are

morphisms f : X → A in C, a morphism from f : X → A to g : Y → A in CA being a

morphism h : X → Y in C for which f = gh.

(a) Define the functor Fa : CA → sets by sending f : X → A to the subset F (f)−1(a)

of F (X). Prove that CA is a Galois category with fundamental functor Fa.
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(b) Define the functor G : C→ CA by G(X) = (X × A→ A) (the canonical projec-

tion). Prove that FaG is a fundamental functor on C.

(c) Prove that if C is small the profinite group Aut(Fa) is isomorphic to an open

subgroup of Aut(F ).

(d) Define the functor J : CA → C by J(X → A) = X. Prove that (J,G) is an adjoint

pair of functors, i.e.,

MorC(J(Y ), X) ∼= MorCA
(Y,G(X))

functorially in X and Y .

3.26 Let C be the category defined as follows. An object of C is a triple (D,λ, (σα)α<λ)

where D is a finite set, λ an ordinal number and σα : D → D a map, for each ordinal

number α < λ, such that

σ2
α = idD for all α < λ ,

σα = idD for almost all α < λ ,

σασβ = σβσα for all α, β < λ.

A morphism from (D,λ, (σα)α<λ) to (E, µ, (τα)α<µ) is a map f : D → E for which

fσα = ταf for all α < min{λ, µ}; fσα = f for all α with min{λ, µ} ≤ α < λ; and

f = ταf for all α with min{λ, µ} ≤ α < µ.

Let F : C→ sets be the forgetful functor sending (D,λ, (σα)α<λ) to D. Prove that

C is a Galois category with fundamental functor F , and that C is not essentially small.

3.27 Let C be the category whose objects are quintuples (S, T, α, β, γ), where S, T are finite

sets and α, β, γ : S → T are bijections, a morphism from (S, T, α, β, γ) to (S ′, T ′, α′, β′, γ′)

being a pair of maps f : S → S ′, g : T → T ′ for which gα = α′f , gβ = β′f , gγ = γ′f .

(a) Prove that C is an essentially small Galois category, with a suitably defined fun-

damental functor.

(b) Describe the connected objects of C.

(c) For which profinite group π is C equivalent to π-sets?
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4 Projective modules and projective algebras

This section contains the affine information needed for the following section. We denote by

A a ring.

4.1 Definition. An A-module P is called projective if the functor HomA(P,−) on the

category of A modules is exact, i.e., if for every exact sequence M0 → M1 → M2 of A-

modules the induced sequence HomA(P,M0)→ HomA(P,M1)→ HomA(P,M2) is exact.

4.2 Theorem. For any A-module P the following four assertions are equivalent:

(i) P is projective;

(ii) for every surjective A-homomorphism f : M → N and every A-homomorphism g : P → N

there exists an A-homomorphism h : P →M for which fh = g:

0;

P

NM

.....................................................................................
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...
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........................................................................................ ............
f

........................................................................................ ............

(iii) every exact sequence of A-modules 0→M0 →M1 → P → 0 splits (see Exercise 4.2);

(iv) there is an A-module Q for which P ⊕Q is a free A-module.

Proof. (i)⇒(ii) If M → N → 0 is exact, then Hom(P,M) → Hom(P,N) → 0 is exact, so

g ∈ Hom(P,N) is the image of some h ∈ Hom(P,M).

(ii)⇒(iii) Take M = M1, N = P , g = idP , and apply Exercise 4.2.

(iii)⇒(iv) Mapping the basis element s of a free module F of sufficiently large (possibly

infinite) rank to a collection of generators for P we obtain a surjective A-homomorphism

F → P . Calling the kernel Q and applying (iii) to the sequence 0→ Q→ F → P → 0 one

finds that P ⊕Q ∼= F .

(iv)⇒(i) Since HomA(A,M) ∼= M , the A-module A is clearly projective. Further, if (Pi)i∈I
is any collection of A-modules, then it is easy to prove that

⊕
i∈I Pi is projective if and only

if each Pi is projective (cf. Exercise 4.4). These facts immediately imply (iv)⇒(i).

This proves 4.2.

4.3 Flatness. Recall that an A-module P is called flat if the functor −⊗AP on the category

of A-modules is exact. Clearly A is flat, and replacing “projective” by “flat” in the proof

of 4.2, (iv)⇒(i), one finds that direct summands of free modules are flat. We conclude that

projective modules are flat.
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4.4 Examples. (a) Suppose that there are rings A1, A2 with A ∼= A1×A2. Then each Ai is

a projective A-module. If the Ai are non-zero these modules are not free. Every A-module

P can be written as P = P1 × P2, where Pi is an Ai-module (namely, P1 = (1, 0) · P and

P2 = (0, 1) · P ), and P is projective over A if and only if each Pi is projective over Ai.

(b) If A is a field, then every A-module is free, hence projective. If A = K[G], where K

is a field and G a finite abelian group of order not divisible by char(K), then again every

A-module is projective (see Exercise 4.6 or 4.7).

(c) A Z-module is projective if and only if it is free. This is because every subgroup of a

free abelian group is free. In this example Z can be replaced by any principal ideal domain

(see Exercise 4.9).

(d) Let A be the ring of integers of an algebraic number field or, more generally, a

Dedekind domain. Then a non-zero finitely generated A-module is projective if and only if

it is torsionfree, and if and only if it is isomorphic to a module of the form An ⊕ I for some

n ≥ 0 and some non-zero ideal I of A; moreover, An ⊕ I ∼= An
′ ⊕ I ′ if and only if n = n′

and I and I ′ have the same ideal class. See Exercises 4.10 and 4.11 for this. Hence if A has

a non-trivial class group then there are projective A-modules that are not free. We remark

that projective A-modules that are not finitely generated are free (Exercise 4.12).

(e) Let A be a domain, with field of fractions K. An A-submodule I of K is projective if

and only if it is invertible, i.e., if and only if IJ = A for some J ⊂ K, where IJ = {
∑n

i=1 xiyi :

n ∈ Z, n ≥ 0, xi ∈ I, yi ∈ J (1 ≤ i ≤ n)}; see Exercise 4.13.

(f) If A = K[X1, X2, . . . , Xn], where K is a field and n < ∞, then every projective A-

module is free. This was proved by D. Quillen and A.A. Suslin in 1976, answering a question

of Serre from 1955. See [16] for the case of finitely generated modules, and [3] for the other

case.

(g) If A is a local ring, then every projective A-module is free. This was proved by I.

Kaplansky [14]. For finitely generated modules we prove this below (see 4.5), the countably

generated case is done in Exercise 4.14, and the general case in Exercise 4.16.

For more information about projective modules, see [4; 16; 21] and the references given

there.

4.5 Proposition. A finitely generated module over a local ring is projective if and only if it

is free.

Proof. Let A be a local ring with maximal ideal m and P a finitely generated projective

A-module. Let x1, x2, . . . , xn ∈ P be such that the xi ⊗ 1 form a basis for the A/m-vector

space P ⊗A A/m. Let f : An → P send the i-th basis vector to xi. Then f ⊗ idA/m is an

isomorphism (A/m)n → P ⊗A (A/m), so the cokernel M of f , which is a finitely generated
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module, satisfies M = mM . By the lemma of Nakayama [1, Proposition 2.6] this implies that

M = 0, so f is surjective. By 4.2(iii) we now have An ∼= P ⊕ ker(f). It follows that ker(f)

is finitely generated and satisfies ker(f) = m · ker(f). Again applying Nakayama’s lemma we

conclude that ker(f) = 0, so f is an isomorphism. This proves the “only if ” part of 4.5. The

“if ” part is immediate from 4.2. This proves 4.5.

4.6 Local characterization of projective modules. For f ∈ A we write Af = S−1A,

where S = {fn : n ≥ 0}, and Mf = S−1M = M ⊗A Af for an A-module M . Recall that M

is finitely presented if there is an exact sequence Am → An → M → 0 of A-modules with

m,n <∞.

Theorem. Let A be a ring and P an A-module. The following properties are equivalent:

(i) P is a finitely generated projective A-module;

(ii) P is finitely presented, and Pm is a free Am-module for any maximal ideal m of A;

(iii) there is a collection (fi)i∈I of elements of A with
∑

i∈I Afi = A, such that for each

i ∈ I the Afi
-module Pfi

is free of finite rank.

Notice that (iii) just means that the sheaf associated to P on SpecA is locally free of finite

rank (see [10, Chapter II, Section 5]). Exercise 4.23 shows that one cannot replace “finitely

presented” by “finitely generated” in (ii).

Proof. (ii)⇒(i) Assuming (i) we have P ⊕Q ∼= An for some Q and some n < ∞ (Exercise

4.3). Then Q is finitely generated, so P is finitely presented. From Pm ⊕ Qm
∼= Anm we see

that Pm is a finitely generated projective Am-module, so Pm is free by 4.5.

(ii)⇒(iii) Assume (ii), and let m be a maximal ideal of A. Choose isomorphisms g : Anm →
Pm, h : Pm → Anm that are inverse to each other. By Exercise 4.20, we have HomAm(Anm, Pm) ∼=
HomA(An, P )m and HomAm(Pm, A

n
m) ∼= HomA(P,An)m, so g = g′/s, h = h′/t for certain

A-linear maps g′ : An → P , h′ : P → An and certain s, t ∈ A − m. From gh = idPm ,

hg = idAn
m

it follows that ug′h′ = ust · idP , vh′g′ = vst · idAn for certain u, v ∈ A − m.

With f = stuv ∈ A − m, g′′ = tuvg′/f (= g′/s), h′′ = suvh′/f (= h′/t) we now have

isomorphisms g′′ : Anf → Pf , h
′′ : Pf → Anf over Af that are inverse to each other. Letting m

range over all maximal ideals of A, we obtain a collection of f ’s that is not contained in any

maximal ideal and therefore generates A as an A-ideal.

(iii)⇒(i) Writing 1 ∈ A as a linear combination of the fi we see that we may assume

that I is finite. For each i ∈ I, choose an isomorphism gi : A
n(i)
fi
→ Pfi

that maps the

canonical basis vectors of A
n(i)
fi

inside the image of P in Pfi
, so that gi is induced by an

A-linear map g′i : A
n(i) → P . These maps combine to a map g′ : A

P
j∈I n(j) → P . Applying
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Exercise 4.21(a) to the cokernel of g′ we see that g′ is surjective. For each i ∈ I the map

g′ induces a map A
P

j∈I n(j)

fi
→ Pfi

whose kernel is isomorphic to A
P

j 6=i n(j)

fi
, hence finitely

generated. By Exercise 4.21(b) it now follows that the kernel of g′ is finitely generated, so

P is finitely presented. Let M → N be any surjective map of A-modules. Then the map

HomA(P,M) → HomA(P,N) becomes surjective after tensoring with Afi
, for any i ∈ I;

here we use Exercise 4.20 and the fact Pfi
is Afi

-projective. Applying Exercise 4.21(a) to

the cokernel of HomA(P,M)→ HomA(P,N) we see that this map is surjective, so that P is

projective by 4.2(ii).

This completes the proof of the theorem.

4.7 The rank of a projective module. Let P be a finitely generated projective A-module.

From Theorem 4.6(iii) it follows that for each p ∈ SpecA the Ap-module Pp is free, and that

the function

rank(P ) = rankA(P ) : SpecA→ Z

assigning to p the rank of Pp over Ap is locally constant, hence continuous. If SpecA is

connected, e.g., if A is a domain, then rank(P ) is constant and may be identified with a non-

negative integer. We say that P is faithfully projective if rank(P ) ≥ 1, i.e., rank(P )(p) ≥ 1

for all p ∈ SpecA.

4.8 The trace. Let P be a finitely generated projective A-module, and P ∗ = Hom(P,A).

For each A-module M , define

φ : P ∗ ⊗AM → HomA(P,M)

by φ(f ⊗m)(p) = f(p) ·m. We claim that φ is an isomorphism of A-modules. This is clear

if P = A, since then both modules may be identified with M , and φ becomes idM . Taking

direct sums we find that φ is also an isomorphism if P ∼= An for some n < ∞, and passing

to direct summands one deals with general P .

The trace

Tr = TrP/A : EndA(P )→ A

is now defined to be the composite of the maps

EndA(P ) = HomA(P, P )
φ−1

−→ P ∗ ⊗A P → A

where P ∗ ⊗A P → A maps f ⊗ p to f(p).

The trace is an A-linear map, which agrees with the trace defined in 1.1 in the case that

P ∼= An; see Exercise 4.35. It follows that the trace defined in 1.1 is independent of the choice

of the basis. See Exercise 4.36–4.40 for further properties of the trace.
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4.9 Projective algebras. A finite projective A-algebra is an A-algebra B that is finitely

generated projective when considered as an A-module. For such an algebra we write [B : A]

for rankA(B); this is a continuous function SpecA→ Z.

4.10 Proposition. Let B be a finite projective A-algebra. Then we have:

(a) the map A → B is injective if and only if [B : A] ≥ 1 (i.e., [B : A](p) ≥ 1 for all

p ∈ SpecA);

(b) the map A → B is surjective if and only if [B : A] ≤ 1, and if and only if the map

B ⊗A B → B sending x⊗ y to xy is an isomorphism;

(c) the map A→ B is an isomorphism if and only if [B : A] = 1.

Proof. (a) “Only if ”. If [B : A](p) = 0, then Bp = 0, so Ap → Bp is not injective, and

consequently A → B is not injective either. “If ”. If [B : A](p) ≥ 1, then the kernel of

Ap → Bp annihilates the non-zero free Ap-module Bp, so must be zero. But if Ap → Bp is

injective for all p then so is A→ B.

(b) First suppose that B ⊗A B
∼→ B. Comparing the ranks we see, using Exercise 4.26,

that [B : A]2 = [B : A], so [B : A] ≤ 1. Next suppose that [B : A] ≤ 1. To prove that A→ B

is surjective we may assume that A is local; then [B : A] is constant. If [B : A] = 0 then

B = 0 and clearly A→ B is surjective. Next suppose that [B : A] = 1. Then EndA(B) is free

of rank 1 over A, the identity map of B forming a basis. The map ψ : B → EndA(B) defined

by ψ(b)(x) = bx is injective, and the composed map A→ B → EndA(B) is an isomorphism,

so A→ B is surjective. Finally, if A→ B is surjective then B ∼= A/a for some ideal a of a,

and B ⊗A B = B/aB = B.

(c) This is clear from (a) and (b).

This proves 4.10.

4.11 Faithfully projective algebras. An A-algebra B is called faithfully projective if it is

finite projective with [B : A] ≥ 1, i.e., if it is faithfully projective as an A-module. See 4.10(a)

and Exercise 4.25 for equivalent properties. In particular we see that B is faithfully flat over

A if it is faithfully projective (see Exercise 4.25, and Exercise 3.16 of [1]).

4.12 Proposition. Let B be a faithfully flat A-algebra, and P an A-module. Then P is

finitely generated projective as an A-module if and only if P ⊗A B is finitely generated pro-

jective as a B-module.

Proof. The “only if ” part is true for any A-algebra B, see Exercise 4.33. To prove the “if ”

part, assume that P ⊗A B is a finitely generated projective as a B-module. Choose a finite

collection of generators of P ⊗A B of the form p ⊗ 1, with p ∈ P . These give rise to an
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A-linear map An → P that becomes surjective when tensored with B; so by faithful flatness

An → P is already surjective. Let Q be the kernel. Then 0→ Q⊗AB → Bn → P ⊗AB → 0

is exact, so Q⊗AB is finitely generated projective over B, and applying what we just proved

for P to Q we conclude that Q is finitely generated and hence that P is finitely presented.

Let M be any A-module. We claim that the natural map

HomA(P,M)⊗A B → HomB(P ⊗A B,M ⊗A B)

is an isomorphism. If P ∼= Am for somem <∞ this is clear, since both sides may be identified

with (M ⊗A B)m. In the general case we choose an exact sequence Am → An → P → 0.

Then we have a commutative diagram

0

0

HomA(Am,M)⊗A B

HomB(Am ⊗A B,M ⊗A B).

HomA(P,M)⊗A B HomA(An,M)⊗A B

HomB(P ⊗A B,M ⊗A B) HomB(An ⊗A B,M ⊗A B)

.................................................................................................................................. ............

....................................................................................................
...
.........
...

....................................................................................................
...
.........
...

................................................ ............

...................................................................................................................... ............

....................................................................................................
...
.........
...

................................... ............

................................................................................ ............

...................................... ............

The top row is exact by right exactness of HomA(−,M) and flatness of B, and the bottom

row is exact for the same two reasons in reverse order. By what we just proved the two vertical

arrows at the right are isomorphisms. Hence the remaining vertical arrow is an isomorphism,

as required.

To prove that P is projective, let now M → N be a surjective A-linear map. Then

M⊗AB → N⊗AB is surjective, and since P⊗AB is projective it follows that HomB(P ⊗A B,
M ⊗AB)→ HomB(P ⊗AB,N ⊗AB) is surjective. By what we just proved this implies that

HomA(P,M) ⊗A B → HomA(P,N) ⊗A B is surjective, so by faithful flatness of B the map

HomA(P,M)→ HomA(P,N) is surjective. This proves that P is projective over A.

This proves 4.12.

4.13 Projective separable algebras. Let B be a finite projective A-algebra. The trace

Tr(b) or TrB/A(b) of an element b ∈ B is defined to be the trace of the A-linear map

B → B sending x to bx. Clearly TrB/A : B → A is A-linear. Define the A-linear map

φ : B → HomA(B,A) by φ(x)(y) = TrB/A(xy) for x, y ∈ B. If φ is an isomorphism we call B

a projective separable A-algebra.

The main properties of projective separable algebras will be developed in the next section,

in scheme-theoretic language. It turns out that projective separable algebras correspond

exactly to finite étale coverings of an affine scheme; see Proposition 5.6.

We close this section with two propositions about projective separable algebras that will be

needed in the next section.
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4.14 Proposition. Let B be an A-algebra, and C a faithfully flat A-algebra such that B⊗AC
is a projective separable C-algebra. Then B is a projective separable A-algebra.

Proof. From 4.12, with B and C in the roles of P and B, we see that B is a finite projective

A-algebra. To show that the map φ : B → HomA(B,A) defined above is an isomorphism,

it suffices to show that φ ⊗ idC : B ⊗A C → HomA(B,A) ⊗A C is an isomorphism, because

C is faithfully flat over A. As in the proof of 4.12, we may identify HomA(B,A)⊗A C with

HomC(B ⊗A C,C), and then B ⊗A C → HomC(B ⊗A C,C) is induced by the trace map

(Exercise 4.36). It is an isomorphism because B ⊗A C is projective separable over C. This

proves 4.14.

4.15 Lemma. Let B be a projective separable A-algebra and f : B → A an A-algebra homo-

morphism. Then there exist an A-algebra C and an isomorphism B ∼= A× C of A-algebras

such that f is the composition of B ∼= A× C with the projection A× C → A.

Proof. Since f is A-linear there is a unique e ∈ B such that f(x) = Tr(ex) for all x ∈ B.

We shall prove that e is an idempotent that gives rise to the desired splitting.

Putting x = 1 we see that Tr(e) = 1. Because f is a ring homomorphism and Tr is

A-linear we have Tr(exy) = f(xy) = f(x)f(y) = f(x)Tr(ey) = Tr(f(x)ey) for all x, y ∈ B.

By the definition of separability this implies that ex = f(x)e for all x ∈ B. This shows that

e annihilates ker(f), so calculating Tr(e) by means of the exact sequence 0 → ker(f) →
B → A → 0 and Exercise 4.38 we see that Tr(e) = f(e). Hence f(e) = 1, and the A-linear

map A → B sending 1 to e yields an isomorphism A ⊕ ker(f) → B of A-modules. Putting

x = e in ex = f(x)e we see that e2 = e. Since e annihilates ker(f) it follows that the

map A⊕ ker(f)
∼→ B respects multiplication, if multiplication is defined componentwise on

A ⊕ ker(f). Since A and B have unit elements the same is true for ker(f), so this is an

A-algebra.

This proves the lemma.

4.16 Proposition. Let A be a ring and B a projective separable A-algebra. Consider B ⊗A
B as a B-algebra via the second factor. Then there exist a B-algebra C and a B-algebra

isomorphism B⊗AB
∼→ B×C that, composed with the natural projection B×C → B, yields

the map B ⊗A B → B sending x⊗ y to xy.

Proof. From Exercise 4.47 we see that B⊗AB is a projective separable B-algebra. Moreover,

the map f : B ⊗A B → B defined by f(x ⊗ y) = xy is a B-algebra homomorphism. The

proposition now follows if we apply 4.15 to f : B ⊗A B → B. This proves 4.16.
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Exercises for Section 4

4.1 Let C be the category of modules over a ring A, and F a covariant additive functor

from C to the category of abelian groups (see Exercise 3.8). We call F exact if for

every exact sequence X → Y → Z in C the sequence F (X)→ F (Y )→ F (Z) is exact.

Prove that the following three assertions are equivalent:

(i) F is exact;

(ii) for every exact sequence 0→ X → Y → Z → 0 in C the sequence 0→ F (X)→
F (Y )→ F (Z)→ 0 is exact;

(iii) F commutes with arbitrary finite left or right limits.

4.2 Let 0 → M0 → M1 → M2 → 0 be a short exact sequence of modules over a ring A.

The sequence is said to split if there is an isomorphism M1
∼→M0 ⊕M2 of A-modules

for which the diagram

0

0

0

0

M2

M2

M0 M1

M0 M0 ⊕M2

.............................................................................................................................................................. ............
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................................................................................................................................................................ ............

................................................................................................................................................................ ............

................................................................................................................................................................ ............

................................................................................................................................................................ ............

(with the obvious maps in the bottom row) is commutative. Prove that the following

three assertions are equivalent:

(i) the sequence 0→M0 →M1 →M2 → 0 splits;

(ii) there is an A-linear map M1 →M0 such that the composed map M0 →M1 →M0

is the identity on M0;

(iii) there is an A-linear map M2 →M1 such that the composed map M2 →M1 →M2

is the identity on M2.

4.3 Let P be a finitely generated module over a ring A. Prove that P is projective if and

only if P ⊕ Q ∼= An for some finitely generated A-module Q and some non-negative

integer n.

4.4 Let A be a ring, M an A-module, (Pi)i∈I a collection of A-modules, and P =
⊕

i∈I Pi.

Prove that HomA(P,M) ∼=
∏

i∈I HomA(Pi,M) and P ⊗AM ∼=
⊕

i∈I(Pi ⊗AM).

4.5 Prove the statements in Example 4.4(a).

4.6 Let K be a field and G a finite abelian group of order not divisible by char(K). Prove

that K[G] is isomorphic to the product of a finite number of fields, and deduce that

every K[G]-module is projective.
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4.7 Let A be a ring and G a finite abelian group for which #G · 1 ∈ A∗.

(a) Suppose that f : M → N is a homomorphism of A[G]-modules, and g : N → M

an A-linear map with fg = idN . Define g′ : N → M by g′(x) = (#G · 1)−1 ·∑
σ∈G σ · g(σ−1 · x). Prove that g′ is a homomorphism of A[G]-modules and that

fg′ = idN .

(b) Let P be an A[G]-module. Prove that P is projective as an A[G]-module if and

only if P is projective when considered as an A-module. (See the following exercise

for a converse.)

4.8 Let A be a ring and G a finite abelian group. Consider A as an A[G]-module by letting

every σ ∈ G act as the identity on A. Prove that A is projective as an A[G]-module if

and only if #G · 1 ∈ A∗.

4.9 Let A be a ring with the property that every ideal of A is projective (a hereditary ring).

(a) Prove that any submodule of a free A-module is isomorphic to the direct sum of

a collection of ideals of A.

(b) Prove that over a principal ideal domain a module is projective if and only if it is

free.

4.10 (a) Let A be a ring, and I, J ideals of A with I +J = A. Prove that there is an exact

sequence 0→ I ·J → I⊕J → A→ 0 of A-modules, and that I⊕J ∼= (I ·J)⊕A.

(b) Prove that every ideal of a Dedekind domain A is projective and that an A-module

is projective if and only if it is isomorphic to a direct sum of a collection of ideals

of A.

(c) Let M be a finitely generated module over a Dedekind ring A. Prove that M is

projective if and only if M is torsionfree (i.e., if am = 0 with a ∈ A and m ∈M ,

then a = 0 or m = 0).

4.11 Let A be a Dedekind domain.

(a) Prove that two fractional A-ideals are isomorphic as A-modules if and only if they

belong to the same ideal class.

(b) Let I, J be fractional A-ideals. Prove that the map I ⊗A J → IJ sending x ⊗ y
to xy is an A-module isomorphism. [Hint: Localize.]

(c) Let I1, I2, . . . , In, J1, J2, . . . , Jm be fractional A-ideals. Prove that I1⊕I2⊕. . .⊕In ∼=
J1⊕J2⊕ . . .⊕Jm as A-modules if and only if n = m and I1I2 . . . In and J1J2 . . . Jm
belong to the same ideal class. [Hint: take exterior powers.]
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4.12 Let A be a Dedekind domain and (In)
∞
n=0 a sequence of fractional A-ideals. Prove that⊕∞

n=0 In
∼=

⊕∞
n=0A as A-modules, and deduce that every projective A-module that is

not finitely generated is free.

4.13 Let A be a domain with field of fractions K, and I ⊂ K an A-submodule.

(a) Prove that I is projective if and only if it is invertible, and that it is free if and

only if it is principal. [Hint: map a free module onto I.]

(b) Prove that invertible ideals are finitely generated.

(c) Prove that A is a Dedekind domain if and only if all ideals of A are projective.

4.14 Let A be a local ring with residue class field k.

(a) Suppose a1, a2, . . . , an ∈ A are such that none of the ai belongs to the ideal

generated by the others, and let a = (ai)
n
i=1 ∈ An. Let f : An → An be an A-linear

map with f(a) = a. Prove that f ⊗ idk is the identity mapping on kn, and that f

is invertible.

(b) Let F be a free A-module, P a direct summand of F , and a ∈ P . Prove that P

has a free direct summand containing a. [Hint: Choose a basis of F on which a

has the smallest possible number of non-zero coordinates, say a1, a2, . . . , an, and

apply (a) to a suitable map An → P → An.]

(c) Prove that a countably generated projective A-module is free.

4.15 Let A be a ring, I a set, Mi a countably generated A-module for i ∈ I, and M =⊕
i∈IMi. Suppose that M = P ⊕Q, where P,Q ⊂M are A-submodules of M .

(a) Write i → j, for i, j ∈ I, if there exists x ∈ Mi such that the P -component

or the Q-component of x has a non-zero projection on Mj. Prove that for each

i ∈ I the set D(i) = {j ∈ I : there exist m ≥ 0 and i0, i1, . . . , im ∈ I with

i = i0 → i1 → · · · → im = j} is countable.

(b) For J ⊂ I, write MJ =
⊕

j∈JMj ⊂ M , PJ = P ∩MJ , QJ = Q ∩MJ . Prove

that for any i ∈ I there is a countable subset J of I containing i such that

MJ = PJ ⊕QJ , and that for any such subset PJ and QJ are direct summands of

P and Q.

(c) Deduce that P is the direct sum of countably generated modules.

[Hint: use transfinite induction.]

4.16 Deduce from 4.14 and 4.15 that any projective module over a local ring is free.

4.17 Let an ideal a of a ring A be called almost nilpotent if for every sequence (ai)
∞
i=0 of

elements of a there exists n with
∏n

i=0 ai = 0.
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(a) Prove that a nilpotent ideal is almost nilpotent.

(b) Prove that a finitely generated almost nilpotent ideal is nilpotent.

(c) Let K[X1, X2, . . . ] be the polynomial ring in countably many variables over a

field K, and I the ideal generated by {Xk ·
∏n

i=1X
a(i)
i : k, n ≥ 1, a(i) ≥ 0 (1 ≤

i ≤ n),
∑n

i=1 a(i) ≥ k}. Prove thatK[X1, X2, . . . ]/I is a local ring whose maximal

ideal is almost nilpotent but not nilpotent.

4.18 Let A be a local ring whose maximal ideal m is almost nilpotent.

(a) Prove that any A-module M with mM = M is zero.

(b) Let F be a free A-module. Prove that a subset of F is an A-basis if and only if

it yields an A/m-basis for F ⊗A A/m. Prove also that any generating set for F

contains a basis.

4.19 Let A be a local ring whose maximal ideal m is not almost nilpotent.

(a) Construct a countably generated non-zero A-module M with M = mM . [Hint:

Consider a suitable injective limit A→ A→ A→ . . . .]

(b) Let f : F →M be A-linear, with F free and M as in (a). Prove that ker(f)∪mF

generates F but does not contain a basis.

4.20 Let M,N be modules over a ring A, with M finitely presented, and let S ⊂ A be a mul-

tiplicative subset. Prove that the obvious map S−1HomA(M,N) → HomS−1A(S−1M,

S−1N) is an S−1A-module isomorphism.

4.21 Let A be a ring, (fi)i∈I a collection of elements of A with
∑

i∈I Afi = A, and M an

A-module.

(a) Suppose that Mfi
= 0 for all i ∈ I. Prove that M = 0.

(b) Suppose that Mfi
= 0 is a finitely generated Afi

-module for each i ∈ I. Prove

that M is finitely generated.

4.22 Let M = {q ∈ Q : q has a squarefree denominator}, considered as a module over

A = Z. Prove that Mp is Ap-free of rank 1 for every prime ideal p of A, but that M is

not projective over A.

4.23 Let V be an infinite set and A = FV2 .

(a) Prove that A has a maximal ideal n and that is not principal.

(b) Let M = A/n, with n as in (a). Prove that M is finitely generated, that Mm is

Am-free of rank ≤ 1 for every maximal ideal m of A, but that M is not projective.
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4.24 Let A be a ring and P a finitely generated projective A-module. Prove that A can

be written as the product of finitely many rings, A = A1 × A2 × · · · × An, such that

P = P1 × P2 × · · · × Pn where each Pj is a finitely generated projective Aj-module of

constant rank.

4.25 Let A be a ring and P a finitely generated projective A-module. Prove that the following

four properties are equivalent:

(i) P is faithfully projective;

(ii) the map A→ EndZ(P ) giving the A-module structure is injective;

(iii) P is faithful, i.e., an A-module M is zero if and only if M ⊗ P = 0;

(iv) P is faithfully flat, i.e., a sequence M0 → M1 → M2 of A-modules is exact if and

only if the induced sequence M0 ⊗ P →M1 ⊗ P →M2 ⊗ P is exact.

4.26 Let P and P ′ be finitely generated projective modules over a ring A, and k ∈ Z, k ≥ 0.

Prove that the A-modules P ⊕P ′, P ⊗P ′, HomA(P, P ′), P ∗ = HomA(P,A),
∧k P , P⊗k

are finitely generated projective, and that the ranks of these modules are given by

rank(P ⊕ P ′) = rank(P ) + rank(P ′),

rank(P ⊗ P ′) = rank(P ) · rank(P ′),

rank(HomA(P, P ′)) = rank(P ) · rank(P ′),

rank(P ∗) = rank(P ),

rank(
∧k P ) =

(
rank(P )

k

)
,

rank(P⊗k) = rank(P )k

as functions on SpecA.

4.27 Let P be a finitely generated A-module such that for each p ∈ SpecA the Ap-module

Pp is free of finite rank r(p), where r : SpecA → Z is continuous. Prove that P is

finitely generated projective.

4.28 Let P be a finitely generated module over a ring A. Prove that P is projective of rank 1

if and only if P is invertible, i.e., if and only if P ⊗Q ∼= A for some A-module Q. [Hint

for the “only if ” part: take Q = P ∗.]

4.29 For a ring A, let Pic(A) be the set of isomorphism classes of finitely generated projective

A-modules of rank 1. Prove that Pic(A) is an abelian group with operation ⊗A, the

Picard group of A. Express the function HomA(−,−) : Pic(A) × Pic(A) → Pic(A) in

terms of the group operation.
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4.30 Let A be a ring. The group K0A is defined by generators and relations. There is one

generator [P ] for each finitely generated projective A-module P (up to isomorphism),

and one relation [P ⊕ P ′] = [P ] + [P ′] for each pair P, P ′ of such modules.

(a) Prove that [P ] = [P ′] if and only if P and P ′ are stably isomorphic, i.e., if and

only if P ⊕ An ∼= P ′ ⊕ An for some n ≥ 0.

(b) Prove that ⊗A induces a multiplication on K0A that makes K0A into a commu-

tative ring with unit element [A].

(c) Show that there are group homomorphisms φ : Pic(A)→ (K0A)∗ and ψ : K0A→
Pic(A) (the latter from an additive group to a multiplicative group) with ψφ =

idPic(A). [Hint: put ψ([P ]) = [
∧rank(P ) P ], to be defined in a suitable way if rank(P )

is non-constant.]

4.31 Let A be a ring, and H0A the ring of continuous functions SpecA→ Z.

(a) Prove that rank: K0A→ H0A is a ring homomorphism.

(b) Construct a ring homomorphism λ : H0A→ K0A such that rank ◦ λ = idH0A.

(c) Let K̃0A = kerλ. Prove that K0A ∼= H0A⊕ K̃0A. Remark. It can be proved that

K̃0A is the nilradical of K0A; see [4, Proposition IX.4.6].

4.32 (a) Prove that K̃0A = 0 if A is a field, or a local ring, or a principal ideal domain, or

a semilocal ring (i.e., a ring with only finitely many maximal ideals).

(b) Prove that K̃0A ∼= Pic(A) ∼= Cl(A), the ideal class group of A, if A is a Dedekind

domain.

4.33 Let A be a ring, B an A-algebra and P a projective A-module. Prove that P ⊗A B is

a projective B-module, and that the diagram

SpecB SpecA

Z

........................................................................................ ............

..................................................................................... .........
...rankB(P ⊗A B)

..................................................................................
...
............ rankA(P )

commutes if P is finitely generated.

4.34 Prove that any ring homomorphism f : A→ B induces a ring homomorphism K0A→
K0B via −⊗A B, and that K0 is a functor.

4.35 Let P be a free A-module with basis w1, w2, . . . , wn, and define w∗i ∈ P ∗ = HomA(P,A)

by w∗i (wj) = 1 if i = j and w∗i (wj) = 0 if i 6= j.

(a) Prove that P ∗ is a free A-module with basis w∗1, w
∗
2, . . . , w

∗
n.
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(b) Let f : P → P be A-linear, f(wi) =
∑n

j=1 aijwj with aij ∈ A. Prove that φ−1(f) =∑
i,j aijw

∗
i ⊗ wj, where φ : P ∗ ⊗A P → HomA(P, P ) is as in 4.8.

(c) Prove that the traces defined in 1.1 and 4.8 coincide.

4.36 Let A be a ring, B an A-algebra and P a finitely generated projective A-module. Prove

that the diagram of natural maps

EndA(P ) EndB(P ⊗A B)

A B

............................................................................................................ ............
⊗idB

.....................................................................................
...
.........
...

TrP/A

.....................................................................................
...
.........
...

TrP⊗AB/B

................................................................................................................................................................................................................................. ............

is commutative.

4.37 Let A be a ring and P a finitely generated projective A-module.

(a) Suppose that P has constant rank n. Prove that TrP/A(idP ) = n · 1 ∈ A.

(b) In the general case, prove that TrP/A(idP ) is the image of rank(P ) under the

natural map H0A→ Γ(SpecA,O) ∼= A; here H0A is as in Exercise 4.31, the sheaf

O is the natural sheaf of rings on SpecA (see [10, Chapter II, Section 2]), the

map H0A → Γ(SpecA,O) is induced by the ring homomorphisms Z → Ap, and

Γ(SpecA,O) ∼= A is the isomorphism from [10, Chapter II, Proposition 2.2].

4.38 Let A be a ring, 0 → P0 → P1 → P2 → 0 an exact sequence of A-modules in which

P1 and P2 are finitely generated projective, and g : P1 → P1 an A-linear map with

g[P0] ⊂ P0. Denote by h the induced map P2 → P2. Prove that P0 is finitely generated

projective and that TrP1/A(g) = TrP0/A(g | P0) + TrP2/A(h).

4.39 Let P and Q be two finitely generated projective A-modules, and f : P → Q, g : Q→ P

two A-linear maps. Prove that TrQ/A(f ◦ g) = TrP/A(g ◦ f).

4.40 (a) Let P be a finitely generated projectiveA-module. Prove that the map ψ : EndA(P )

→ EndA(P ∗) defined by ψ(f)(g) = g ◦ f is an anti-isomorphism of not necessarily

commutative rings, and that TrP ∗/A(ψ(f)) = TrP/A(f).

(b) Let f : P → P and g : Q→ Q be endomorphisms of finitely generated projective

A-modules P and Q. Prove that TrP⊗Q/A(f ⊗ g) = TrP/A(f) · TrQ/A(g).

4.41 Let B1, B2, . . . , Bn be algebras over a ring A. Prove that
∏n

i=1Bi is a finite projective

A-algebra if and only if each Bi is a finite projective A-algebra.

4.42 Let A be a ring, B a finite projective A-algebra, and P a finitely generated projec-

tive B-module. Prove that P , when considered as an A-module, is finitely generated
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and projective. Prove also that the map HomA(B,A)⊗B HomB(P,B)→ HomA(P,A)

sending f ⊗ g to f ◦ g is surjective.

4.43 Let A be a ring, B a finite projective A-algebra, and C a finite projective B-algebra.

Prove that C is a finite projective A-algebra. Can you express [C : A] in terms of

[C : B] and [B : A]?

4.44 With A, B and C as in the previous exercise, show that TrC/A = TrB/A ◦ TrC/B.

4.45 Let B1, B2, . . . , Bn be algebras over a ring A. Prove that
∏n

i=1Bi is a projective sepa-

rable A-algebra if and only if each Bi is a projective separable A-algebra.

4.46 Let A be a ring, B a projective separable A-algebra and C a projective separable B-

algebra. Prove that C is a projective separable A-algebra. [Hint: use Exercises 4.42

and 4.44. In 5.12 we shall give a different proof.]

4.47 Let A be a ring, B a projective separable A-algebra and C any A-algebra. Prove that

B ⊗A C is a projective separable C-algebra.
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5 Finite étale morphisms

In this section we treat the basic properties of finite étale morphisms, and we prove the Main

theorem 1.11.

5.1 Affine morphisms, locally free morphisms. Let f : Y → X be a morphism of

schemes. We call f affine if there is an open affine cover {Ui} of X such that f−1(Ui) is

affine for each i or, equivalently, if f−1(U) is affine for every open affine U ⊂ X (see [10,

Chapter II, Exercise 5.17]). Notice that finite morphisms are affine. We call f finite and

locally free if there exists a covering of X by open affine subsets Ui = SpecAi, such that

f−1(U) = SpecBi is affine for each i, where Bi is an Ai-algebra that is finitely generated

and free as an Ai-module.

5.2 Proposition. Let f : Y → X be a morphism of schemes. Then f is finite and locally

free if and only if for each open affine subset U = SpecA of X the open subscheme f−1(U)

of Y is affine, f−1(U) = SpecB, where B is a finite projective A-algebra.

Proof. The “if ” part is clear from Theorem 4.6(iii). To prove the “only if ” part, assume that

f is finite and locally free, and let U = SpecA be open affine in X. Then f−1(U) = SpecB is

affine, since f is affine. As in the proof of [10, Chapter II, Proposition 3.2] there is a covering

of U by open affine subsets Ui = SpecAfi
such that for each i we have f−1(Ui) = SpecBfi

,

where Bfi
is an Afi

-algebra that is finitely generated and free as an Afi
-module. From

Theorem 4.6 it now follows that B is a finite projective A-algebra. This proves 5.2.

5.3 The degree. Let f : Y → X be a finite and locally free morphism of schemes. For

each open affine set U = SpecA in X, with f−1(U) = SpecB, there is a continuous rank

function [B : A] : U = SpecA → Z; see 4.9. Clearly, the functions belonging to different

U ’s agree on their intersection, so they give rise to a continuous function sp(X)→ Z, where

sp(X) denotes the underlying topological space of X. This function is called the degree of

Y over X, or of f , and is denoted by [Y : X] or deg(f). For each integer n the set {x ∈
sp(X) : [Y : X](x) = n} is open and closed in X. If [Y : X] is constant, it is identified with

the unique integer in its image; this occurs, for example, if X is connected.

A morphism Y → X of schemes is called surjective if the map of the underlying topolog-

ical spaces is surjective.

5.4 Proposition. Let f : Y → X be a finite and locally free morphism of schemes. Then we

have:

(a) Y = ∅ ⇔ [Y : X] = 0;
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(b) Y → X is an isomorphism ⇔ [Y : X] = 1;

(c) Y → X is surjective ⇔ [Y : X] ≥ 1 ⇔ for every open affine subset U = SpecA of X

we have f−1(U) = SpecB, where B is a faithfully projective A-algebra.

Proof. We may clearly assume that X = SpecA is affine. Then Y = SpecB for some

finite projective A-algebra B. Now (a) is trivial, (b) is the same as 4.10(c), and (c) reduces,

by 4.10(a), to the statement that SpecB → SpecA is surjective if and only if A → B is

injective. “If ”: since B is finite over A, this immediately follows from [1, Theorem 5.10]. “Only

if ”: if p ∈ SpecA, and q ∈ SpecB maps to p, then Bp 6= 0 since Bq 6= 0, so [B : A](p) 6= 0,

and A→ B is injective by 4.10(a). This proves 5.4.

5.5 Finite étale morphisms. We recall from 1.4 that a morphism f : Y → X is called

finite étale if there is a covering of X by open affine sets Ui = SpecAi such that for each i

the open subscheme f−1(Ui) of Y is affine, f−1(Ui) = SpecBi, where Bi is a free separable

Ai-algebra. In particular we see that any finite étale morphism is finite and locally free.

5.6 Proposition. A morphism f : Y → X is finite étale if and only if for each open affine

subset U = SpecA of X the open subscheme f−1(U) of Y is affine, f−1(U) = SpecB, where

B is a projective separable A-algebra.

Proof. Clear from 5.2 and the remark that the map φ : B → HomA(B,A) from 4.13 is an

isomorphism if and only if the induced map Bp → HomAp(Bp, Ap) is an isomorphism for

each p ∈ SpecA (cf. Exercise 4.20). This proves 5.6.

We refer to Exercises 5.1–5.8 for further basic properties of finite locally free and finite étale

morphisms, in particular for the fact that these notions are stable under base extension

(Exercises 5.5(a) and 5.8).

5.7 Surjective, finite and locally free morphisms. The study of finite étale morphisms

is greatly simplified if we make base extensions W → X that are surjective, finite and locally

free, as we shall now see. For an affine description of such morphisms we refer to Exercise 5.9.

5.8 Proposition. Let f : Y → X be an affine morphism of schemes, and g : W → X a

morphism that is surjective, finite and locally free. Then Y → X is finite étale if and only if

Y ×X W → W is finite étale.

Proof. The “only if ” part is correct for any W → X, by Exercises 5.5(a) and 5.8. To

prove the “if ” part, let U = SpecA be an open affine part of X. Since f is affine we have
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f−1(U) = SpecB for some A-algebra B. To prove that f is finite étale it suffices to show that

B is projective separable over A. By Exercise 5.9, we have g−1(U) = SpecC for a faithfully

projective A-algebra C. The inverse image of SpecC under Y ×X W → W is SpecB ⊗A C,

by [10, Chapter II, proof of Theorem 3.3]. Since Y ×XW → W is finite étale, Proposition 5.6

implies that B ⊗A C is a projective separable C-algebra. From 4.14 it now follows that B is

a projective separable A-algebra. This proves 5.8.

5.9 Totally split morphisms. A morphism f : Y → X of schemes is called totally split if

X can be written as the disjoint union [10, Chapter II, Exercise 2.12] of schemes Xn, n ∈ Z,

n ≥ 0, such that for each n the scheme f−1(Xn) is isomorphic to the disjoint union of n

copies of Xn with the natural morphism XnqXnq· · ·qXn → Xn. In many cases of interest

we have X = Xn for a single n; this must happen, for example, if X is connected. Clearly a

totally split morphism is finite étale.

5.10 Theorem. Let f : Y → X be a morphism of schemes. Then f is finite étale if and only

if f is affine and Y ×X W → W is totally split for some W → X that is surjective, finite

and locally free.

Proof. The “if ” part is immediate from 5.8. To prove the “only if ” part, let f : Y → X

be finite étale, and first assume that [Y : X] = n is constant. We prove by induction

on n the existence of a surjective, finite and locally free morphism W → X such that

Y ×X W → W is totally split. If n = 0 we can simply take W = X. Next suppose that

n > 0. We claim that the diagonal morphism Y → Y ×X Y is both a closed immersion

and an open immersion. If X = SpecA is affine, then also Y = SpecB is affine, and

the splitting SpecB q SpecC
∼→ SpecB ⊗A B implied by Proposition 4.16 proves our

claim. In the general case we cover X with open affine subsets Ui = SpecAi, so that Y is

covered with open affine subsets f−1(Ui) = SpecBi and Y ×X Y with open affine subsets

SpecBi ⊗Ai
Bi, by [10, Chapter II, proof of Theorem 3.3], and our claim follows. We can

now write Y ×X Y = Y q Y ′. The second projection Y ×X Y → Y is finite étale of degree n,

by Exercises 5.5 and 5.8. Since idY : Y → Y has rank 1, we see from Exercises 5.3 and 5.8

that the induced morphism Y ′ → Y is finite étale of rank n − 1. Applying the induction

hypothesis we find a morphism W → Y that is surjective, finite and locally free such that

Y ′ ×Y W → W is totally split. We show that the composed morphism W → Y → X now

satisfies our requirements. Since Y ′×Y W → W and W = Y ×Y W → W are totally split, the

same is true for Y ×XW = Y ×X Y ×Y W = (Y qY ′)×Y W = (Y ×Y W )q (Y ′×Y W )→ W .

From [Y : X] ≥ 1 it follows that Y → X is surjective, so W → X is also surjective. Finally,

W → X is finite and locally free by Exercise 5.6. This concludes the induction step, and
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finishes the proof of the existence of W in the case that the degree [Y : X] is constant.

In the general case we write X =
∐∞

n=0Xn, where sp(Xn) = {x ∈ sp(X) : [Y : X](x) =

n}. Then Yn = f−1(Xn) → Xn is finite étale of constant degree n, for each n, so there

exist surjective, finite and locally free morphisms Wn → Xn for which Yn ×Xn Wn → Wn

is totally split. The combined morphism W =
∐∞

n=0Wn →
∐∞

n=0Xn = X now satisfies our

requirements.

This proves 5.10.

5.11 The use of 5.10. Totally split morphisms of constant rank are the scheme theoretic

analog of trivial finite coverings of a topological space X, i.e., coverings of the form X×E →
X where E is a discrete finite set. Locally, every finite covering is trivial, and any morphism

between finite coverings is locally trivial as well (Lemma 3.8). This fact formed the basis of

our proof of the topological Theorem 1.15 in Section 3. In the case of schemes, finite étale

morphisms are only “locally trivial” if “locally” is understood in a suitable “Grothendieck

topology”: finite étale coverings become trivial (= totally split) after a base extension W →
X as in Theorem 5.10. Below we shall see that any morphism Y1 → Y2 between totally

split morphisms Y1 → X, Y2 → X is locally trivial in a sense analogous to Lemma 3.8; see

Lemma 5.14. These facts enable us to reduce many proofs to the case of “trivial” morphisms,

in which case straightforward verifications are usually sufficient.

As a first illustration of this technique we prove a result that can in fact be proved directly

from the definitions (see Exercises 4.46, 5.6 and 5.8).

5.12 Proposition. Let Z → Y and Y → X be finite étale morphisms of schemes. Then the

composed morphism Z → X is finite étale.

Proof. First assume that Y → X is totally split of constant degree: Y = X qX q · · · qX,

with n summands. Then Z = Z1 qZ2 q · · · qZn, where each Zi is finite étale (Exercises 5.4

and 5.8). By Exercises 5.4 and 5.8 also Z1 q Z2 q · · · q Zn → X is finite étale, as required.

The case that Y → X is totally split of non-constant degree is immediately reduced to

the preceding case, again with Exercises 5.4 and 5.8.

In the general case one chooses W → X as in Theorem 5.10, so that Y ×X W → W is

totally split. Since Z ×X W → Y ×X W is finite étale (Exercises 5.5(a) and 5.8), the result

already proved implies that Z×XW → W is finite étale. From Proposition 5.8 it now follows

that Z → X is finite étale. This proves 5.12.

5.13 Notation. If X is a scheme and E a finite set of cardinality n, we write X × E for

the disjoint union of n copies of X, one for each element of E; cf. Exercise 5.11. Any map
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φ : D → E of finite sets induces in a natural way a morphism X × D → X × E. The

morphisms X × D → X × E obtained in this way are easily seen to be finite étale; this

follows in fact from Exercises 5.3, 5.4, 5.8 and the remark that the identity morphism X×X
is finite étale.

The following lemma is analogous to Lemma 3.8.

5.14 Lemma. Let X, Y, Z be schemes, f : Y → X and g : Z → X totally split morphisms,

h : Y → Z a morphism with f = gh, and x ∈ X. Then there exists an open affine neigh-

borhood U of x in X such that f , g and h are “trivial above U”, i.e., such that there exist

finite sets D and E, isomorphisms α : f−1(U) → U × D and β : g−1(U) → U × E, and a

map φ : D → E such that the diagram

U ×D U × E

f−1(U) g−1(U)

U U


h

................................................................................................................................................................
...
.........
...

f

................................................................................................................................................................
...
.........
...

g


idU

...................................................................................................................................................................................................... ............
idU × φ

.................................................................................................... ..........
..

∼.................................................................................................... ..........
..α

.....................................................................................................................
..
............

...................................................................................................
..
............

∼ ...................................................................................................
..
............ β

....................................................................................................................... ..........
..

is commutative; here U ×D → U , U ×E → U are the first projections, and U ×D → U ×E
is the morphism induced by φ.

Proof. Replacing X by a suitable open neighborhood of x we may assume that X = SpecA

is affine and that the totally split morphisms f and g are each of constant degree, so that

Y
∼→ X × D = SpecAD and Z

∼→ X × E = SpecAE for certain finite sets D and E

(cf. Exercise 5.11(c)). It must be shown that the A-algebra homomorphism ψ : AE → AD

corresponding to h : Y → Z is induced by a map φ : D → E, at least above an open affine

neighborhood U of x. Since the local ringAx has no non-trivial idempotents (Exercise 2.23(a))

it follows from Exercise 5.11(d) that the local map ψx : AEx → ADx is induced by a map

φ : D → E. Hence ψ and the map φ∗ : AE → AD induced by φ have the same image in

HomA(AE, AD)x = HomAx(A
E
x , A

D
x ) (Exercise 4.20). It follows that ψ and φ∗ yield the same

map A[1/a]E → A[1/a]D for some a ∈ A not belonging to the prime ideal corresponding to

x. The open neighborhood U = SpecA[1/a] of x in SpecA now satisfies our requirements.

This proves Lemma 5.14.

Remark. In a completely analogous way one proves that any x ∈ X has an open neighbor-

hood U such that each of a given finite set of morphisms between totally split schemes over

X is trivial above U , in a sense that is made precise in Exercise 5.12.
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The first important consequence of Lemma 5.14 is that morphisms between finite étale

coverings are finite étale as well.

5.15 Proposition. Let f : Y → X and g : Z → X be finite étale morphisms of schemes,

and h : Y → Z a morphism with f = gh. Then h is finite étale.

Proof. If f and g are totally split the assertion follows from Lemma 5.14, since any morphism

U × D → U × E induced by a map D → E is finite étale, as we remarked in 5.13. In the

general case we choose surjective, finite and locally free morphisms W1 → X, W2 → X such

that Y ×X W1 → W1 and Z ×X W2 → W2 are totally split. Then W = W1 ×X W2 → W is

also surjective, finite and locally free (Exercise 5.7), and Y ×X W → W , Z ×X W → W

are totally split. Hence by the case already dealt with, Y ×X W → Z ×X W is finite étale.

But Z ×X W → Z is surjective, finite and locally free (Exercise 5.5), and Y ×X W =

Y ×Z (Z ×X W ), so applying Proposition 5.8 with Z ×X W and Z in the roles of W and X

we conclude that Y → Z is finite étale; here we use that Y → Z is affine (Exercise 5.13).

This proves 5.15.

5.16 Proposition. Let f : Y → X, g : Z → X be finite étale and h : Y → Z a morphism

with f = gh. Then h is an epimorphism in FEtX if and only if h is surjective.

Proof. “Only if ”. By 5.15, the morphism h is finite and locally free, so Z0 = {z ∈ Z :

[Y : Z](z) = 0} is open and closed in Z (see 5.3), and Z = Z0 q Z1 where Z1 = Z − Z0.

We have h−1(Z0) = ∅, by 5.4(a), and h : Y → Z1 is surjective by 5.4(c). The compositions

of h with the two natural morphisms Z = Z0 q Z1 ⇒ Z0 q Z0 q Z1 are the same, so if h

is an epimorphism these two natural morphisms must be the same. Then Z0 = ∅ and h is

surjective, as required.

“If ”. Suppose that h is surjective and that p, q : Z → W are morphisms with ph = qh,

with W finite étale over X. We have to prove that p = q, and this can be checked locally, so

we may assume that X = SpecA is affine. Then Y = SpecB, Z = SpecC, and W = SpecD

are also affine, and p, q, h correspond to maps D ⇒ C → B giving the same map D → B.

The surjectivity of h implies that [B : C] ≥ 1 (see 5.4(c)), hence that C → B is injective

(see 4.10(a)). Therefore the two maps D ⇒ C are the same, and p = q.

This proves 5.16.

5.17 Proposition. Let f : Y → X, g : Z → X be finite étale and h : Y → Z a morphism

with f = gh. Then h is a monomorphism in FEtX if and only if h is both an open immersion

and a closed immersion.
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Proof. The “if ”-part is trivial (see Exercise 5.14). Conversely, assume that h : Y → Z is a

monomorphism. Then the first projection Y ×Z Y → Y is an isomorphism (Exercise 3.15(a));

here it should be noted that Y ×Z Y is finite étale over Z (Exercises 5.7(a) and 5.8) and

hence over X (Proposition 5.12). If U = SpecA ⊂ X is open affine, and f−1(U) = SpecB,

g−1(U) = SpecC, this yields an isomorphism B
∼→ B⊗C B sending b to b⊗ 1, so [B : C] ≤ 1

by 4.10(b). This proves that [Y : Z] ≤ 1. Putting Zn = {z ∈ Z : [Y : Z](z) = n} we

therefore have Z = Z0qZ1, and from 5.4(a), (b) we see that h−1(Z0) = ∅, h : Y
∼→ Z1. This

proves 5.17.

5.18 Quotients under group actions. For a scheme X, let AffX be the category of affine

morphisms Y → X (see 5.1), a morphism between affine morphisms being defined as in 1.6.

We show that in AffX quotients under finite groups of automorphisms exist. To do this, it is

convenient to replace AffX by the anti-equivalent category of quasi-coherent sheaves of OX-

algebras [10, Chapter II, Exercise 5.17]. So let A be a quasi-coherent sheaf of OX-algebras,

and G a finite group of automorphisms of A. For any open subset U ⊂ X the set A(U)G

of G-invariants of A(U) is a sub-OX(U)-algebra of A(U), and it is the kernel of the map

A(U)→
⊕

σ∈GA(U) sending a ∈ A(U) to (σ(a)− a)σ∈G ∈
⊕

σ∈GA(U). Using [10, Chapter

II, Proposition 5.7] we conclude that the assignment U 7→ A(U)G is a quasi-coherent sheaf of

OX-algebras. We denote this sheaf by AG. It is straightforward to check that any morphism

f : B → A of quasi-coherent sheaf OX-algebras satisfying σ ◦ f = f for all σ ∈ G factors

uniquely via the inclusion morphism AG → A. For the anti-equivalent category AffX this

implies that for any affine morphism f : Y → X and any finite group G of automorphisms

of Y → X in AffX the quotient g : Y/G→ X exists in AffX . The construction makes it also

clear that for any open set U ⊂ X we have g−1(U) ∼= f−1(U)/G; and if U = SpecA is open

affine, f−1(U) = SpecB, then g−1(U) = SpecBG.

It is now our purpose to show that Y/G → X is finite étale if Y → X is finite étale. To do

this we need the following auxiliary result.

5.19 Proposition. Let Y → X be an affine morphism, G a finite group of automorphisms

of Y → X in AffX , and W → X a finite and locally free morphism. Then (Y ×X W )/G ∼=
(Y/G)×X W in AffW .

Proof. It is easy to see that Y ×X W → W is affine, and that G induces a finite group of

automorphisms of Y ×XW → W in AffW , so the quotient (Y ×XW )/G→ W is well-defined.

The morphism g : Y ×X W → (Y/G) ×X W induced by the natural morphism Y → Y/G

satisfies g ◦σ = g for all σ ∈ G, so it gives rise to a morphism (Y ×XW )/G→ (Y/G)×XW .
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We claim that this is an isomorphism. This can be checked locally, so we may assume that

X = SpecA is affine. Then Y = SpecB and W = SpecC are affine as well, and C is a finite

projective A-algebra. It must be proved that the natural map BG ⊗A C → (B ⊗A C)G is an

isomorphism. The sequence 0→ BG → B →
⊕

σ∈GB of A-modules, in which the last map

sends b ∈ B to (σ(b)−b)σ∈G, is exact, so by the flatness of C (see 4.3) it gives rise to an exact

sequence 0 → BG ⊗A C → B ⊗A C →
⊕

σ∈GB ⊗A C. This shows BG ⊗A C ∼= (B ⊗A C)G,

as required. This proves 5.19.

5.20 Proposition. Let Y → X be a finite étale morphism of schemes, and G a finite group

of automorphisms of Y → X in FEtX . Then the quotient Y/G → X of Y → X under G

exists in FEtX .

Proof. Since finite morphisms are affine, the quotient g : Y/G→ X exists in AffX . It suffices

to show that Y/G→ X is in fact finite étale.

Let it first be assumed that f : Y → X is totally split. By the remark following Lemma 5.14,

the space X is covered by open sets U above which both f−1(U) → U and the action of G

on f−1(U) are trivial; that is, we can identify f−1(U) with U ×D for some finite set D, such

that the action of G on U ×D is induced by an action of G on D. Denote by D/G the set

of orbits of D under G. Then it is readily checked that U × (D/G) is a quotient of U ×D
under G in AffU , so U × (D/G) ∼= f−1(U)/G. Hence U × (D/G) ∼= g−1(U), so g−1(U)→ U

is finite étale. This implies that g : Y/G→ X is finite étale.

In the general case we choose a surjective, finite and locally free morphism W → X for

which Y ×XW → W is totally split. Then (Y ×XW )/G→ W is finite étale by the result just

proved, and (Y ×X W )/G ∼= (Y/G)×X W by 5.19. From 5.8 it now follows that Y/G→ X

is finite étale. This proves 5.20.

5.21 Proposition. Let Y → X be a finite étale morphism, G a finite group of automor-

phisms of Y → X in FEtX , and Z → X any morphism of schemes. Then (Y ×X Z)/G ∼=
(Y/G)×X Z in FEtZ .

Proof. As in the proof of 5.19 we have a morphism (Y ×X Z)/G → (Y/G)×X Z. We first

prove that this is an isomorphism if Y = X ×D for some finite set D, the action of G being

induced by an action of G on D. Then Y ×X Z ∼= Z ×D, and (Y ×X Z)/G and (Y/G)×X Z
are both isomorphic to Z × (D/G) (cf. the proof of 5.20), as required. Next we consider

the case that Y → X is totally split. Then X can be covered by open sets U above which

both Y → X and the action of G are trivial, as in the proof of 5.20. Hence by the case just

dealt with, the morphism (Y ×X Z)/G→ (Y/G)×X Z is locally an isomorphism, so it is an

isomorphism.
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In the general case we choose a surjective, finite and locally free morphism W → X

for which YW → W is totally split; here we write −W for − ×X W . Then the above result

implies (YW ×W ZW )/G
∼→ (YW/G) ×W ZW . Here YW ×W ZW ∼= (Y ×X Z) ×Z WZ , where

WZ = W ×X Z → Z is surjective, finite and locally free (Exercise 5.5). Hence by 5.19 we

have (YW ×W ZW )/G ∼= ((Y ×X Z)/G)×ZWZ . Again by 5.19 we have YW/G ∼= (Y/G)W , so

(YW/G)×W ZW ∼= (Y/G)W ×W ZW ∼= ((Y/G)×XZ)×ZWZ . We conclude that the morphism

(Y ×X Z)/G → (Y/G) ×X Z becomes an isomorphism after − ×Z WZ . By Exercises 5.9

and 4.25 it follows that it was already an isomorphism. This proves 5.21.

5.22 Finite étale morphisms: verification of the first three axioms. Let X be a

scheme. We show that the category FEtX of finite étale coverings of X satisfies the axioms

G1, G2, G3 of 3.1.

(G1) The identity morphism X → X is clearly a terminal object in FEtX . If Y →
W ← Z are morphisms of finite étale coverings of X, then Y ×W Z → W is finite étale by

Exercises 5.7(a) and 5.8, and Y ×W Z → X is finite étale by Proposition 5.12. Hence fibred

products exist in FEtX .

(G2) If Yi → X is finite étale for 1 ≤ i ≤ n, then
∐n

i=1 Yi → X is finite étale (Exercises 5.3

and 5.8). Hence finite sums exist in FEtX . In particular, ∅ → X is an initial object. By

Proposition 5.20, quotients under finite groups of automorphisms exist.

(G3) Let h : Y → Z be a morphism of finite coverings of X. As in the proof of 5.16

we can write Z = Z0 q Z1, where the subschemes Z0 = {z ∈ Z : [Y : Z](z) = 0} and

Z1 = Z − Z0 are open and closed in Z. Then h−1(Z0) = ∅, and h factors as Y → Z1 → Z.

Here Y → Z1 is surjective, hence an epimorphism (Proposition 5.16), and Z1 → Z0qZ1 = Z

is a monomorphism by Proposition 5.17. This proves that any morphism in FEtX is an

epimorphism followed by a monomorphism. Further, by Proposition 5.17 any monomorphism

is an isomorphism with a direct summand.

5.23 Finite étale morphisms; the fundamental functor. A geometric point of a scheme

X is a morphism x : Spec Ω→ X, where Ω is an algebraically closed field. Geometric points

exist if X is non-empty (Exercise 5.18), in particular if X is connected. Let X be a scheme

and x : Spec Ω→ X a geometric point ofX. If Y → X is finite étale then so is Y ×XSpec Ω→
Spec Ω, by Exercises 5.5(a) and 5.8. This gives rise to a functor Hx : FEtX → FEtSpec Ω with

Hx(Y ) = Y ×X Spec Ω. The absolute Galois group (see 2.4) of Ω is trivial, so by Theorem 2.9

and the remark following that theorem there is an equivalence of categories J : FEtSpec Ω →
sets. Let Fx = J ◦ Hx denote the composed functor FEtX → sets; see Exercise 5.19 for

an explicit description of Fx. We prove that Fx satisfies axioms G4 and G5 of 3.1, and if X
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is connected also axiom G6. Since J is an equivalence we may replace Fx by Hx in each of

these axioms.

(G4) Clearly,Hx transforms the terminal objectX → X of FEtX into the terminal object

Spec Ω→ Spec Ω of FEtSpec Ω. Also Hx = −×X Spec Ω commutes with fibred products, since

this is true for any base change.

(G5) Any base change trivially commutes with finite sums, transforms epimorphisms in

epimorphisms by Exercise 5.5(c) and Proposition 5.16, and commutes with passage to the

quotient by a finite group of automorphisms by Proposition 5.21. This applies in particular

to Hx = −×X Spec Ω.

(G6) Let it now be assumed that X is connected. Then for any finite étale covering

Y → X the degree [Y : X] is constant (see 5.3). By Exercise 5.5(b) we have [Y : X] =

[Hx(Y ) : Spec Ω]. Further we see from the proof of Theorem 2.9 that the anti-equivalence

ΩSAlg → sets sends a separable Ω-algebra of rank n over Ω to a set of cardinality n.

Combining this we conclude that #Fx(Y ) = [Y : X] for any finite étale covering Y → X.

To prove (G6), let h : Y → Z be a morphism for which Fx(h) : Fx(Y ) → Fx(Z) is

bijective. We wish to prove that h is an isomorphism. Factor Y → Z as in the proof of (G3)

into Y → Z1 → Z0qZ1 = Z, where Y → Z1 is surjective. Since Fx(h) is an isomorphism and

Fx commutes with finite sums, the map Fx(Z1) → Fx(Z) = Fx(Z0) q Fx(Z1) is surjective.

Therefore Fx(Z0) = ∅, so [Z0 : X] = 0, and Z0 = ∅ by Proposition (5.4)(a). Hence Z1 = Z,

and Y → Z is surjective. Also [Y : X] = #Fx(Y ) = #Fx(Z) = [Z : X], and from Exercise

5.20 it now follows that Y → Z is an isomorphism.

5.24 Theorem. Let X be a connected scheme, x a geometric point of X, and Fx : FEtX →
sets as defined in 5.23. Then FEtX is a Galois category with fundamental functor Fx.

Proof. This was done in 5.22 and 5.23. This proves 5.24.

5.25 Proof of the Main theorem 1.11. It is straightforward to verify that FEtX is an

essentially small category for any scheme X. From Theorems 3.5(a) and 5.24 it thus follows

that for connected X the category FEtX is equivalent to π-sets for some profinite group π.

The uniqueness of π follows from 3.5(d).

This finishes the proof of the main theorem.

5.26 The fundamental group. For X, x, Fx as in Theorem 5.24 we write π(X, x) =

Aut(Fx), the fundamental group of X in x, see 3.6. We show that this is a functor on the

category S whose objects are pairs (X, x) with X a connected scheme and x a geometric

point of X, a morphism (X ′, x′) → (X, x) being a morphism f : X ′ → X of schemes for
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which f ◦ x′ = x. If f is such a morphism, then the functor G = −×X X ′ : FEtX → FEtX′

satisfies Fx′ ◦G ∼= Fx (canonically), so from Theorems 5.24 and 3.20 we see that a continuous

group homomorphism π(X ′, x′) → π(X, x) is induced. It follows that π(−,−) is a functor

from S to the category of profinite groups.

Exercises for Section 5

5.1 Let X be a scheme and d : X → Z any continuous function that assumes only non-

negative values. Prove that there is a finite and locally free morphism Y → X such

that d = [Y : X].

5.2 Let Y → X be a finite and locally free morphism. Prove that the underlying map

sp(Y )→ sp(X) is open and closed.

5.3 Let Yi → X be a morphism of schemes, for 1 ≤ i ≤ n, and Y = Y1qY2q· · ·qYn → X

the induced morphism. Prove that Y → X is finite and locally free if and only if each

Yi → X is finite and locally free. Prove also that [Y : X] =
∑n

i=1[Yi : X] if Y → X is

finite and locally free.

5.4 Let (Xi)i∈I be a collection of schemes, and Yi → Xi a finite and locally free morphism,

for each i ∈ I. Prove that the induced morphism
∐

i∈I Yi →
∐

i∈I Xi is finite and locally

free, and that each finite and locally free morphism Y →
∐

i∈I Xi is obtained in this

way. Prove also that [
∐

i∈I Yi :
∐

i∈I Xi] equals [Yj : Xj] when restricted to sp(Xj), for

each j ∈ I.

5.5 Let Y → X be a finite and locally free morphism of schemes, and let W → X be any

morphism of schemes.

(a) Prove that Y ×X W → W is finite and locally free.

(b) Prove that the diagram

sp(W ) sp(X)

Z

............................................................................................... ............

.................................................................................. .........
...[Y ×X W : W ]

...............................................................................
...
............ [Y : X]

is commutative.

(c) Suppose that Y → X is surjective. Prove that Y ×X W → W is surjective.
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5.6 Suppose that Z → Y and Y → X are finite and locally free morphisms of schemes.

Prove that the composed morphism Z → X is finite and locally free.

5.7 Let Y → X and Z → X be finite and locally free morphisms of schemes.

(a) Prove that Y ×X Z → X is finite and locally free.

(b) Prove that [Y ×X Z : X] = [Y : X] · [Z : X].

(c) Prove that Y ×X Z → X is surjective if Y → X and Z → X are surjective.

5.8 Do Exercises 5.1–5.7 with everywhere “finite and locally free” replaced by “finite étale”.

5.9 Prove that a morphism Y → X is surjective, finite and locally free if and only if for

each open affine subset U = SpecA of X the open subscheme f−1(U) of Y is affine,

f−1(U) = SpecB, where B is a faithfully projective A-algebra (see 4.11).

5.10 Let Y → X be a finite étale morphism of schemes, and let W → X be the surjective,

finite and locally free morphism constructed in the proof of 5.10 for which Y×XW → W

is totally split. Prove that W → X is finite étale, and express [W : X] in terms of

[Y : X].

5.11 If E is a finite set and A is a ring, we write AE for the ring of functions E → A, with

pointwise addition and multiplication.

(a) For a scheme X and a finite set E, prove that X × E ∼= X ×Spec Z (Spec ZE) (see

5.13 for the definition of X × E).

(b) Let X, Y be schemes and E a finite set. Prove that there is a bijection, natural in

X, Y and E, from the set Mor(X × E, Y ) of morphisms X × E → Y of schemes

to the set of maps E → Mor(X, Y ).

(c) For a ring A and a finite set E, prove that (SpecA)× E ∼= SpecAE.

(d) Suppose that A is a ring that has no non-trivial idempotents, and let E,D be

finite sets. Prove that any A-algebra homomorphism AE → AD is induced by a

map D → E.

5.12 Let D = (V,E, s, t) be a directed graph as in Exercise 3.1, and suppose that V and

E are finite. Let further X be a scheme, and let a D-diagram in the category of

totally split schemes over X be given; more precisely, let for each v ∈ V a totally split

morphism fv : Yv → X be given, and for each a ∈ E a morphism he : Ys(E) → Yt(e) with

ft(e)he = fs(e). Prove that any x ∈ X has an open affine neighborhood U such that the

diagram is trivial above U , in the sense that there exist finite sets Cv, for v ∈ V , maps

φe : Cs(e) → Ct(e), for e ∈ E, and isomorphisms αv : f
−1
v (U)

∼→ U × Cv such that for
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each e ∈ E the diagram

U × Cs(e) U × Ct(e)

f−1
s(e)(U) f−1

t(e)(U)

U U



................................................................................................................................................................
...
.........
...

fs(e)

................................................................................................................................................................
...
.........
...

ft(e)


idU

................................................................................................................................................................... ............

................................................................................. ..........
..
∼................................................................................. ..........

..αs(e)

.....................................................................................................
..
............

...............................................................................
..
............

∼ ...............................................................................
..
............ αt(e)

....................................................................................................... ..........
..

is commutative; here U × Cs(e) → U , U × Ct(e) → U are the first projections, and

U × Cs(e) → U × Ct(e) is the morphism induced by φe.

5.13 Let Y → Z → X be morphisms of schemes such that Z → X and the composed

morphism Y → X are affine. Prove that Y → Z is affine.

5.14 Prove that an open immersion is a monomorphism in the category of all schemes.

5.15 Let f : Y → X, g : Z → X be finite étale and h : Y → Z a morphism with f = gh.

Prove:

(a) h is an epimorphism in FEtX if and only if [Y : Z] ≥ 1;

(b) h is a monomorphism in FEtX if and only if [Y : Z] ≤ 1;

(c) h is an isomorphism if and only if it is both an epimorphism and a monomorphism

in FEtX .

5.16 Let X be a connected scheme, and let Y → X be finite étale. Prove that Y → X is a

connected object of the category FEtX , in the sense of 3.12, if and only if sp(Y ) is a

connected topological space.

5.17 Let Y → X be an affine morphism, and G a finite group of automorphisms of Y → X

in AffX , as in 5.18. Prove that sp(Y/G) is homeomorphic to the orbit space sp(Y )/G

with the quotient topology.

5.18 Let X be a scheme. Show that giving a geometric point of X is equivalent to giving a

point y ∈ X together with a field homomorphism k(y) → Ω from the residue field at

y to an algebraically closed field Ω.

5.19 Let X be a scheme and x a geometric point of X. Show that the functor Fx : FEtX →
sets defined in 5.23 is naturally equivalent to the functor that sends a covering f : Y →
X to the set {y : Spec Ω→ Y : fy = x}. [Hint: use the explicit description of the anti-

equivalence ΩSAlg→ sets from the proof of 2.9.]
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5.20 Let f : Y → X, g : Z → X be finite étale with [Y : X] = [Z : X], and suppose that

h : Y → Z is a surjective morphism with f = gh. Prove that h is an isomorphism.

[Hint: apply 5.14 if f and g are totally split, and make a surjective, finite and locally

free base change in the general case.]

5.21 Let f : Y → X be finite étale with X connected. Prove that W → X in 5.10 can be

chosen to be finite étale and connected, of degree dividing [Y : X]!.

5.22 Let X be a scheme, with underlying topological space spX.

(a) Denote by C the category of all morphisms f : Y → X that are locally totally split,

i.e., for which every x ∈ X has an open neighborhood U such that f−1(U) → U

is totally split (5.9). Prove that C is equivalent to the category of finite coverings

of spX.

(b) Suppose that X is connected, and let π̂(spX) be as in 1.15. Prove that there is a

continuous surjective group homomorphism π(X)→ π̂(spX).

5.23 Let X be an irreducible scheme. Prove that every morphism f : Y → X of schemes

that is locally totally split (Exercise 5.22(a)) is totally split.
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6 Complements

In the preceding sections we studied finite étale morphisms, but the notion of an étale

morphism has not even been defined. We shall give this definition in the present section, and

we shall prove, for locally noetherian X, that a morphism Y → X is finite étale if and only

if it is finite and étale. For general X something stronger than finite is needed, see 6.4.

To define étale morphisms we have to define flat morphisms and unramified morphisms.

We only treat those properties of these notions that we need. For a more systematic treatment

of flat morphisms, unramified morphisms and étale morphisms we refer to [9; 20].

Similarly, we considered projective separable algebras, but a separable algebra has not

been defined. We give the definition in 6.10, and we prove that an algebra is projective

separable if and only if it is projective as a module and separable. For more information on

separable algebras, even non-commutative ones, we refer to [7].

In Theorem 6.13 we describe the finite étale coverings of a normal integral scheme. This is

applied to the calculation of π(X), where X = SpecA for a Dedekind domain A or X = P1
K

or A1
K for a field K.

For more techniques to calculate the fundamental group we refer to [9] and [22]. A

particularly lucid exposition, without proofs, is found in [20, Chapter I, Section 5].

6.1 Flat morphisms. A ring homomorphism f : A → B is called flat if B is flat (see 4.3)

when regarded as an A-module via f . A morphism f : Y → X of schemes is called flat if for

every y ∈ Y the induced ring homomorphism OX,f(y) → OY,y is flat.

6.2 Proposition. Let f : A → B be a ring homomorphism. Then the following four asser-

tions are equivalent:

(i) f is flat;

(ii) for every prime ideal q of B the induced map Af−1[q] → Bq is flat;

(iii) the induced morphism SpecB → SpecA is flat;

(iv) for every maximal ideal n of B the induced map Af−1[n] → Bn is flat.

Proof. (i)⇒(ii) Let q ⊂ B be a prime ideal, p = f−1[q] ⊂ A and S = A − p. If A → B is

flat, then so is Ap = S−1A → S−1B, by [1, 2.20], and since S−1B → Bq is flat [1, 3.6], this

shows that (i) implies (ii).

(ii)⇒(iii) This is true by definition.

(ii)⇒(iv) Obvious.

(iv)⇒(i) To prove that A → B is flat it suffices to prove that for any injective map

M → N of A-modules the induced map M ⊗A B → N ⊗A B is injective [1, 2.19]. So let
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M → N be injective. Then for any maximal ideal n of B the mapM⊗AAf−1[n] → N⊗AAf−1[n]

is injective by flatness of A→ Af−1[n]. By (iv) it follows that M⊗ABn → N⊗ABn is injective

for any n. Since B → Bn is flat, this implies that the kernel K of M⊗AB → N⊗AB satisfies

K ⊗B Bn = 0 for all maximal ideals n of B. Therefore K = 0, as required.

This proves 6.2.

6.3 Proposition. Let f : Y → X be a morphism of schemes. Then the following four

assertions are equivalent:

(i) f is flat;

(ii) for any pair of open affine subsets V = SpecB ⊂ Y , U = SpecA ⊂ X with f [V ] ⊂ U

the induced ring homomorphism A→ B is flat;

(iii) there is a covering of Y by open affine subsets Vi = SpecBi such that for each i there

is an open affine subset Ui = SpecAi ⊂ X with f [Vi] ⊂ Ui for which the induced ring

homomorphism Ai → Bi is flat;

(iv) for every closed point y ∈ Y the induced ring homomorphism OX,f(y) → OY,y is flat.

Proof. This is a straightforward consequence of 6.2. We leave the proof to the reader.

6.4 Finitely presented morphisms. Let f : Y → X be a morphism of schemes. We recall

[10, Chapter II, Section 3] that f is called finite if there exists a covering of X by open

affine subsets Ui = SpecAi such that for each i the open subscheme f−1(Ui) of Y is affine,

f−1(Ui) = SpecBi, where Bi is an Ai-algebra that is finitely generated as an Ai-module.

Replacing “finitely generated” by “finitely presented” (see 4.6) we obtain the definition of a

finitely presented morphism; see Exercise 6.3 for an equivalent definition.

Over a noetherian ring, every finitely generated module is finitely presented. Hence if X

is locally noetherian, “finitely presented” is the same as “finite”.

Warning. Since in most of the literature on the subject all schemes are supposed to be

locally noetherian, the above terminology is not commonly used, and if it is used it does not

necessarily refer to the same notion.

We shall prove that, for finitely presented morphisms, “flat” is equivalent to “locally

free”. We need a lemma.

6.5 Lemma. Let P be a module over a ring A. Then P is finitely generated and projective

if and only if P is finitely presented and flat.

Proof. The “only if ”-part we know from Section 4 (see 4.6(ii) and 4.3). To prove the

“if ”-part, let first P be a finitely presented A-module and M a flat A-module, and write
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P ∗ = HomA(P,A). We claim that the map

φ : P ∗ ⊗AM → HomA(P,M)

defined in 4.8 by φ(f ⊗m)(p) = f(p)m, is an isomorphism. If P = An for some n <∞ this

is clear, as in 4.8. In the general case one chooses an exact sequence

Am → An → P → 0

with m,n <∞, and one considers the commutative diagram

0

0

Am∗ ⊗AM

HomA(Am,M).

P ∗ ⊗AM An∗ ⊗AM

HomA(P,M) HomA(An,M)

........................................................................................................................... ............

...............................................
...
.........
...

...............................................
...
.........
...

........................................................................... ............

................................................................................................................... ............

...............................................
...
.........
...

............................................................ ............

................................................................................... ............

............................................................ ............

The first row is exact since the functor −∗ = Hom(−, A) is left exact and M is flat, and

the second row is exact since Hom(−,M) is left exact. We have just seen that the last two

vertical arrows are isomorphisms. Hence the remaining vertical arrow is also an isomorphism.

This proves our claim.

Let now P be finitely presented and flat. Applying the above result to M = P we find

an element
t∑
i=1

fi ⊗ pi ∈ P ∗ ⊗A P

such that φ
(∑t

i=1 fi ⊗ pi
)

= idP , i.e.,

t∑
i=1

fi(x)pi = x for all x ∈ P.

Hence the A-linear maps

f : P → At, f(x) = (fi(x))
t
i=1,

g : At → P, g((ai)
t
i=1) =

t∑
i=1

aipi

satisfy gf = idP , so g is surjective and the sequence 0 → ker g → At → P → 0 splits.

Therefore P is finitely generated projective. This proves 6.5.

Remark. Finitely generated flat modules need not be projective: see Exercise 6.5(b).
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6.6 Proposition. Let f : Y → X be a morphism of schemes. Then f is finite and locally

free if and only if it is finitely presented (as in 6.4) and flat.

Proof. This is clear from Proposition 5.2, Exercise 6.3 and Lemma 6.5. This proves 6.6.

6.7 Unramified morphisms. Let f : Y → X be a morphism that is locally of finite type

[10, Chapter II, Section 3], and y ∈ Y . The morphism f is said to be unramified at y if

OY,y/mxOY,y is a finite separable field extension of OX,x/mx, where x = f(y) ∈ X. See

Exercise 6.6 for a reformulation of this definition for affine schemes, and Exercise 6.7 for the

relation to number theory.

A morphism f : Y → X is said to be unramified if it is locally of finite type and unramified

at all y ∈ Y .

6.8 Étale morphisms. A morphism f : Y → X is said to be étale if it is flat and unramified.

6.9 Proposition. A morphism f : Y → X of schemes is finite étale (see 1.4) if and only if

it is finitely presented (see 6.4) and étale (see 6.8).

Remark. It follows that, for X locally noetherian, finite étale is equivalent to finite and

étale. This is not true in general, see Exercise 6.8.

Proof of 6.9. By 6.6, finitely presented and étale is equivalent to finite and locally free and

unramified. Since finite étale morphisms are also finite and locally free, and all notions are

local on X, it suffices to prove the following assertion. Let B be an algebra over a ring A,

and suppose that B is finitely generated and free as an A-module. Then B is separable over

A (see 1.2) if and only if SpecB → SpecA is unramified.

First we reduce the problem to the case that A is a field. By definition, B is separable

over A if and only if the map φ : B → HomA(B,A) defined in 1.2 is an isomorphism. Using

Exercises 4.36 and 6.9 one sees that this is the case if and only if for each p ∈ SpecA the

analogously defined map B ⊗A k(p) → Homk(p)(B ⊗A k(p), k(p)) is an isomorphism, where

k(p) denotes the residue class field of p; in other words, if and only if B⊗A k(p) is separable

over k(p) for every p ∈ SpecA.

Likewise, it is straightforward to see from the definition that SpecB → SpecA is unram-

ified if and only if SpecB ⊗A k(p)→ Spec k(p) is unramified for every p ∈ SpecA. Thus the

problem has now been reduced to the case that A is a field.

Let A be a field. Then we can write B =
∏t

i=1Bi, where each Bi is a local ring with a

nilpotent maximal ideal (Theorem 2.6). It is easy to see that the Bi are in fact the localiza-

tions of B at all q ∈ SpecB. Hence from 6.7 we see that SpecB → SpecA is unramified if
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and only if each Bi is a finite separable field extension of A. By 2.7, this is equivalent to B

being separable over A, as required.

This proves 6.9.

The above proposition shows that our notion of “finite étale” agrees with the one found in

the literature [20].

6.10 Separable algebras. Let A be a ring and B an A-algebra. The ring homomorphism

B⊗AB → B sending x⊗ y to xy makes B into a B⊗AB-algebra and hence into a B⊗AB-

module. The A-algebra B is said to be separable if B is projective as a B ⊗A B-module.

6.11 Proposition. Let B be an algebra over a ring A. Then B is projective separable

(see 4.13) over A if and only if B is projective as an A-module and separable as an A-algebra

(see 6.10).

Proof. “Only if ”. Let B be projective separable over A . Then B is projective as an A-

module by definition. Further, the isomorphism B⊗AB ∼= B×C from 4.16 shows that B is

projective as a B ⊗A B-module, so separable as an A-algebra.

“If ”. Assume that B is projective as an A-module and separable as an A-algebra. First

we show that B is finitely generated as an A-module.

Since B is projective over B ⊗A B, there is a B ⊗A B-linear map f : B → B ⊗A B for

which the composed map B → B⊗AB → B is the identity on B. Let e = f(1). Writing e as

a finite sum of elements of the form x⊗ y, with x, y ∈ B, we see that there exists a finitely

generated sub-A-module N of B such that e ∈ image(N ⊗N → B ⊗B).

Because B is projective as an A-module we can embed B as a direct summand in a free

A-module F . Then B ⊗ B is a direct summand of F ⊗ F . Since N is finitely generated, we

can select a finitely generated free direct summand M of F with N ⊂M . Then e, considered

as an element of F ⊗ F , belongs to M ⊗M ; we show that in fact the whole image of f is

contained in M ⊗M .

Let b ∈ B. Then f(b) = f((b⊗ 1) · 1) = (b⊗ 1) · e ∈ (B ⊗ 1) · image(N ⊗N → B ⊗B) =

image(B ⊗ N → B ⊗ B) ⊂ F ⊗M . Similarly we have f(b) ∈ M ⊗ F . But M is a direct

summand of F , so f(b) ∈ (F ⊗M) ∩ (M ⊗ F ) = M ⊗M .

This proves that f [B] ⊂ M ⊗ M . It follows that the composite of the natural maps

M ⊗M → F ⊗ F → B ⊗ B → B is surjective. Since M ⊗M is finitely generated as an

A-module this implies that B is finitely generated as well.

To finish the proof of 6.11 we must now show that B is separable over A in the sense

of 4.13. We briefly indicate two different ways of doing this, leaving the details to the reader.
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As in the proof of 6.9 we may assume that A is a field, using Exercise 6.11. Next, using

Theorem 2.7, we may assume that A is algebraically closed and, using Theorem 2.6 and

Exercise 6.12, that B is a local ring. Then B⊗AB is also a local ring (Exercise 6.13), so the

projective B ⊗A B-module B is free (Proposition 4.5). Calculating dimensions over A one

finds that B = A, as required.

The second method follows the lines of the proof of Theorem 5.10. First one reduces the

problem to the case that B has constant rank (cf. Exercise 4.24) and one argues by induction

on the rank. The hypothesis that B is B⊗AB-projective leads to a splitting B⊗AB = B×C
as in Proposition 4.16, where C is a separable B-algebra (by Exercises 6.11, 6.12). By the

induction hypothesis, C is a projective separable B-algebra, so the same is true for B⊗AB.

One can now apply 4.14 to conclude the proof.

This proves 6.11.

Proposition 6.11 shows that our terminology agrees with the terminology used in the

literature [7].

6.12 Normal integral schemes. Recall that a scheme is normal if all of its local rings are

integrally closed domains.

Let X be a normal integral scheme. We shall describe all finite étale coverings Y → X

of X. Any such Y can be written, in a unique way, as the disjoint union of finitely many

connected schemes Yi, where each Yi → X is finite étale (see 3.12 and Exercise 5.16). It will

therefore suffice to describe all finite étale coverings Y → X that are connected.

Denote by K the function field of X [10, Chapter II, Exercise 3.6]. Then OX(U) may

be considered as a subring of K, for every nonempty open set U ⊂ X. Let L be a finite

separable field extension of K. For an open set U ⊂ X, U 6= ∅, let A(U) be the integral

closure of OX(U) in L and A(∅) = {0}. It is readily verified that A is a quasi-coherent

sheaf of OX-algebras. By [10, Chapter II, Exercise 5.17] it therefore gives rise to an affine

morphism Y → X with Y = SpecA. The scheme Y is called the normalization of X in L.

We say that X is unramified in L if Y → X is unramified (see 6.7).

6.13 Theorem. Let X be a normal integral scheme with function field K, and let L be a

finite separable field extension of K such that X is unramified in L. Then the normalization

of X in L is a connected finite étale covering of X. Moreover every connected finite étale

covering of X arises in this way.

Proof. We first prove the last statement of the theorem, asserting that every connected

finite étale covering of X arises in the way described. We begin with a lemma concerning

the affine situation.
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6.14 Lemma. Let A be a domain that is integrally closed inside its field of fractions K,

and let B be a projective separable A-algebra. Then there are finite separable field extensions

L1, L2, . . . , Lt of K such that there is an isomorphism B ⊗A K ∼=
∏t

i=1 Li of K-algebras.

Moreover, this isomorphism induces an isomorphism B ∼=
∏t

i=1Bi, where Bi denotes the

integral closure of A in Li.

Proof. Since B⊗AK is a separable K-algebra, Theorem 2.7 implies that B⊗AK ∼=
∏t

i=1 Li
with K ⊂ Li a finite separable field extension for 1 ≤ i ≤ t. The map B → B ⊗A K is

injective, because A → K is injective and B is flat over A. Hence B may be considered

as a subring of
∏t

i=1 Li. Since B is finitely generated as an A-module it is integral over A,

so B ⊂
∏t

i=1Bi, with Bi as in the lemma. To prove that equality holds, let x ∈
∏t

i=1Bi.

Then for each y ∈ B we have xy ∈
∏t

i=1Bi, and since A is integrally closed this implies, by

Exercises 6.17 and 6.18, that Tr(xy) ∈ A, where Tr = TrB⊗K/K . The map B → A sending

y to Tr(xy) is A-linear, so by the definition of separability (see 4.13) there exists x′ ∈ B

with Tr(xy) = TrB/A(x′y) for all y ∈ B. Then Tr(xy) = Tr(x′y) for all y ∈ B ⊗A K, by

K-linearity, and since B⊗AK is separable over K this implies that x = x′ ∈ B, as required.

This proves 6.14.

Continuing the proof of Theorem 6.13, let X be a normal integral scheme with function field

K, and f : Y → X a connected finite étale covering. Let U = SpecA be an open non-empty

affine subset of X, and f−1(U) = SpecB ⊂ Y . Then the conditions of 6.14 are satisfied, so B

is a product of finitely many domains. Consequently f−1(U) is the union of open irreducible

subsets [10, Chapter II, Proposition 3.1], and all local rings of f−1(U) are domains. Taking

the union over U we see that the same two statements are valid for Y . By Exercise 6.14 we

can write Y as the disjoint union of open irreducible subsets; but Y is connected, so it must

itself be irreducible. Its local rings are domains, so by [10, Chapter II, Proposition 3.1] the

scheme Y is integral. Let L be its function field. To prove that Y is the normalization of

X in L it suffices to prove, for any non-empty open affine subset U = SpecA of X, that

f−1(U) = SpecB, where B is the integral closure of A in L; but this is immediate from

Lemma 6.14, with t = 1. Finally, X is unramified in L by 6.9. This proves the last statement

of 6.13.

Before proving the first statement of 6.13 we treat two lemmas.

6.15 Proposition. Let C be a separable algebra of rank n over a field K, with #K ≥ n.

Then there exists γ ∈ C with C = K[γ].

Proof. By 2.7(iv) we can write C =
∏t

i=1Ci, where each Ci is a finite separable field

extension of K. We proceed by induction on t, the case t = 0 being trivial. For t > 0, we have
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C = C ′ × Ct, where C ′ =
∏t−1

i=1 Ci can be written as C ′ = K[γ′]. Then C ′ ∼= K[X]/gK[X]

for some polynomial g ∈ K[X] with deg g = [C ′ : K] = n − [Ct : K] < n. By the

theorem of the primitive element we can write Ct = K[α]. Using that #K ≥ n we can

choose a ∈ K with g(a + α) 6= 0. Then the irreducible polynomial f of a + α over K is

relatively prime to g, so the kernel of the K-algebra homomorphism K[X]→ C mapping X

to γ = (γ′, a + α) ∈ C ′ × Ct = C is generated by f · g. Comparing dimensions we see that

the map is surjective, so K[γ] = C. This proves 6.15.

Exercise 6.19 shows that the bound in 6.15 is sharp.

6.16 Lemma. Let A be a local domain that is integrally closed in its field of fractions K.

Denote the maximal ideal of A by m. Let L be a finite separable field extension of K, and

assume that the integral closure B of A in L is finitely generated as an A-module. Assume

furthermore that B/mB is a separable A/m-algebra. Then B is free of rank [L : K] as an

A-module.

Proof. Write n = [B/mB : A/m]. We begin by proving n ≤ [L : K]. To do this, we first

assume #A/m ≥ n. Then 6.15, applied to C = B/mB, implies B/mB = (A/m)[β mod mB]

for some β ∈ B. Since A is integrally closed in K, the irreducible polynomial of β over

K belongs to A[X], and it has degree ≤ [L : K]. Therefore (β mod mB) is a zero of a

polynomial in (A/m)[X] with leading coefficient 1 and degree ≤ [L : K]. It follows that one

has [B/mB : A/m] ≤ [L : K].

Next we assume #A/m < n. Choose a positive integer t with (#A/m)t ≥ n and gcd(t, [L :

K]) = 1. Since A/m is finite, there exist irreducible polynomials of every degree in (A/m)[X],

so we can choose a polynomial f ∈ A[X] with leading coefficient 1 and degree t such that

(f mod m[X]) ∈ (A/m)[X] is irreducible. Put A′ = A[X]/fA[X]. Then A′ is free of rank t

as an A-module, and A′/mA′ is the finite field of cardinality (#A/m)t, so A′ is local and

SpecA′ → SpecA is unramified at m. From Exercise 6.10 we now see that A′ is a projective

separable A-algebra. (This also follows from Exercise 1.6(b).) Since f is irreducible in A[X]

it is irreducible in K[X], so K ′ = A′ ⊗A K = K[X]/fK[X] is a field. From 6.14 it follows

that A′ is the integral closure of A in K ′. Put B′ = A′⊗AB and L′ = A′⊗AL ∼= L[X]/fL[X].

The condition gcd(t, [L : K]) = 1 implies that f is irreducible in L[X], so L′ is a field. Since

B′ is a projective separable B-algebra (Exercise 4.47) it is the integral closure of B in L′

(Lemma 6.14). It is therefore also the integral closure of A′ in L′. We have now proved that

A′, K ′,mA′, L′, B′ satisfy the conditions of 6.16, and in addition we have

#A′/mA′ ≥ n = [B/mB : A/m] = [A′ ⊗A (B/mB) : A′ ⊗A (A/m)] = [B′/mB′ : A′/mA′].

Hence by the first part of the proof we have n ≤ [L′ : K ′] = [L : K], as required.
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Let β1, β2, . . . , βn ∈ B be such that the (βi mod mB) span B/mB as an A/m-vector

space. Then by Nakayama’s lemma the βi span B as an A-module, since B is supposed to

be a finitely generated A-module. It follows that β1, β2, . . . , βn span L as a K-vector space

(Exercise 6.20). But n ≤ [L : K], so we must have n = [L : K], and β1, β2, . . . , βn are linearly

independent over K. We conclude that B is free of rank [L : K] over A, as required. This

proves 6.16.

To prove 6.13, letX be a normal integral scheme,K its function field, L a finite separable field

extension of K, and Y the normalization of X in L. Suppose that the morphism f : Y → X

is unramified. We claim that f is finite étale and that Y is connected.

Let U = SpecA be an open affine subset of X. Then f−1(U) = SpecB, where B is the

integral closure of A in L. The map SpecB → SpecA is surjective [1, Theorem 5.10], and

Exercise 6.21 now implies that Y is connected.

Next we prove that Y → X is finite. If X is locally noetherian this is true for the

normalization of X in any finite separable field extension of K, see Exercise 6.22. In the

general case we use that Y → X is unramified and hence locally of finite type, as follows.

Since Y → X is affine, it is quasi-compact [10, Chapter II, Exercises 3.2 and 5.17(b)], and

since it is also locally of finite type it is actually of finite type [10, Chapter II, Exercise

3.3(a)]. Hence if A and B are as above, B is a finitely generated A-algebra [10, Chapter II,

Exercises 3.3(c)] and since B is integral over A it must be a finitely generated A-module

(Exercise 6.23). This proves that Y → X is finite.

To prove that Y → X is finite étale it suffices, by Propositions 6.6 and 6.9, to show that

B is projective as an A-module, with A and B still as above. Lemma 6.16 implies that Bp is

projective of rank [L : K] as an Ap-module, for every p ∈ SpecA. From Exercise 4.27 it thus

follows that B is projective over A, as required.

This completes the proof of Theorem 6.13.

6.17 Corollary. Let X be a normal integral scheme, K its function field, K an algebraic

closure of K, and M the composite of all finite separable field extensions L of K with L ⊂ K

for which X is unramified in L. Then the fundamental group π(X) is isomorphic to the

Galois group Gal(M/K).

Proof. We note that K ⊂M is Galois, so that it makes sense to speak about Gal(M/K).

The natural morphism SpecK → X induces a functorG : FEtX → FEtSpecK , byG(Y ) =

Y ×X SpecK. One readily checks that, if L is as in Theorem 6.13, this functor sends the

normalization of X in L to SpecL. Theorem 6.13 therefore implies that the image of G is

contained in the full subcategory of FEtSpecK whose objects are of the form SpecB, where

91



B is a finite dimensional K-algebra that is split by M (see Exercises 2.25 and 2.29). This

category is equivalent to Gal(M/K)-sets, by Exercise 2.29. By Theorem 3.20, the functor G

induces a continuous group homomorphism Gal(M/K)→ π(X).

By Theorem 6.13, the functor G sends connected objects to connected objects, so by

Exercise 3.23(a) the map Gal(M/K) → π(X) is surjective. To prove that it is injective

we use the criterion of Exercise 3.23(b). Let X ′ be a connected object of the subcategory

of FEtSpecK described above. Then X ′ = SpecL for some finite field extension L of K

contained in M , so there are finite field extensions L1, L2, . . . , Lt of K contained in M such

that X is unramified in each Li and such that L is contained in the composite field extension

L1 ·L2 · . . . ·Lt. Denote by Yi the normalization of X in Li. Then Y = Y1×Y2×· · ·×Yt belongs

to FEtX , and one has G(Y ) = Spec (L1 ⊗K L2 ⊗K . . . ⊗K Lt). The natural surjective map

L1⊗K L2⊗K . . .⊗K Lt → L1 ·L2 · . . . ·Lt sending x1⊗ x2⊗ . . .⊗ xt to x1x2 . . . xt shows that

Spec(L1 ·L2 · . . . ·Lt) is a connected component of G(Y ), and the inclusion L ⊂ L1 ·L2 · . . . ·Lt
yields a morphism Spec(L1 · L2 · . . . · Lt) → SpecL in FEtSpecK . Hence the condition of

Exercise 2.23(b) is satisfied, and Gal(M/K)→ π(X) is injective.

We have proved that the map Gal(M/K)→ π(X) is bijective, so it is an isomorphism of

profinite groups (see 1.8). This proves 6.17.

6.18 Dimension one. We apply 6.13 and 6.17 to the case that the normal integral scheme

X is locally noetherian of dimension one. Then for each closed point x ∈ X the local ring

OX,x is a discrete valuation ring [1, Theorem 9.3]. In this situation the proof of 6.13 becomes

much simpler (Exercise 6.22); in particular, Lemma 6.16 can be dispensed with. The field

M in 6.17 is the largest extension of K within a fixed separable closure of K in which all

valuations induced by the closed points x ∈ X are unramified, see Exercises 6.7 and 6.26.

Many examples given in 1.12 are of the above type. IfX = Spec Zp for some prime number

p, then K = Qp, and M is the maximal unramified extension of K. It is well known that

Gal(M/K) ∼= Gal(Fp/Fp) ∼= Ẑ (cf. [26, Section 3-2]), so 6.17 implies that π(Spec Zp) ∼= Ẑ.

If X = SpecA[1/a], where A is the ring of algebraic integers in an algebraic number field

K, and a ∈ A, a 6= 0, then the closed points x ∈ X are in one-to-one correspondence

with the non-zero prime ideals of A that do not divide a. The field M is the maximal

algebraic extension of K that is unramified at these primes. This yields the description

π(SpecA[1/a]) ∼= Gal(M/K) announced in 1.12. From Theorem 6.13 and Exercise 6.25

we also see that the finite étale coverings Y → SpecA[1/a] are precisely given by Y =∐t
i=1 SpecBi, where t ≥ 0 and where for each i the ring Bi is the integral closure of A[1/a]

in a finite extension Ki of K that is contained in M .

In particular we can take A = Z, a = 1, so that X = Spec Z. Minkowski’s theorem that
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the discriminant of any algebraic number field L 6= Q exceeds 1 in absolute value implies

that any such L ramifies at some prime number. Therefore M = Q, and π(Spec Z) is trivial.

6.19 Valuations on K(t). Let K be a field. The examples X = P1
K and X = A1

K given in

1.16 are also of the type described in 6.18. To treat these we need some facts on algebraic

function fields of one variable, which may be found in [6].

Let t be transcendental over K. For every irreducible polynomial f ∈ K[t] with leading

coefficient 1, the map vf : K(t)∗ → Z defined by vf (f
ng/h) = n, for n ∈ Z, g, h ∈ K[t] −

fK[t], is an exponential valuation on K(t) that is trivial on K. The same is true for the

map v∞ : K(t)∗ → Z defined by v∞(g/h) = deg h− deg g, for g, h ∈ K[t]− {0}. Every non-

trivial exponential valuation on K(t) that is trivial on K is equivalent to exactly one of the

valuations just defined.

Let v be one of these valuations, F a finite separable field extension of K(t), and w an

extension of v to F . We recall that w is said to be tamely ramified over v if the residue class

field extension K(t)v ⊂ Fw is separable and the ramification index e(w/v) is not divisible

by char(Fw) (= char(K)). If moreover e(w/v) = 1, then w is unramified over v. Finally, v

is said to be tamely ramified, or unramified, in F if every w extending v is tamely ramified,

or unramified.

6.20 Proposition. Let K be a field, t transcendental over K, and F a finite separable

extension of K(t) such that every element of F −K is transcendental over K. Suppose that

the valuation v∞ defined above is tamely ramified in F , and that all valuations vf defined

above are unramified in F . Then F = K(t).

Proof. Let v and w be as above, and let K(t)v and Fw denote the completions. The differ-

ential exponent m(w) of w (with respect to K(t)) is defined to be the largest integer m with

the property that any x ∈ Fw with e(w/v)w(x) ≥ −m satisfies v(TrFw/K(t)v(x)) ≥ 0 (see [6,

Chapter IV, Section 8]; observe that e(w/v)w is the normalized valuation equivalent to w,

i.e., it has value group Z). We have

m(w) ≥ e(w/v)− 1

m(w) = e(w/v)− 1⇔ w is tamely ramified over v

(see [6, Chapter IV, Theorem 7]), and therefore

m(w) = 0⇔ w is unramified over v.

For almost all pairs v, w we have m(w) = 0.
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To every F as in the proposition is attached a non-negative integer gF , the genus of F ,

see [6, Chapter II, Section 1]. By Hurwitz’s formula [6, Chapter VI, Section 2, Corollary 2

to Theorem 2] we have

2gF − 2 = [F : K(t)](2gK(t) − 2) +
∑

m(w)[Fw : K],

the sum ranging over all w as above, with Fw denoting the residue class field. We notice

that the hypothesis that every element of F − K be transcendental over K is needed for

this formula. Using the ramification hypotheses of 6.20 and the fact that gK(t) = 0 (see [6,

Chapter II, Section 2]) we find from Hurwitz’s formula

2gF − 2 = −2[F : K(t)] +
∑

(e(w/v∞)− 1)f(w/v∞),

the sum now ranging over the valuations w of F extending v∞, and f(w/v∞) denoting the

residue class field degree [Fw : Kv∞ ] = [Fw : K]. The well-known formula
∑
e(w/v∞)f(w/v∞)

= [F : K(t)] (see [6, Chapter IV, Theorem 1]) now yields

−2 ≤ 2gF − 2 < −2[F : K(t)] + [F : K(t)] = −[F : K(t)],

so [F : K(t)] = 1 and F = K(t). This proves 6.20.

6.21 Corollary. Let K be a field, t transcendental over K, and F a finite separable extension

of K(t). Suppose that v∞ is tamely ramified in F , and that all vf are unramified in F . Then

F = L(t) for some finite separable extension L of K.

Proof. Let L = {x ∈ F : x is algebraic over K}. Then t is transcendental over L. Applying

6.20 to the extension L(t) ⊂ F we see that L(t) = F . Since K(t) ⊂ L(t) = F is finite

separable the same is true for K ⊂ L. This proves 6.21.

6.22 The fundamental group of P1
K. Let K be a field, and X = P1

K the projective

line over K. The discussion in 6.18 applies to X, the function field of X being K(t), with

t transcendental over X, and the valuations of K(t) corresponding to the closed points of

X are the valuations vf , v∞ defined in 6.19. If F is a finite separable field extension that

is unramified at all these valuations, then 6.21 implies that F ⊂ Ks(t), where Ks denotes

a separable closure of K. Conversely it is easy to see that K(t) ⊂ Ks(t) is unramified at

all these valuations. Therefore the field M from 6.17 equals Ks(t), and by 6.17 we have

π(P1
K) ∼= Gal(Ks(t)/K(t)) ∼= Gal(Ks/K) ∼= π(SpecK). In particular π(P1

K) is trivial if K is

separably closed.

94



6.23 The fundamental group of A1
K. Again let K be a field, and X = A1

K = SpecK[t]

the affine line over K, with t transcendental over K. The function field of X is K(t), and

the valuations of K(t) corresponding to the closed points of X are the valuations vf defined

in 6.19.

Suppose that charK = 0. Then every valuation of K(t) that is trivial on K, in particular

v∞, is tamely ramified in any finite extension K(t) ⊂ F . Hence using 6.21 we find, as in 6.22,

that the field M from 6.17 again equals Ks(T ). Consequently π(A1
K) ∼= π(SpecK) if K has

characteristic zero.

If charK = p > 0 the natural map π(A1
K) → π(SpecK) is still surjective, but it is not

injective (see Exercise 6.28). In particular π(A1
K) is non-trivial if K is a separably closed

field of non-zero characteristic.

6.24 Finite rings. Let A be a finite ring, and suppose that SpecA is connected. Then A

is a local ring with a nilpotent maximal ideal m, by [1, Chapter 8]. Let k denote its residue

class field. We claim that π(SpecA) ∼= π(Spec k) ∼= Ẑ.

The ring homomorphism A→ k induces a continuous group homomorphism π(Spec k)→
π(SpecA). If B is an A-algebra for which SpecB⊗Ak is connected, then SpecB is connected,

by Exercise 6.32. Hence by Exercise 3.23(a) the map π(Spec k) → π(SpecA) is surjective.

Next let Spec ` be a connected object of FEtSpec k. Then ` ∼= k[X]/fk[X] for some separable

irreducible f ∈ k[X]. Choose g ∈ A[X] with (g mod m[X]) = f , and such that the leading

coefficient of g is a unit. Then B = A[X]/gA[X] is free as an A-module, and SpecB → SpecA

is unramified. Hence SpecB belongs to FEtSpecA, and B⊗A k ∼= `. From Exercise 3.23(b) it

now follows that π(Spec k)→ π(SpecA) is injective. This proves that π(SpecA) ∼= π(Spec k).

In 2.5 we have already seen that π(Spec k) ∼= Ẑ.

Exercises for Section 6

6.1 A module M over a domain A is called torsionfree if for every non-zero a ∈ A and

every non-zero x ∈M one has ax 6= 0.

(a) Prove that a flat module over a domain is torsionfree.

(b) Let A be a Dedekind domain. Prove that any torsionfree A-module can be written

as an injective limit of finitely generated projective A-modules, and that an A-

module is flat if and only if it is torsionfree.
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6.2 Prove Proposition 6.3.

6.3 Let f : Y → X be a morphism of schemes. Prove that f is finitely presented (as in 6.4) if

and only if for every open affine subset U = SpecA ⊂ X the open subscheme f−1[U ] ⊂
Y is affine, f−1[U ] = SpecB, where B is an A-algebra that is finitely presented as an

A-module.

6.4 Let M be a module over a ring A. Prove that M is a flat A-module if and only if Mm

is a flat Am-module for every maximal ideal m of A, and if and only if Mp is a flat

Ap-module for every prime ideal p of A.

6.5 Let A = FV2 , where V is a set.

(a) Prove that Ap
∼= F2 for every prime ideal p of A, and that every A-module is flat.

(b) Suppose that V is infinite. Prove that there is a finitely generated flat A-module

that is not projective. [Hint: Exercise 4.23.]

6.6 Let A be a ring, B a finitely generated A-algebra, and q ∈ SpecB. Prove that the

morphism f : SpecB → SpecA is unramified at q if and only if p = f(q) generates the

maximal ideal of Bq and the residue class field k(q) is a finite separable extension of

k(p).

6.7 Let A be a Dedekind domain and B the integral closure of A in a finite separable

field extension of the field of fractions of A. Let further q be a maximal ideal of B, and

p = A∩q. Prove that SpecB → SpecA is unramified at q if and only if the ramification

index e(q/p) equals 1 and B/q is separable over A/p, i.e., if and only if q is unramified

over p in the sense of algebraic number theory.

6.8 Let A =
∏

i∈I ki be the product of an infinite collection (ki)i∈I of fields, and a =

{(xi)i∈I ∈ A : xi = 0 for almost all i ∈ I}. Prove that the morphism SpecA/a→ SpecA

is finite and étale, but not finite étale.

6.9 Let A be a ring, M and N two finitely generated free A-modules, and f : M → N an

A-linear map. Prove that f is an isomorphism if and only if for each p ∈ SpecA the

induced map M ⊗A k(p)→ N ⊗A k(p) is an isomorphism.

6.10 Prove that a morphismf : Y → X of schemes is finite étale if and only if it is finitely

presented (see 6.4), flat, and unramified at every closed point y ∈ Y .

6.11 Let A be a ring, B a separable A-algebra (see 6.10), and C an A-algebra. Prove that

B ⊗A C is a separable C-algebra.

6.12 Let A be a ring and B1, B2, . . . , Bn algebras over A. Prove that
∏n

i=1Bi is a separable

A-algebra if and only if each Bi is a separable A-algebra.
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6.13 Let K be an algebraically closed field and B a finite dimensional K-algebra that is a

local ring. Prove that the residue class field of B is K, and that B⊗K B is a local ring.

6.14 Let X be a topological space that can be written as the union of open irreducible

subsets. Prove that X can be written as the disjoint union of open irreducible subsets.

6.15 Let A be a noetherian ring for which SpecA is connected, and suppose that Ap is a

domain for all p ∈ SpecA. Prove that A is a domain. [Hint: if a · b = 0 for all non-zero

ideals a, b of A, choose a, b as large as possible and prove that a + b = A.]

6.16 Let X be a locally noetherian scheme all of whose local rings are domains. Prove that

X is the disjoint union of a collection of integral schemes. [Hint: use Exercises 6.14 and

6.15.]

6.17 Let A be a domain that is integrally closed in its field of fractions K, and let x be an

element of an extension field of K. Prove that x is integral over A if and only if the

irreducible polynomial of x over K has coefficients in A.

6.18 Let K be a field, L a finite extension field of K, and x ∈ L. Let
∑n

i=0 aiX
i be the

irreducible polynomial of x over K, with an = 1. Prove that TrL/K(x) = −[L : K(x)] ·
an−1.

6.19 Let K be a finite field and C the K-algebra K#K+1. Prove that there does not exist

γ ∈ C with C = K[γ].

6.20 Let A be a domain with field of fractions K, and L an algebraic field extension of K.

Prove that for every x ∈ L there exists a ∈ A, a 6= 0, such that ax is integral over A.

6.21 Let f : Y → X be a continuous surjective map from a topological space Y to a con-

nected topological space X, and assume that every x ∈ X has an open neighborhood

U for which f−1(U) is connected. Prove that Y is connected.

6.22 Let X be a locally noetherian normal integral scheme with function field K, and L a

finite separable field extension of K. Prove that the normalization Y of X in L is finite

over X. [Hint: use [1, Proposition 5.17].] Prove also that Y is locally free of degree

[L : K] over X if X has dimension one. [Hint: Exercise 4.10(c).]

6.23 Let A be a ring and B a finitely generated A-algebra that is integral over A. Prove

that B is finitely generated as an A-module.

6.24 LetX be a normal integral scheme with function fieldK, and L1, L2 two finite separable

field extensions of K within a given algebraic closure of K. Prove: if X is unramified

in L1 and in L2, then X is unramified in L1 ·L2 and in every subextension of K ⊂ L1.

[Hint: use 6.17 and its proof.]
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6.25 Let X,K,M be as in 6.17, and L a finite field extension of K contained in M . Prove

that X is unramified in L.

6.26 Let X be a connected scheme. Prove that the following properties are equivalent:

(a) X is locally noetherian, and every local ring of X is a discrete valuation ring or

a field;

(b) there is a covering of X by open affine subsets Ui = SpecAi, where each Ai is a

Dedekind domain or a field;

(c) for each open affine subset U = ∅ ofX we have U = SpecA, where A is a Dedekind

domain or a field.

6.27 Let X be a connected locally noetherian normal scheme of dimension one, K its

function field (cf. Exercise 6.16), and Ks a separable closure of K. For each closed

point x ∈ X let wx be a valuation on Ks extending the valuation on K correspond-

ing to x (see 6.18), and let Ix be the inertia group of wx in Gal(Ks/K). Prove that

π(X) ∼= Gal(Ks/K)/N , where N is the closure of the normal subgroup of Gal(Ks/K)

generated by all groups Ix.

6.28 Let K[t] be the polynomial ring in one variable over a field K of non-zero characteristic

p, and let f ∈ K[t]− {0} have degree not divisible by p. Prove that X = SpecK[t] is

unramified in the p-th degree extension K(t, u) of K(t) defined by up− u = f . Deduce

that the natural map π(A1
K)→ π(SpecK) is not injective.

6.29 Let K be a separably closed field with char(K) = p > 0. Prove that π(A1
K) is topolog-

ically generated by its p-Sylow subgroups [23, Chapitre I, numéro 1.4].

6.30 Prove that π(Spec Z[1/2]) is topologically generated by its 2-Sylow subgroups. Prove

that π(Spec Z[1/p]) is not topologically generated by its p-Sylow subgroups if p is an

odd prime.

6.31 Prove that π(Spec Z[X]) and π(P1
Z) are trivial.

6.32 Let B be a ring and I ⊂ B a nilpotent ideal. Prove that the set of idempotents of B

maps bijectively to the set of idempotents of B/I, under the natural map B → B/I.

6.33 Let p be a prime number and n ∈ Z, n > 0. Prove that the ring homomorphism

Zp → Z/pnZ induces an isomorphism π(Spec Z/pnZ)
∼→ π(Spec Zp).

6.34 Let A be a complete local ring with residue class field k. Prove that π(SpecA) ∼=
π(Spec k).

6.35 Prove that π(Spec Z[i]) and π(Spec Z[(1 +
√
−3)/2]) are trivial.
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6.36 (a) Let K be a totally imaginary number field with class number h, ring of integers

A, and discriminant ∆ over Q. Suppose that for every totally imaginary number

field L with [L : Q] ≥ 60 · h · [K : Q] the discriminant ∆L of L over Q satisfies

|∆L|1/[L:Q] > |∆K |1/[K:Q]. Prove that π(SpecA) is a finite solvable group. [Hint:

use class field theory, see Exercise 1.23.]

(b) Prove that π(Spec Z[ζ20]) is trivial, where ζ20 denotes a primitive 20-th root of

unity. [Hint: use (a) and the results of [25, Chapter 11].]

(c) Prove that π(Spec Z[
√
−5]) has order two, and that π(Spec Z[(1 +

√
−163)/2]) is

trivial.

6.37 Let A0, A1, A2 be local rings with maximal ideals m0,m1,m2, and fi : Ai → A2 (i = 0, 1)

ring homomorphisms that are local (i.e., fi[mi] ⊂ m2 or, equivalently, f−1
i (m2) = mi).

Put A = A0 ×A2 A1 = {(a0, a1) ∈ A0 × A1 : f0(a0) = f1(a1)}.
(a) Prove that A is a local ring.

(b) Let B be a free separable A-algebra, and put Bi = B⊗AAi, for i = 0, 1, 2. Suppose

that there are isomorphisms Bi
∼= Ai × Ai × · · · × Ai of Ai-algebras, for i = 0, 1.

Prove that for some n ≥ 0 isomorphisms Bi
∼= Ani of Ai-algebras can be chosen,

for i = 0, 1, 2, such that the diagram of natural maps

B1

An1

B0 B2

An0 An2

..................................................................................................................................................................................................................... ............

............................................................
...
.........
...
o

............................................................
...
.........
...
o

..................................................................................................................................................................................................................... ............

.................................................................................................................................................................................................................................

............................................................
...
.........
...
o

.................................................................................................................................................................................................................................

is commutative.

(c) With the hypotheses of (b), prove that B ∼= A× A× · · · × A as A-algebras.

6.38 Let A be the ring {(a, b) ∈ Z× Z : a ≡ b mod 6}.
(a) Describe SpecA.

(b) Prove that every finite étale covering of SpecA is locally totally split (see Exer-

cise 5.22(a)). [Hint: use Exercise 6.37 and the fact that π(Z) is trivial.]

(c) Prove that π(SpecA) ∼= Ẑ. [Hint: Exercise 5.22(a).]

(d) Let n ∈ Z, n > 0. Prove that up to isomorphism there exists exactly one projective

separable A-algebra B of rank n over A for which SpecB is connected. Give an

explicit description of this algebra.

6.39 Let A be the group ring of the cyclic group of order 6 over Z.

(a) Prove that A is isomorphic to a subring of Z×Z×Z[(1+
√
−3)/2]×Z[(1+

√
−3)/2]

of index 23 · 32, and describe SpecA.
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(b) Prove that π(SpecA) ∼= Ẑ.

6.40 Prove that π(Spec Z[
√
−3]) is cyclic of order two (cf. Exercise 1.29).
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category of –s, 10, 46
finite étale covering, 1, 7

category of –s, 7, 9
finite étale morphism, 7, 70, 86, 96
finite left limit, 48
finite morphism, 7, 69, 84, 86
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strict epimorphism, 33
subobject, 39

intersection of –s, 40
sum, 34

finite –, 34, 48
supernatural number, 26

108



surjective morphism, 69–72, 79
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target map, 47
terminal object, 33, 48
topological generator, 20
topological group, 8
topological space, 5
torsionfree module, 62, 95
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