
MATHEMATICS Proceedings A 88 (Z), June 17, 1985 

A normal basis theorem for infinite Galois extensions 

by H.W. Lenstra, Jr. 

Mathematisch Instituut, University of Amsterdam, Roetersstraat 15, 1018 WB Amsterdam, 
the Netherlands 

Communicated at the meeting of November 26, 1984 

ABSTRACT 

The normal basis theorem from Galois theory is generalized to infinite Gaiois extensions. 

INTRODUCTION 

Let K be a field, L a Galois extension of K, and G the Galois group of L over 
K. We consider G as a topological group with the topology defined by Krull 
[4; 1, Chapitre V, Appendice II]. 

The normal basis theorem asserts that if L is finite over K there exists x E L 
such that the elements o(x), o E G, form a basis for L as a vector space over 
K, see [5; 31. If L is infinite over K then no such basis exists, since for every 
x E L the set {o(x) : o E G} is finite. Hence if we wish to generalize the normal 
basis theorem to infinite Galois extensions we must look for an alternative 
formulation. 

Let L be finite over K, and write (G, K) for the K-vector space of all functions 
f: G-K. We let G operate on (G, K) by (o-f)(z) =f(o-‘r), for cr, TV G. We can 
now reformulate the normal basis theorem by saying that there is an iso- 
morphism p: (G, K)+L of K-vector spaces that respects the action of G. 
Namely, if W4), E G is a basis of L over K, then we can define p by v,cf) = 
= C& f(o)o(x). c onversely, if 9,: (G, K)+L is an isomorphism as above, 

and h:G+Kis defined by h(l)=l, h(s)=0 (TEG, t#l), thenx=q(h) has the 
property that (a(~)),~~ is a basis of L over K. 

It turns out that this version of the normal basis theorem is valid for infinite 
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Galois extensions as well, provided that we only consider continuous functions 
G-tK. 

THEOREM 1. Let KcL be a Galois extension of fields, with group G, and 
denote by C(G, K) the K-vector space of all continuous functions f : G+K; here 
G is provided with the Krull topology and K with the discrete topology. Let G 
operate on C(G, K) by (of)(s) =f (o-‘T), for o, T E G. Then there exists an 
isornorphism C(G,K)-+L of K-vector spaces that respects the action of G. 

The proof of this theorem is given in Section 3 of this paper. 
We can also express the normal basis theorem by saying that, for L finite over 

K, the additive group of L is free on one generator as a left module over the 
group ring K[G]. This assertion can be generalized to the infinite case as 
follows. 

Denote by U the set of open normal subgroups of G. We order U by letting 
N’N if and only if NCN’. For N, N’E U, NcN', let the ring homomorphism 
Q~,~:K[G/NI-+K[G/N’] be induced by the natural group homomorphism 
G/N-+G/N’. We write K[[G]] = Ii@,, U K[G/N], the projective limit being 
taken with respect to the maps @N/N (see Section 1 for our conventions about 
projective limits). Observe that K[[G]] contains the group ring K[G] in a natural 
way, and is equal to it if G is finite. 

For NE U, let the subfield LN of L be defined by LN= {y E L : o(y) = y for 
all CJ EN}; this is a finite Galois extension of K with group G/N. For N, N’ E U, 
NcN’, the trace map TrN’,N:LN--+LN’ is defined by TrMIN(y) = CoeN’,N a(y). 
The projective limit li@N, U LN, taken with respect to the maps TrNf,N, is in a 
natural way a left module over K[[G]]. 

THEOREM 2. For any Galois extension of fields KC L with group G, the left 
K[[G]]-module li@iN, U LN is free on one generator. 

The proof of this theorem is given in Section 3 of this paper. 

1. PROJECTIVE LIMITS 

A preordered set is a set I with a binary relation I on I that is transitive and 
reflexive. A directed set is a preordered set I with the property that for any two 
(Y, p E I there exists y E Z with a I y and /3~ y. A projective system consists of 
a directed set I, a set E, for’ each a E I, and a map fab: E8-+E, for each pair (Y, 
p E I with a <p, such that f,, equals the identity on E, for each a E I, and 
fapfpy = f,, for all a, p, y E I with a IP and fi< y. The projective limit of such 
a system,. denoted by l&n E, or lipaS E,, is defined by 

lip &= {(x,),,I E 41 E,: f&x/) =x, for all a, /~E:I with asp}. 

The projective limit may be empty, even if all E, are non-empty and all fab are 
surjective [6]. We recall from Bourbaki [2, 111.7.41 sufficient conditions for a 
projective system to have a non-empty projective limit. 
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Let 4 E&-I, Cfa~)a,~d,a~p be a projective system in which all E, are non- 
empty. We suppose that for each (;I E I we are given a collection Ya of subsets 
of E,, such that the following four conditions are satisfied. 

(1.1) If aEland KY, then nMEsMEYU. 

In particular, taking Y= 0, we see that E, E -4”,. 

(1.2) If a ~1, and FC Y, is such that nME 3’ Mf0 for all finite subsets 
Y’c X then flMGsM+O. 

(1.3) If IY, /?EI, a</3 and x~E,, thenfUj’xE9$. 

(1.4) If (Y, /?~1, asp and ME 5, then&&M] E Ya. 

In the following proposition we write E= Ii@ E,. For a ~1, we denote the 
natural map E-tE, by f,, and we put EL= nPEAa+ f&[E8]; so E;cE,, and 
Eh = E, if all f& are surjective. 

(1.5) PROPOSITION. With the above hypotheses and notation, we have: 
(a) E#0; 
(b) f,[E] = EL for each a E I; 
(c) if JcI is directed with respect to the restriction of 5 to J, then the image 

of the natural map li@,,, E,+li_m,,J E, is li@raGJ EA. 

PROOF. We need a few facts from the proof of [2, III.7.4, Theoreme 11. Let 
C denote the set of all families (AI,),~~ for which 

A,#0 and A,E %v,, for all ae1, 

fab[Ap]CAa for all a, PEZ, arb. 

Let KJaE~G4&E~ if and only if AACA, for each aeZ. This makes C into 
a partially ordered set. In [2, lot. cit.] it is shown that C satisfies the conditions 
of Zorn’s lemma, and that the map E-+ C sending (x,),~~ to ({x,}),~~ esta- 
blishes a bijection between E and the set of maximal elements of C. 

We use this to prove (c). Let JcI be directed. It is trivial that the image of 
E in lip,,, E, is contained in lipacJ EL. To prove the other inclusion, let 

c%)EJqp%E./ EA. For /3EI, let Ag= ncrCJ,a5P fajlxa. We claim that Ap#O. 
To prove this, it suffices by (1.3) and (1.2) to show that naCK,a5p fa;‘x,#O 
for every finite subset KC J. Let K be such. We may assume that KZ0. Since 
J is directed, we can choose y E J such that (x I y for all a E K, and since I is 
directed we can choose 6 E I such that /3< 6, y I 6. We have xY E E; C fyd[Ed], 
so xY =f&) for some ZE E6, and it is now readily verified that fps(z) E 
E naEK,a5p fajlxa. This proves that A,#0. It follows that (AB)PEI~ C. The 
results about C quoted above imply that C has a maximal element ({Y~})~~~ 
with ({yg})BE1z(Ap)gEr. Then yBeAB, and since A,={x,} for QXE J this 
implies that y,=x, for all (YE J. Hence(yg)pErEE maps to (x,),,~E$~,,~ E,. 
This proves (c). 
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Assertions (b) and (a), which form [2, 111.7.4, Theo&me 11, follow from (c) 
by putting .Z= {a} and J= 0, respectively. This proves (1.5). 

2.ARTIN RINGS 

Rings are supposed to have unit elements, and ring homomorphisms are 
supposed to preserve these. The group of units of a ring R is denoted by R *. 
A projective system of rings is a projective system I, (R,), (g& in which each 
R, carries the structure of a ring and each gab is a ring homomorphism. The 
projective limit of such a system carries a natural ring structure. 

The following proposition is not needed in the sequel, but its proof motivates 
the approach taken later. 

(2.1) PROPOSITION. Let Z, (R,), (g& be a projective system of rings in 
which each R, satisfies the descending chain condition on two-sided ideals and 
each gab is surjective. Put R = li+m R,. Then the natural map R+R, is sur- 
jective for every a E I. 

PROOF. We apply (1.5) with Eu=Ra, faB=gQ8 and 

Ya={O}U{x+a: XER,, a c R, is a two-sided ideal}. 

It is clear that E,#0 and that (1 .l), (1.3) and (1.4) are satisfied. To prove 
(1.2), we note that the descending chain condition on two-sided ideals of R, 
implies the existence of a minimal element among all finite intersections of sets 
ME 9; this minimal element must then be nME3M. 

Since the gaP are surjective we have E; =E, = R, in (1.5), so (2.1) follows 
from (IS)(b). This proves (2.1). 

An Artin ring is a ring that satisfies the descending chain condition on left 
ideals. 

(2.2) PROPOSITION. Let Z, (R,), (gap) be a projective system of rings in 
which each R, is an Artin ring and each gab is surjective. Put R = li+m R,. Then 
the natural map R *+ R,* is surjective for each a E Z. 

The properties of Artin rings needed in the proof are listed in Lemma (2.4). 
This lemma can easily be derived from the structure of semisimple Artin rings 
and properties of the Jacobson radical. We give a direct proof, starting from 
the following well-known lemma. By a module we mean a left module on which 
the unit element acts as the identity, and a module is called simple if it is non- 
zero and has no submodules except itself and (0). 

(2.3) LEMMA. Let R be a ring, (l14~)~~~ a collection of simple R-modules, 
hf= OOE” MU, and NCM a submodule. Then there is a subset WC Vsuch that 
&l/N= @ vewMu and NG OueV--WMU. 
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PROOF. With Zorn’s lemma, choose WC V maximal among all subsets 
W’C I/ for which the sum N+ OwEWrM,,, is direct. Then for UE I/ the sum 
W+ 0 WE wM,) + M, is not direct, by the maximality of W, so 
W+ 0 wEWM,+,)flMU#O; but M, is simple, so (N+@,,,M,)nM,=M,, 
andM,,cN+ @ WE wM,,,. This implies that M= N-t @,, wMw, and the lemma 
follows easily. This proves (2.3). 

(2.4) LEMMA. Let R be an Artin ring, and XE R. Then we have: 
(a) x is a unit if and only if it is a left unit, and if and only if it is a right unit; 
(b) R has only finitely many maximal two-sided ideals. 
(c) x E R * if and only if (x mod m) E (R/m) * for every maximal two-sided ideal 

m ofR. 

PROOF. (a) It suffices to show that yz= 1 implies zy= 1. The descending 
chain condition implies that Ry” = Ryn+ ’ for some n 2 0, so y” = wy”+l for 
some WER. Then l=y”z”=wy”+‘z”=wy and w=wyz=z. 

(b) Let mnmz,..., mk be distinct maximal two-sided ideals. Then 
mi+ mj = R for i#j, so the map R-t nF=, R/mj is surjective with kernel 
n:=, mi. This proves that n;=, mi is properly contained in n;:; mi. The 
descending chain condition now implies a bound on k. 

(c) “Only if” is clear. To prove “if”, suppose that x $ R *. Then Rx # R by 
(a), so RxC L for some maximal left ideal L C R. Let m = Ann (R/L) C R be the 
annihilator of the simple R-module R/L. Then mCL so (R/m)(x mod m)C 
c L/m # R/m and consequently (x mod m) $ (R/m)*. Hence to prove (c) it 
suffices to show that m is maximal as a two-sided ideal. We have 
m=nyER-L L, where L,={rER: ry EL}; considering the map R+R/L 
sending 1 to y one finds that R/L,,= R/L as R-modules. By the descending 
chain condition we have m = n YET LY for some finite set TC R -L. Then R/m 
is a submodule of JJYG r R/L,= (R/L)**, so R/m = (R/L)m for some m > 0, by 
(2.3). Let now n be a two-sided ideal of R containing m. Then R/nz(R/L)” 
for some n 2 0, by (2.3). If n = 0 then n = R, and if n > 0 then n = Ann (R/n) = 
= Ann (R/L) = m. 

This proves (2.4). 

(2.5) LEMMA. Let g:RO+R, be a surjective ring homomorphism from an 
Artin ring R, to a ring R,, and let ac R, be a two-sided ideal. Then 
g[(l +a)nR$] =(l +g[a]>flR:. 

PROOF. The inclusion c is obvious. To prove > we first suppose that aCm 
for every maximal two-sided ideal m of R, that does not contain ker g. Let 
x = 1 + g(y) E (1 + g[a]) n R:, with y E a. Using (2.4)(c) we prove that 1 + y E R$. 
Let m be a maximal two-sided ideal of R,. If ker g C m then the natural map 
R,+R,/m factors via g, so x = g(l + y) E RT implies that (1 +y mod m) E 
E (R,/m) *. If ker gQm then y~a~rn by hypothesis, so (l+y mod m)= 
=(l mod m)E(R,/m)*. This proves that l+y~R$, so x=g(l+y)E 
Eg[(l +a)nR,*]. 
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In the general case, let ml, m2, . . . . mk be the maximal two-sided ideals of Rb 
that do not contain ker g. Then mi+ ker g =RO for each i, so some .zi~ mi 
satisfies zi= 1 mod ker g. Then z=z1z2 . . . zk satisfies z E m1m2 . . . mk and 
g(z) = 1. Therefore g[a] = g[b] for b = amlm2 . . . mk. Applying the previous case 
to b we see that (1 -tg[a])nR:=g[(l +b)nR,*]Cg[(l +a)nR,*]. 

This proves (2.5). 

(2.6) LEMMA. Let g:R,,-+R1 be a surjective ring homomorphism from an 
Artin ring RO to a ring Rl. Then the map R$+Rf induced by g is surjective. 

PROOF. Put a = R,, in (2.5). This proves (2.6). 

PROOF OF (2.2). We apply (1.5) with E,=Rz and fob: R$-+R,* the map 
induced by gab. For Ya we take 

9, = {O} U {(x+ a) fl R:: x E R,*, a c R, is a two-sided ideal). 

It is clear that E, # 0. We check conditions (I. l)-(1.4). 
(1.1) If rlME9- M+0 then with ~~~~~~ M each ME F has the form 

(x+ aM)nR,* for some two-sided ideal a&R,, and then nME FM= 
=(x+a)nR: where a=nMEFaM. 

(1.2) Using (1.1) we may assume that 9is closed under taking finite inter- 
sections. For ME $ let bM be the two-sided ideal of R, generated by 
{y-z:y,z~M}; then M=(x+bM)nR,* for each XEM. Choose M’E~ 
such that bM is minimal among all ideals bM, ME K It then follows that 
M’=n&,M. 

(1.3) This is clear. 
(1.4) If M=(x+a)nRp*E -4”p then by (2.5) we have 

fapkW =f&W +a)nRg*)l =f&PW +g,p[al)M3= 

From (2.6) we see that the maps fob are surjective, so E;= R,* in (1.5). The 
proposition now follows from (1.5)(b). 

This proves (2.2). 

(2.7) PROPOSITION. Let I, (R,), (gas) be a projective system of rings in 
which each R, is an Artin ring and each gQ8 is surjective. Let further I, (M,), 
(hap) be a projective system in which each M, is a free R,-module on one 
generator and each hUp is a surjective Rp-module homomorphism; here M, is 
considered as an RFmodule via the map RB+R,. Put R =li@ R, and 
M=li+m M,. Then M is a free R-module on one generator, which can be 
chosen of the form (x,),.t, where each x, generates M, as an R,-module. 

PROOF. Without loss of generality we may assume that M,=R,, for each 
a E I. By (2.4)(a) we then have hap(l) E R,*, and hag(x) =g,&x)ha8(1) for all 
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x E Rp. Let fap: R;-+R,* be the map induced by hap; then the statement of (2.7) 
is equivalent to the assertion that Ii@ Rz # 0, the projective limit being taken 
with respect to the maps f&. 

To prove that Ii@ R,* f 0 we apply (1 S) with the same E, and Ya as in the 
proof of (2.2); but f& differs from the mapf& used for (2.2) by a unit factor 
h&l) on the right. Since YU is transformed into itself by multiplication by 
units conditions (l.l)-(1.4) are still satisfied. The proposition now follows 
from (1.5)(a). 

This proves (2.7). 

3. GALOIS EXTENSIONS 

In this section we use the notation from the Introduction. 

PROOF OF THEOREM 2. We apply (2.7) to the projective system CT, (K[G/N]), 
(Q~,~) of rings and the projective system U, (LN), (Trw,,) of modules. Each 
K[G/N] is finite dimensional over K and therefore an Artin ring. Each LN is 
free over K[G/N] on one generator, by the normal basis theorem. The re- 
maining conditions are easy to check. Theorem 2 now follows from (2.7). 

PROOFOFTHEOREM 1. From (2.7) we obtain an element (x~)~~ lie lJNE U LN 
such that 

(3.1) ((T(xN))o E G/N is a basis of LN over K, for each NE U, 

(3.2) TrN’,N(xN) =xN’ for N, N’E U, NCN’. 

To define v,: C(G, K)-+L, let f E C(G, K). Since K is discrete, there is for every 
o E G an NE U such that f is constant on ON. By compactness of G, we can 
choose the same N for all (T. Let fJ..,: G/N+K be the map induced by f. We 
now put 

From (3.2) it easily follows that the expression on the right does not depend on 
the choice of N, so p is well-defined. It is also K-linear, and it respects the 
action of G. Finally, (3.1) implies that it is bijective. 

This proves Theorem .l. 

Let L be finite over K, and let M be an intermediate field that is also Galois 
over K. Applying the trace from L to M one obtains, from every normal basis 
of L over K, a normal basis of M over K. In addition, every normal basis of 
M over K can be obtained in this way, since the natural map K[G] *-+K[G/N] * 
is surjective (Lemma (2.6)); here M=LN. 

The extension of these results to the general case is as follows. Let L again 
be arbitrary, and let M be an intermediate field that is also Galois over K. Then 
M = LN for a unique closed normal subgroup N of G. From any isomorphism 
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C(G,K)+L as in Theorem 1 one obtains, upon taking invariants under N, an 
isomorphism C(G/N,K)-+M such that the diagram 

C(G/N, K) - M 

C(G, K)- L 

is commutative; here the first vertical arrow is induced by the canonical map 
G-G/N, and M-L is the inclusion. Conversely, given an isomorphism 
C(G/N, K)-+M of K-vector spaces that respects the action of G/N one can find 
an isomorphism C(G,K)+L as in Theorem 1 such that the above diagram 
commutes. This is a consequence of (1.5)(c), with I= U and J equal to the set 
of open normal subgroups of G that contain N. 
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