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I. In troduc t ion  

Irreducible polynomials in Fp[X] are used to carry 

out the arithmetic in field extension of Fp. Computations 

in such extensions occur in coding theory [2], complexity 

theory [8] and cryptography [3] .  Random polynomial 

time algorithms exist for finding irreducible polynomials 

of any degree over Fp  [2, 8], and so as a practical matter  

the problem is solved. However, the deterministic 

complexity of the problem has yet to be established. 

We present two results: 

T h e o r e m  1: There is a c ~ Z>o and an algorithm A 

such that  on input p,d e g > l  with p prime: 

1. Outputs f e Fp[X] with f irreducible and 

dg(f)=d.  

2. Assuming extended Riemann hypothesis, halts 

within (d log p)¢ steps. 

T h e o r e m  2: There is a c e Z>0 and an algorithm B 

such that  on input p,d c Z > l  with p prime: 

1. Outputs f e Fp[x] with f irreducible and 

d/c  log p < dg(f) ~ d. 

2. Halts within (d log p)e steps. 
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H. N o t a t i o n  

If K is a field K will denote an algebraic closure. 

When p is a rational prime, Fp  will denote the field with 

p elements. If K is a number field (i.e. finite extension of 

Q) O K will denote its ring of integers. When a rational 

prime p and a number field K are fixed, then for a e OK, 

5 will denote a+pO K. If a rational prime p is fixed, then 

d • 
for f e Z [x], f = E i = 0  aixl, i will denote E i L o  ai x|¢ 

2hi 
n 

Fp[X]. For n ~ Z > i ,  fn will denote e 

III. A l g o r i t h m  A 

ii 

(o) 

(1) 

(2) 

(3) 

Input p,d ~ Z > i  

Calculate n,a ~ g > 0  such that: 

d -~ pan with (p,n) = 1. 

Calculate q E g > 0  such that: 

q is the least prime with q =-- l (mod n) 

and p inert in the subfield K C Q(¢q) 

with [K:Q] = n. 

Calculate g ~ Fp[X] such that: 

g= H (~-,°) 
aeGK/Q 

where ~ ~- Wrq(fq)/K(fq). 
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(4) For i = 1,2,...,d calculate ai,l,ai,2,...,ai, d c Fp such 

that: 

Vi(flTaa) d = ~j=l ai,iVj where 

Vi fie a e t ~p -~ I]5.~_ 1 a t ~ for 
a 

i ~ ~5--1 etPt-l(m°d pa) with ed{0,1,..,p-1 } 

for 5--1,2,...,a. 

i _~ e(mod n) with e ~ {0,1,...,n-I}. 

a 1 ~ Fp is a root of fl ~ xP-x-1 ~ Fp[x] 

ate Fp is a root of ft = xP-x'[I~[~'~--ll aj] p-I 

Fp(~l,-2,...,%1)[x ] for t = 2,3,...,a 

fl e Fp is a root of g 

(5) Calculate f ~ Fp[x] such that  f is the characteristic 

polynomial of (ai,j) E Md(Fp). 

(6) Output  f". 

IV. Proof  of  Correctness-Algorithm A 

We begin by arguing that Algorithm A runs in 

polynomial time assuming extended Riemann hypothesis. 

Step (1) clearly is polynomial time. For Step (2) we 

used a varient of Theorem 2 in [1]. 

Proposition 3: Assuming extended Riemann hypothesis, 

there is a e e Z>0  such that  for all p,n e Z>0  with p 

prime and (p,n) ---- 1 there is a prime q _---- l(mod n) with 

q < cn4(log(np)) 2 such that p is inert in the (unique) 

subfield K C_ Q(¢q) with [K:Q] -~- n. 

Hence the q required in Step (2) is sufficiently small 

that  it can be found and tested for primality in 

polynomial time. Since p is inert in K iff (q-1/f,n) -~- 1 

where f is the order of p in (Z/ qZ)* this too can be 

tested in polynomial time. 

For Step (3) we begin by noting that it follows from 

Gauss' theory of periods (see [9]) that  1-[aEGK] Q (x-, a) 

Z Ix] so the definition of g makes sense. Since 

IIaCGK/Q (x-, a) I]aeGK/Q ( x , )  the calculation of g 

can be done using the ring operations in Z [;q]/pZ [¢q] 

which are polynomial in q log p. It follows that  Step (3) 

can be done in polynomial time. 

For Step (4) it suffices to show that  for a fixed i the 

calculation of the a. . 's  takes polynomial time. The 
1,] 

calculation proceeds in a + l  stages. In Stage 1 powers of f 

greater than n-1 are reduced using g. In stage i -~ 

2,3,...,a+1 powers of aa+2. i greater than p-1 are reduced 

using fa+2-i" The remaining details are straightforward. 

The calculation of the characteristic polynomial of a 

matrix of Md(Fp) can be done in time polynomial in 

d log p using standard methods [10, pp. 353.-355, 410-411]. 

We now argue that  the polynomial f eFp[X] 

produced by Algorithm A is irreducible of degree d. We 

begin by considering the following tower of fields: 

F(i--- F 1 F 2 . . . . .  Fa_ 1 F a - -  F 

II II II II II II 
Fp F0(al) Fl(a2) Fa.2(aa.1) Fa_llaa) Fa($) 

p 

Where al, a2 '""aa' f are as in the algorithm. 

We will prove the following claims: 

Claim I [F i : Fi_l] ---- p for i ~- 1,2,...,a 

Claim H IV : Fa] ---- n 

Claim m F = Fp(~+aa) 

It follows from the claims that f + a  a satisfies a 

unique d th degree monic irreducible polynomial in Fp[X]. 

Since the V i of the Algorithm are clearly a basis for F / F p  

it follows from standard result (see for example [7], pages 

7-8) that f is the desired polynomial. 

Claim I will follow from the next two lemmas, 

variants of which may be found in [7] for example: 

L e m m a  4: Let K be a field of characteristic p 7d 0 and 

a ~ K. Then either f ---- xP-x-a is irreducible or it has a 

root in K. 
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P r o o f :  If a,~ e K are roots of f then (a-c) p = a-~, so a-~ e 

Fp. Therefore K(a) ~- K(~), and a and /~ have the same 

degree over K. It follows that all irreducible factors of f in 

K[x] have the same.degree. But  f has prime degree, so 

either f is irreducible or all its factors are linear. [] 

L e m m a  5: Let K be a field of characteristic p ~ 0, a e 

K with f = xP-x-a e K[x] irreducible, a ~ K a root of f. 

Then g = xP-x-aa p'I e K(a)[x] is irreducible. 

Proof: Let Tr  denote the trace function from K(a) to 

K. We will calculate Tr(aP'l). By assumption, 

(*) ~ P - ~ - a  ~- 0 
Multiplying (*) by a "l gives a p-1 ~- a a ' l + l  so Tr(a p'I) = 

T r ( a a - l + l ) -  aTr(a-1)+Wr(1)_-- aTr(a ' l) .  Multiplying 

(*) by (a'l)Pa "1 gives a'l-(aq)(a'l)p'l-(a-1) p : 0 from 

which it follows that  -a-l+a'lxP'l-FxP is the monic 

irreducible polynomial for 0 -1 and Tr(a -1) = -a "1. Hence 

Tr( .  pq) = -1. 

Assume g is reducible then by Lemma 4 there is a 

~ K(a) with #P-h-ha p-I ---- 0. Taking traces (and 

observing that raising to the pth power commutes with 

taking trace) yields bP-b-a = 0 for b ---- -Tr($) E K 

contradicting the hypothesis that  f e K[x] is 

irreducible. [] 

By Lemma 4, fl ~ xP-x-1 e Fp[X] is either 

irreducible or has a root in Fp. In the latter case, (xP-x-1, 

xP-x) ~ 1, which is clearly not correct. Thus [Fi:F0] ---- 

p. The rest of Claim I now follows from Lemma 5. 

Claim II follows from the next lemma which is 

basically due to Kummer [5]. 

L e m m a  6: Let p,q,n ~ Z>0  with p,q prime, q ~. 

l(mod n) and p inert in the subfield K _C Q(fq) with [K:Q] 

= n. Let 

g =  I I  (x-~a) 
aeGK/Q 

where ,7 ---- WrQ(¢q)/K(;q), then g is irreducible in FFp[x]. 

P r o o f :  It is well known [9] that S = {na:a e GK/Q} is 

a basis for O K over Z. Hence S'---- {,Ta:a E GK/Q} is a 

basis for the n th degree extension field OK/PO K as a 

vector space over Fp. It follows that  S has n elements. 

The field automorphisms of OK/PO K induced by the 

elements of GK/Q permute S" transitively. Hence the 

elements of S" are conjugate over Fp. It follows that g is 

irreducible in Fp[X]. O 

Notice that  since fa is irreducible in 

Fp(al,a2,...,aa.1)[x ] it follows that  F a = Fp(aa). Now 

Claim III follows from: 

L e m m a  7: Let a,~ E Fp with [Fp(a):Fp] and [Fp(~):Fp] 

relatively prime. Then Fp(a,fl) ---- Fp(a+/~). 

Proof: Let d a = [Fp(a):Fp], d~ = [Fp(f0:Fp], da+ ~ = 

[~p(a+/~):Fp]. Since Fp C Fp(a) _C_ Fp(/~,a+~) we have 

dal[Fp(~,a+~):Fp]. Also [Fp(~,a+/~):Fp]ld~da+ ~ so 

da[da+ p. Similarly d~lda+ ~ hence dad~[da+ ~. Clearly 

Fp(a+~) _C Fp(a,l~) so they must be equal. [] 

Remark: Assume the extended Riemann hypothesis, 

then the polynomial f that  is calculated by Algorithm A 

has "small coefficients," if a is small and p is large. More 

precisely, f is of the form f -~ x d - I - ~ = l  ~i xd'i, where 

a i e Z satisfies 

lail ~ cid4i(log(dp)) 2i, for i ---- 1,2,...,d, 

with c as in Proposition 3. 

Without  the extended Riemann hypothesis it is not 

clear how to prove the existence of an irreducible 

polynomial in Fp[X] of this form. 

V. Algor i thm B 

(0) Input p,d e Z > l  

(1) Set e 0 -~ a 0 -~ b 0 ---- 1, set go "-~ x-1 e Fp[X]. 

352 



(3) 

(2) For i = 1,2,...,z calculate <qi,ai,bi,ei,gi> such 

that: 

qi ~ least positive prime with qi-1 square free, 

qi ~ P and qi I P ei-l-1 

a i -~ least positive integer with pai ~. I mod qi 

b i ~ ai/(ai,ei.1) 

c i ~ bici. 1 

gi ~ Fp[x] such that gi(x) = I~Ia~G~/q'~l (x'"a) 

where 

K is the unique subfield of Q(fai ) -  

with [K:Q] ---- b. 
1 

r / =  TrQ(fqi)/K(~qi ) 

z ~ least positive integer such that c z .~_ d 

Calculate I C {0,1,...,z} as follows: 

Set t -~ 1. 
z 

For j ~. z,z-1,...,1 

(a) If tib i .~. d then set ti. 1 ---- tjbj, put  

j ~ I .  

(b) If tjbj ~. d and tjcj. 1 < d then set t o ---- 

tici. 1, put 0,1,...,j-1 E I, goto (4) 

(c) If tjbj > d and tjcj_ 1 .~  d then set 

tj. 1 ~- t i. 

(4) For i ~- 1,2,...,t 0 calculate ai,l,ai,2,...,ai,to e Fp such 

that: 

Vf7 = ~t.~_l ai,jV j where 

e k 
Vi ~ [Ikel  Bk e Fp for 

i __---- ek(MOD bk) with e k e {0,1,...,bk.1} 

for k ~ I. 

#k ~ Fp is a root of gk E Fp[x] for k e I. 

'7 ~- ~ k e l  /gk e Fp. 

(5) Calculate f e Fp[x] such that: 

f is characteristic polynomial of (aij) e Mt0(Fp). 

(6) Output  f ' .  

VI .  P r o o f  o f  Correctness  - A l g o r i t h m  B 

We begin by proving the following 

notation is that  of Algorithm B): 

claim (the 

C l a i m  IV:  There exists a e ~ Z>0  such that  for all p,d 

Z > l  with p prime, the bi's and qi's produced in Algorithm 

B on inputs p,d have the following properties: 

(a) 2 ~ b i < qi ~ cci-1 log p < cdlogp 

i .~ 1,2,...,z. 

(b) (bi,bj) ---- 1 for 1 _~. i < j .~. z. 

We will need the following well known result, which 

is a direct consequence of Theorem 2 in [6] (put k .-~ 2 

and t -~- -1): 

P r o p o s i t i o n  8: There exists a c c g > 0  such that  for all 

p,x E Z with p prime and x .~_ 3 

111 q > e z/c 
q ( z  

q prime 
q--1 aquare free 

q ~ P  

P r o o f  o f  C l a i m  IV: Clearly 1 .~. b i ~ .  a i. Assume b i 

1, then ailci_ 1 so p ei'l ~ 1 mod qi and contrary to our 

construction qilpei'l-1. By Fermat 's  Little Theorem a i 

qi -1 < qi so b i < qi' By Proposition 8 

171 q ~ p ci-1 ~ p C i - l - 1  

q~cci_llog P 
q prime 

q--1 square free 

q ~ P  

so qi -~- eel-1 log p as claimed, cci_llOg p < cdlog p for 

i ---- 1,2,...,z by the choice of z in Step (2). Therefore (a) 

holds. (b) Is clear from the construction. [] 

It follows from (a) of Claim IV that  z .~. log d and 

that  each qi can be found in polynomial time by naive 

search. Step (2) is now easily seen to be computable in 

polynomial time. The other steps are proved to be 
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computable in polynomial time using simple varients of 

the arguments used for Algorithm A. 

It is clear from the construction, (b) of Claim IV, 

and the arguments for Algorithm A that the output f of 

Algorithm B is irreducible of degree t 0. (Note in 

particular that p is inert in each of the fields K occurring 

in Step (2), because the square-freeness of qi-1 implies that 

((qi-1)/ai,bi)=l) • 

Consider Step (3) of the algorithm. At the start we 

have tze z ---- e z ~_ d. Assume that at stage j we have tic j 

~_ d, then if option (a) is executed we have ti_lCj. 1 -~ 

tibicj. 1 ~ tie i ~ d. If option (c) is executed we have 

tj.lej. 1 .~- tjcj. 1 ~._ d. It follows that if option (b) is never 

executed then t o ---- t0e 0 __ d. On the other hand, if for 

some j option (b) is executed then using (a) of claim IV we 

get d < tjbj < tj cej_ 1 log p ~- t o e log p so 

t0>d /¢  log p. In any case, since it is clear from Step (3) 

that we always have t O _~. d, we get 
d 

c iog-----p ~ to "~" d 
as desired. 

VII. Conclusion 

A deterministic algorithm for finding an irreducible 

polynomial of desired degree in Fp[X] is presented. The 

algorithm runs in polynomial time if an extension of 

Riemann hypothesis is assumed. A second algorithm 

which runs in deterministic polynomial time without 

hypothesis and produces an irreducible polynomial of 

approximately the desired degree is also presented. 

The obvious remaining problems are to remove the 

need for extended Riemann hypothesis in Algorithm A or 

substantially improve the approximation achieved in 

Algorithm B. These both may be difficult since the 

solution to either would imply the solution to other well 

known problems in number theoretic computational 

complexity. For example, removal of the need for 

extended Riemann hypothesis in Algorithm A, would 

provide a means of finding irreducible quadratic 

polynomials, which in turn would provide a deterministic 

polynomial time algorithm for finding 

nonresidues and taking square roots in Fp. 

quadratic 
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